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Advanced Air Mobility (AAM) aircraft have many challenges in landing accurately and
safely in urban, suburban, and rural environments. Localization in large and open rural
environments could utilize GPS, but AAM aircraft in urban environments will encounter GPS
degradation. Another challenge involves flight operation time, i.e., flying during the day or at
night. There are different guidelines, landmarks, and landing light configurations at runways,
heliports, and vertiports for daytime and nighttime applications. Tailoring feature detection
methods for AAM approach and landing during the day and night pose different issues and
challenges. It is easier to detect edges, lines, and other runway markers during the day than at
night. Conversely, it is easier to see landing light configurations and patterns at nighttime than
daytime. Consequently, utilizing the same feature detector for daytime and nighttime operations
may not be feasible. This paper focuses on a vision-based precision approach and landing (PAL)
by comparing ORB SLAM 2, a Vision Simultaneous Localization and Mapping (VSLAM)
algorithm, and a novel EKF that combines onboard IMU measurements with coplanar pose
from orthography and scaling with iterations (COPOSIT). Conducting unmanned aerial system
(UAS) flight tests at NASA Armstrong Flight Research Center (AFRC) with landmarks and
fiducials distributed around the landing zone provides a simulated AAM approach and landing
data to test vision-based PAL methods to provide Alternative Position, Navigation, and Timing
(APNT) solutions for AAM PAL applications. The novel vision-based PAL EKF with IMU and
COPOSIT provides accurate state estimation when distributed landmarks and fiducials are in
the field of view.

I. Introduction

Advanced Air Mobility (AAM) aircraft require precision approach and landing systems in several urban, suburban,
and rural environments. Implementing current state-of-the-art methods approved for automated approach and

landing for AAM operations is complex. This paper focuses on vision-based methods to demonstrate APNT solutions
for AAM approach and landing such that having alternative APNT solutions are vital to successful AAM operations in
urban environments with GPS degradation. This paper builds on previous work by conducting UAS flight tests at NASA
Armstrong Flight Research Center to demonstrate vision-based APNT solutions for AAM approach and landing.

A. Feature Detection
There are many types of feature detection methods. The scale invariant feature transform (SIFT) provides invariance

to image rotation and scale with robustness to affine distortion, change in 3D viewpoint, the addition of noise, and change
in illumination [1]. The Speeded-Up Robust Features (SURF) feature detector resembles and generally outperforms
SIFT due to SURF being less sensitive to noise [2]. The Harris corner detector finds corners and edges based on
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local auto-correlation [3]. The Features from Accelerated Segment Test (FAST) feature detector is a fast feature
extraction and matching method that can operate at 400 Hz [4]. Image registration techniques align two or more images
by intensities or features [5]. The Hough transform can detect circles with modifications such as edge orientation,
considering a range of circle radii, using complex accumulator arrays [6, 7]. The Kaze feature detector utilizes nonlinear
diffusion filtering, tends to be more computationally expensive than SIFT, but has comparable performance to SURF,
SIFT, and center-surround detectors (CenSurE) in terms of detection and description [8]. A minimum eigenvalue
algorithm detects corners, occlusions, disocclusions, and features not associated with points in the world in affine image
transformations [9]. The Binary Robust Invariant Scalable Keypoints (BRISK) feature detector uses scaled concentric
circles at keypoints, and it has similar performance to SURF but with less computational time [10]. The Oriented FAST
and rotated BRIEF (ORB) feature detector operates at two orders of magnitude faster than SIFT with good performance
in real-world applications such as object detecting and patch-tracking on a smartphone [11]. The maximally stable
extremal regions (MSER) feature detection method has nearly linear computational time complexity and a fast detection
algorithm for indoor and outdoor applications [12].

B. VSLAM Methods
There are many types of VSLAM methods because there are many feature detectors. ORB SLAM is a monocular

VSLAM method that works in indoor and outdoor environments with real-time capabilities and is robust to motion
clutter [13]. ORB SLAM 2 applies to monocular, stereo, and RGB-D cameras and has real-time capabilities [14]. ORB
SLAM 3 applies to monocular, stereo, and RGB-D cameras with pinhole and fisheye lens models for a tightly integrated
system with maximum a posteriori estimation for real-time operations in indoor and outdoor environments [15]. A
visual odometry VSLAM method demonstrates accurate pose tracking with little overhead and good feature selection
[16]. A distributed particle filter with an INS/VSLAM system has improved performance compared to an INS-only
navigation solution [17].

Other studies directly use VSLAM methods for aircraft and robot navigation. A vision-aided inertial navigation
solution for UAVs works in GPS-denied environments for closed-loop flights with Harris corner detection to extract
feature points [18]. An improved monocular ORB SLAM algorithm for robots with adaptive FAST threshold and image
enhancement demonstrates robust performance in complex lighting conditions [19]. Another VSLAM study compares
Harris corner detection, Kanade-Lucas-Tomasi track, and SIFT in an indoor environment and concludes that the choice
of feature extractor is not critical [20]. A Rao-Blackwellized particle filter for VSLAM with IMU, barometric altimeter,
and monocular camera inputs leads to UAV state estimation while building a feature map [21]. Another study evaluates
and tests several monocular VSLAM methods for fixed-wing aircraft: MonoSLAM, PTAM, OKVIS, LSDSLAM, ORB
SLAM 2, and SVO [22]. Binocular VSLAM for quadrotor UAVs demonstrates improved performance compared to the
traditional VSLAM framework [23].

C. Overview of Work
UAS flight tests at the NASA Armstrong Flight Research Center (AFRC) helipad provide INS/GPS trajectory logs

to serve as ground truth for both APNT solutions. Preliminary testing with several feature detection and VSLAM
methods on the experimental data showed that ORB SLAM 2 and Harris corner detection work well for the obtained
dataset. This paper compares two APNT solutions: ORB SLAM 2 and VAL (COPOSIT-EKF), an EKF that combines
coplanar POSIT and IMU measurements from Ref. [24]. Cones and the helipad markings distributed around the landing
zone serve as fiducials for visual aids and reference points for COPOSIT-EKF since it requires known feature points.
Conversely, ORB SLAM 2 does not require any known a priori features but includes the fiducials to have an equivalent
dataset to compare against it.

The organization of the rest of the paper is as follows. Section II has details of the Alta8 UAS flight tests at AFRC and
the important landmarks and fiducials. Section III discusses details about feature detection for Vision-based Approach
and Landing (VAL), and section IV shows preliminary and initial tests of VSLAM methods. Section V summarizes the
EKF design, which resembles the architecture in Ref. [24, 25], and section VI summarizes the results. Finally, section
VII ends with concluding remarks.
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II. AFRC Flight Tests and Landmarks
UAV Alta8 flight tests at NASA Armstrong Flight Research Center provide experimental data for mock AAM

approach and landing operations. Figure 1a shows the AFRC Alta8 octocopter with the inertial world coordinates
(ENU), vehicle coordinates (VCS), and camera coordinates (CCS). Figure 1b shows that the center of mass of the Alta8
is approximately 17 inches (0.43 m) above the center of the camera. Thus, the estimated position vector from the Alta8
body frame to the camera frame is:

𝒑𝑣𝑐𝑠2𝑐𝑐𝑠 =
[
0, 0,−0.43

]𝑇

(a) AFRC Alta8 Octocopter Frames (b) AFRC Alta8 Octocopter with ruler markings in inches

Fig. 1 NASA AFRC Alta8

The state vector for the Alta8 UAS is:

s =
[
𝐸 𝑁 𝑈 𝑣𝑁 𝑣𝐸 𝑣𝑈 𝜙 \ 𝜓

]
(1)

such that 𝐸, 𝑁,𝑈 are the East, North, Up coordinates in the world coordinates (inertial frame), 𝑣𝐸 , 𝑣𝑁 , 𝑣𝑈 are the East,
North, Up velocities in the world coordinates (inertial frame), and 𝜙, \, 𝜓 are the roll, pitch, and yaw Euler angles.

The National Geospatial-Intelligence Agency (NGA) provided the WGS84 coordinates (latitude, longitude, and
ellipsoid height) of the AFRC helipad markings with an accuracy of 0.02 m horizontally. The vertical accuracy is about
0.1 m by taking the standard deviation of the WGS84 ellipsoid heights for the surveyed points. Their geodetic surveys
include stations, helipads, and vertipads [26]. The Alta8 UAS flight tests were conducted at the helipad with incoming
trajectories over the lakebed. The cone locations coincide with the concrete square intersection points to yield precise,
repeatable locations (see Fig. 2).

Fig. 2 NASA AFRC Helipad Cones: locations coincide with the intersection points for precise locations

It is possible to estimate the Pulse Light Approach Slope Indicator (PLASI) location based on the known NGA-
measured sites of the AFRC helipad markings. However, the PLASI was not included as a critical landmark since its
location varied between flight tests.
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Table 1 AFRC Helipad Dimensions

side (ft) side (m) dashes (ft) dashes (m) gaps (ft) gaps (m)
TLOF 40 12.2 N/A N/A N/A N/A
FATO 120 36.6 5 1.5 5 1.5
SA 160 48.8 5 1.5 6 1.8

Figure 3 shows Google Earth images of the helipad at NASA AFRC, its markings, and fiducial (cone) locations.
Table 1 summarizes the AFRC helipad dimensions. The corner dashes of the FATO are slightly longer at 7.5 𝑓 𝑡 (2.3 𝑚).

Predicting the landmark and fiducial locations in pixel coordinates begins by importing the latitude and longitude
coordinates into MATLAB. Then, converting them into model coordinates (MCS) with the helipad as the origin with
MCS aligning with the Alta8 path during approach and landing. Then, rotating MCS into world coordinates (WCS)
aligns the landmarks and fiducials with true north (see Fig. 4). Comparing Fig. 3 with Fig. 4 provides a visual
confirmation that the coordinates for the landmarks and fiducial are correct. The camera model uses the landmarks and
fiducials’ MCS and WCS coordinates to determine their pixel coordinates. Table 2 shows the landmark and fiducial
coordinates with East and North (WCS) relative to the center of the helipad.

(a) AFRC Helipad Aligned with Atla8 Trajectory (b) AFRC Helipad Aligned with True North

Fig. 3 NASA AFRC Helipad Markings and Fiducials Alignment: Alta8 Trajectory & True North, cardinal
directions with respect to true north

Figure 5 shows the Alta8 trajectory in Google Earth. The Alta8 initially starts over the lakebed, facing the helipad.
The pilot hovers for a few seconds and then descends toward the helipad to resemble an AAM aircraft glideslope
approach and landing profile. The Alta8 approach and landing profile does not perfectly match the prescribed 9◦ AAM
glideslope presented in Ref. [27] because the Alta8 Pixhawk flight controller lacks a glideslope controller.

III. Feature Detection for VAL
This section describes the feature detection methods to identify the AFRC helipad markings and fiducials. Refs.

[24, 25] utilize Hough circle detection to find the landing lights, but it might not be an ideal feature detection method for
the AFRC helipad due to the sharp corners and cones. Figure 6 shows an initial comparison between Hough circle and
Harris corner detection of one of the frames during the Alta8 approach and landing. Fig. 6a shows that Hough circle
detection does not detect all twelve of the orange traffic cones, while Harris corner detection does detect all twelve of
the orange traffic cones, including the PLASI, as shown in Fig. 6b. Thus, Hough circle detection might not be an ideal
feature detector to implement for AFRC helipad feature detection. On the other hand, Harris corner detection identifies
the key landmarks in the scenery. It detects all twelve orange traffic cones, making it a more suitable feature detector.
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Fig. 4 NASA AFRC Helipad Markings and Fiducials in MCS & WCS (MATLAB)

Table 2 AFRC Landmark and Fiducial Coordinates

Fiducial Name Abbreviation Latitude (◦) Longitude (◦) East (m) North (m)
TLOF Cone 1 𝑇𝐿𝑂𝐹1 34.959163 -117.881696 3.64 7.81
TLOF Cone 2 𝑇𝐿𝑂𝐹2 34.959145 -117.881757 -2.09 5.73
TLOF Cone 3 𝑇𝐿𝑂𝐹3 34.959126 -117.881822 -7.81 3.64
TLOF Cone 4 𝑇𝐿𝑂𝐹4 34.959074 -117.881799 -5.73 -2.09
TLOF Cone 5 𝑇𝐿𝑂𝐹5 34.959022 -117.881776 -3.64 -7.81
TLOF Cone 6 𝑇𝐿𝑂𝐹6 34.959041 -117.881713 2.09 -5.73
TLOF Cone 7 𝑇𝐿𝑂𝐹7 34.959060 -117.881651 7.81 -3.64
Lead In Cone 1 𝐿𝐼𝐶1 34.959230 -117.881270 42.7 15.5
Lead In Cone 2 𝐿𝐼𝐶2 34.959211 -117.881333 36.9 13.4
Lead In Cone 3 𝐿𝐼𝐶3 34.959193 -117.881394 31.4 11.4
Lead In Cone 4 𝐿𝐼𝐶4 34.959175 -117.881457 25.6 9.33
Lead In Cone 5 𝐿𝐼𝐶5 34.959157 -117.881520 19.9 7.25
FATO Northeast Corner 𝐹𝐴𝑇𝑂𝑁𝐸 34.959304 -117.881617 10.9 23.4
FATO Northwest Corner 𝐹𝐴𝑇𝑂𝑁𝑊 34.959192 -117.881993 -23.4 10.9
FATO Southwest Corner 𝐹𝐴𝑇𝑂𝑆𝑊 34.958882 -117.881857 -10.9 -23.4
FATO Southeast Corner 𝐹𝐴𝑇𝑂𝑆𝐸 34.958994 -117.881480 23.4 -10.9
Safety Area Northeast Corner 𝑆𝐴𝑁𝐸 34.959374 -117.881576 14.5 31.2
Safety Area Northwest Corner 𝑆𝐴𝑁𝑊 34.959225 -117.882078 -31.2 14.6
Safety Area Southwest Corner 𝑆𝐴𝑆𝑊 34.958812 -117.881897 -14.6 -31.2
Safety Area Southeast Corner 𝑆𝐴𝑆𝐸 34.958961 -117.881396 31.2 -14.6
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Fig. 5 Alta8 Flight Test Trajectory: Google Earth

Therefore, this paper uses Harris corner detection instead of Hough circle detection, while the COPOSIT-EKFs in Refs.
[24, 25] use Hough circle detection.

Initial Hough Circle Detection

(a) AFRC Flight Test: Initial Hough Circle Detection

Initial Harris Corner Detection

(b) AFRC Flight Test: Initial Harris Corner Detection

Fig. 6 Initial Comparison: Harris Corner and Hough Circle Detection

IV. VSLAM Method Selection
Every VSLAM algorithm follows a sequence of map initialization, tracking, local mapping, and loop closing (see

Fig. 7). There are many VSLAM algorithms, but this paper focuses on applying ORB SLAM and ORB SLAM 2 for the
AFRC helipad Alta8 approach and landing.

Figure 8 compares initial results between ORB SLAM and ORB SLAM 2 at different frames. ORB SLAM tends to
find numerous features not associated with the helipad markings: the truck, buildings, fence, fighter jets, and terrain.
Note that the default bag of features in ORB SLAM lacked helipad markings since it was initially tailored for features
and objects inside an office ∗.

Conversely, ORB SLAM 2 tends to find numerous features associated with the helipad markings. ORB SLAM
implements a bag of words/features approach, which was not tuned to helipad markings [13]. Contrarily, ORB SLAM 2
is more feature based than ORB SLAM and picks up more features than ORB SLAM, which provides better performance
[14].

∗https://tinyurl.com/orbslam
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Fig. 7 General VSLAM Block Diagram

(a) AFRC Flight Test: ORB SLAM (b) AFRC Flight Test: ORB SLAM 2

Fig. 8 ORB SLAM Initial Comparison

Table 3 shows the main ORB SLAM and ORB SLAM 2 parameters. 𝑁𝐿 is the number of decomposition levels,
and 𝑁𝑃 is the number of points such that higher resolutions require more points for feature extraction. The outlier
thresholds for computing the homography and fundamental matrices are 𝑂𝑇ℎ and 𝑂𝑇𝐹𝑀 , respectively. Finally, the ORB
SLAM 2 initial and minimum extractor thresholds are 𝑂𝑇𝑖𝑛𝑖𝑡 and 𝑂𝑇𝑚𝑖𝑛, respectively. Since ORB SLAM uses a bag of
features not tailored to helipad markings, tuning these parameters did not yield better performance.

Table 3 ORB SLAM Parameters

Scale Factor 𝑁𝐿 𝑁𝑃 𝑂𝑇ℎ 𝑂𝑇𝐹𝑀 𝑂𝑇𝑖𝑛𝑖𝑡 𝑂𝑇𝑚𝑖𝑛

ORB SLAM 1.2 8 1000 10 4 n/a n/a
ORB SLAM 2 1.2 8 2000 n/a n/a 12 4

Preliminary ORB SLAM tests had scaling ambiguity, so they could not optimize its estimated trajectory. VSLAM
lacks scale without resolving scale ambiguity, so the estimated trajectory remains unscaled if scale ambiguity is not
solved. Fig. 9 shows the ORB SLAM estimated trajectory. ORB SLAM also neglects numerous relevant features, such
as the helipad markings, due to limited objects in its bag of features.

Contrarily, Fig. 10 shows a reasonable estimate of the unscaled ORB SLAM 2 trajectory because it tracks more
features associated with the helipad and its markings. Testing this ORB SLAM example with its default bag of features
also on AFRC april tags for camera calibration showed similar results with ORB SLAM preferences towards tracking
the buildings, automobiles, and other features that were not associated with the april tags. Overall, adding helipad
markings into ORB SLAM’s bag of features would yield better performance. However, ORB SLAM 2 includes more
features and performs better in these preliminary tests, so ORB SLAM 2 is the selected VSLAM method to compare
against the Alta8 approach and landing trajectory.
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Fig. 9 AFRC Flight Test: Preliminary ORB SLAM Unscaled Map Points and Estimated Trajectory (generated
in MATLAB)
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Fig. 10 AFRC Flight Test: ORB SLAM 2 unscaled and estimated trajectory without map points (generated in
Python, plotted in MATLAB)
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V. VAL Design
The VAL design for this paper follows the design and details provided in Ref. [25] with some differences:
1) The timestep for this paper is 2.38 seconds to match the ORB SLAM 2 time step, which gives a more accurate

comparison. Taking multiple measurements in a short amount of time increases the certainty of the state
estimation, which leads to higher accuracy.

2) The Q and R matrix components contain different values (see VI). The process noise covariance includes uses
the IMU measurement variances:

Q = 𝑑𝑖𝑎𝑔

[
𝜎2
𝑎𝑐𝑐,𝑥 𝜎2

𝑎𝑐𝑐,𝑦 𝜎2
𝑎𝑐𝑐,𝑧 𝜎2

𝑔𝑦𝑟𝑜,𝑥 𝜎2
𝑔𝑦𝑟𝑜,𝑦 𝜎2

𝑔𝑦𝑟𝑜,𝑧

]
. (2)

The measurement noise covariance utilizes the variances from the coplanar POSIT algorithm:

R = 𝑑𝑖𝑎𝑔

[
𝜎2
𝐸

𝜎2
𝑁

𝜎2
𝑈

𝜎2
𝑣𝐸

𝜎2
𝑣𝑁

𝜎2
𝑣𝑈

𝜎2
𝜙

𝜎2
\

𝜎2
𝜓

]
. (3)

The COPOSIT velocity measurements depend on the COPOSIT position measurements, so they are not completely
independent [25]:

𝒗𝑐𝑜𝑝𝑜𝑠𝑖𝑡 ,𝑖 =
𝒑𝑐𝑜𝑝𝑜𝑠𝑖𝑡 ,𝑖 − 𝒑𝑐𝑜𝑝𝑜𝑠𝑖𝑡 ,𝑖−1

𝑡𝑖 − 𝑡𝑖−1
. (4)

3) This paper uses Harris corner detection instead of Hough circle detection. Figure 11 shows the VAL block
diagram with Harris corner detection instead of Hough circle detection (see the red text above the Estimated
Detected Landing Lights (PC): Image Processing block).

Fig. 11 VAL Block Diagram with Harris Corner Detection, modified from Ref. [25]

Figure 12 shows the rates, inputs, and outputs of the main components high-level block diagram of the Vision-based
Approach and Landing System (VALS) from Ref. [25]. This paper uses the EKF presented in Ref. [25], which shows a
high-level block diagram of the EKF structure (see Fig. 13).
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Fig. 12 Vision-based Approach and Landing System (VALS) Block Diagram [25]

Fig. 13 EKF Flowchart: 1) running the EKF without a correction step and only the prediction step (dead
reckoning) occurs since the Kalman gain, 𝐾𝑘 , and measurement innovation, 𝑣𝑘 , equal zero): �̂�𝑘 (+) = �̂�𝑘 (−); 2)
running the EKF with both prediction and correction steps has nonzero values for the Kalman gain, 𝐾𝑘 , and
measurement innovation, 𝑣𝑘: �̂�𝑘 (+) = �̂�𝑘 (−) + 𝐾𝑘𝑣𝑘 [25]
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VI. Results
This section shows the images’ time synchronization, the telemetry data’s accuracy, camera parameters, and the

results for the APNT solutions: ORB SLAM 2 and COPOSIT-EKF.

A. Time Synchronization
The RED camera frame rate is 60 fps, which means one frame occurs every 0.016 seconds. One of the Alta8

preflight checklist items includes placing a clock in the camera’s view to match the frame and times post-flight based on
the camera frame rate of 60 fps. Choosing frame 25939 at the top of the glideslope occurs at 10:54:28 AM (local time,
Pacific Daylight Time (UTC-7)) based on the physical time hack with the clock displayed during the preflight steps.
Extracting 9720 frames (25939 to 35659) from the camera through the REDLine command line utility provided by the
camera manufacturer †, which gives 162 seconds (2.7 min) of footage. The Alta8 completes a mock AAM approach and
landing trajectory during this time, as shown earlier in Fig. 5. Thus, the trimmed Pixhawk ulog time histories and ORB
SLAM 2 data sets run for 162 seconds to match the relevant segment of extracted frames.

B. RED Camera Parameters
Table 4 shows the RED camera parameters. The camera pitch down angle is approximately −5◦ throughout the

flight. Ref. [25] includes a far plane in its camera parameters since it uses the perspective matrix and frustum (matrix in
the glFrustum function ‡) in its camera model for predicting landmarks. This paper also includes the far plane and uses
the same value even though the far plane extends much farther than 4000 m in the real world.

Table 4 RED Camera Parameters

Parameter Image Size Pitch Angle (◦) Near Plane (m) Far Plane (m) 𝐹𝑂𝑉ℎ (◦) 𝐹𝑂𝑉𝑣 (◦)
Value 4096 × 2160 -5 1 4000 84 44.30

C. GPS Accuracy
Table 5 shows the GPS accuracy of the Alta8 Pixhawk telemetry data in terms of horizontal dilution of precision

(HDOP), vertical dilution of precision (VDOP), and the number of satellites. Overall, the Alta8 flight test had excellent
satellite coverage, ranging from 17 to 20. The low HDOP and VDOP values demonstrate accurate horizontal and
vertical GPS accuracy. The Alta8 has a ublox M8N GPS receiver and Here2 antenna, so its accuracy notionally ranges
from 2 to 4 m horizontally §.

Table 5 GPS Accuracy: HDOP, PDOP, & Number of Satellites

HDOP VDOP Number of Satellites
Median 0.590 0.810 20
Average 0.596 0.815 19.63
Min 0.590 0.800 17
Max 0.650 0.930 20
Std 0.0106 0.0146 0.566

D. ORB SLAM 2
ORB SLAM 2 yields the unscaled position of the generated trajectory. Syncing the Pixhawk data with the ORB

SLAM 2 data occurs before scaling (recall subsection VI.A). The scaled data follows the linear y-intercept form:

𝒑𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐴 𝒑𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑏 (5)
†https://www.red.com/download/redline-linux-beta
‡https://learn.microsoft.com/en-us/windows/win32/opengl/glfrustum
§https://content.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf
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such that 𝐴, 𝑏 are the slope and y-intercept values, respectively. Applying LP Simplex in the Excel solver solves for the
slope and y-intercept of the scaled ORB SLAM 2 position values while minimizing the sum of the squared error. The
squared difference between the Pixhawk and scaled ORB SLAM 2 data with the time step (Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖) is:

Δ𝑥2Δ𝑡 = (𝑥𝑠𝑐𝑎𝑙𝑒𝑑,𝑤𝑐𝑠 − 𝑥𝑝𝑖𝑥ℎ𝑎𝑤𝑘,𝑤𝑐𝑠)2Δ𝑡,

Δ𝑦2Δ𝑡 = (𝑦𝑠𝑐𝑎𝑙𝑒𝑑,𝑤𝑐𝑠 − 𝑦𝑝𝑖𝑥ℎ𝑎𝑤𝑘,𝑤𝑐𝑠)2Δ𝑡,

Δ𝑧2Δ𝑡 = (𝑧𝑠𝑐𝑎𝑙𝑒𝑑,𝑤𝑐𝑠 − 𝑧𝑝𝑖𝑥ℎ𝑎𝑤𝑘,𝑤𝑐𝑠)2Δ𝑡.

(6)

The sum of the squared difference multiplied by the time step is:

Γ =

𝑁−2∑︁
𝑖=0

( 𝒑𝑠𝑐𝑎𝑙𝑒𝑑,𝑖 − 𝒑𝑝𝑖𝑥ℎ𝑎𝑤𝑘,𝑖)2Δ𝑡. (7)

in which 𝑁 is the number of points. Breaking down Eqn. (7) into its x,y,z components yields:

𝜖𝑥 =

𝑁−2∑︁
𝑖=0

(𝑥𝑠𝑐𝑎𝑙𝑒𝑑,𝑖 − 𝑥𝑝𝑖𝑥ℎ𝑎𝑤𝑘,𝑖)2Δ𝑡,

𝜖𝑦 =

𝑁−2∑︁
𝑖=0

(𝑦𝑠𝑐𝑎𝑙𝑒𝑑,𝑖 − 𝑦𝑝𝑖𝑥ℎ𝑎𝑤𝑘,𝑖)2Δ𝑡,

𝜖𝑧 =

𝑁−2∑︁
𝑖=0

(𝑧𝑠𝑐𝑎𝑙𝑒𝑑,𝑖 − 𝑧𝑝𝑖𝑥ℎ𝑎𝑤𝑘,𝑖)2Δ𝑡.

(8)

The rounded values for 𝜖𝑥 , 𝜖𝑦 , 𝜖𝑧 from Eqn. (8) are 173827, 1438996, and 18456, respectively.
Figure 14a compares the x component of the Pixhawk and ORB SLAM trajectories. The x values from the ORB

SLAM 2 trajectory are inaccurate and have some drift. However, the error based on Eqn. (6) decreases towards the end
of the trajectory, as shown in Fig. 14b. The rounded value for 𝜖𝑥 from Eqn. (8) is 173,827.

Similarly, Fig. 15a compares the y component of the Pixhawk and ORB SLAM trajectories. The y values from the
ORB SLAM 2 trajectory also tend to be inaccurate but converge with the Pixhawk y values. However, the error based
on Eqn. (6) decreases towards the end of the trajectory, as shown in Fig. 15b. The rounded value for 𝜖𝑦 from Eqn. (8) is
1,438,996, which is significantly larger than 𝜖𝑥 despite converging towards the same values at the end of the trajectory.

Finally, Fig. 16a compares the z component of the Pixhawk and ORB SLAM trajectories. The z values from the
ORB SLAM 2 trajectory are the most accurate and converge with the Pixhawk z values. However, the error based on
Eqn. (6) decreases towards the end of the trajectory, as shown in Fig. 16b. The rounded value for 𝜖𝑧 from Eqn. (8) is
18,456, which is significantly smaller than 𝜖𝑥 and 𝜖𝑦 .

Figure 17 shows the absolute difference between the position vectors for ORB SLAM 2 and the Pixhawk telemetry
data. It follows the trends of figures 14b, 15b, and 16b. The error decreases, increases, and decreases as the UAS reaches
the end of the approach and landing trajectory. It is uncertain what causes the error to increase around 67 seconds,
especially since the helipad and fiducials are clearly within the field of view. Future work can include investigating the
feature detection methods for VSLAM. Studying alternative feature detection methods such as Harris corner detection
may lead to developing VSLAM with Harris corner detection, which Ref. [18] utilizes for their vision-aided inertial
navigation.

E. VAL (COPOSIT-EKF)

1. Feature Detection and Correspondence
Figures 18-20 show preliminary tests for feature detection and correspondence. Figure 18a shows the first frame

during the AFRC helipad approach and landing with the predicted landmark locations, which is the blue block, Compute
Predicted Landing Lights (PC): Transformations, in Fig. 11. Figure 18b shows the grayscale version of the first frame,
which occurs before applying Harris corner detection and is the first step in the blue block, Estimate Detected Landing
Lights (PC): Image Processing, of Fig. 11.

Figure 19a shows the results of applying Hough circle detection to the grayscale image and determining the closest
matches to the predicted landmarks. Next, Fig. 19b shows the results of the bipartite graph matching between the
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Fig. 14 ORB SLAM 2 vs. Pixhawk: x values
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Fig. 16 ORB SLAM 2 vs. Pixhawk: z
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AFRC Frame 1: Grayscale
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(b) Grayscale before feature detection

Fig. 18 AFRC Helipad: Predicted Landmarks & Grayscale

predicted and estimated landmarks. The blue lines connect the closest matches between the predicted and estimated
landmarks based on a radial pixel tuning parameter, Δ𝑝𝑟 . This parameter creates a circle of radius, Δ𝑝𝑟 , around each
estimated landmark (green), and the detected pixels (red) within this circle are the closest matches. Consequently,
further pruning of the matches occurs if the detections fall outside this radius, i.e., Fig. 19a has three closest matches. In
comparison, Fig. 19b has only two matches.

AFRC Frame 1 without Mask: Predicted & Detected Lights
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(a) Predicted and Detected Landmarks

Bipartite Graph: Matching with AFRC Image
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Fig. 19 AFRC Helipad with Predicted and Detected Landmarks: a) best matches before applying the radial
pixel tuning parameter; b) best matches after applying the radial pixel tuning parameter

Figure 20a shows the same results as Fig. 19b but without the image in the background to see the matches between
the predicted and detected landmarks. Figure 20b shows the best matches in WCS. These two matches are the bottom
lead in cone (𝐿𝐼𝐶1) and southwest safety area corner (𝑆𝐴𝑆𝑊 ), which match the Google Earth landmark locations in Fig.
3b and correspond with their values in Table 2.

Figure 21 shows the final results of the number of detections vs. time throughout the Alta8 approach and landing
after tuning. COPOSIT requires at least four coplanar points (four detections) to yield a solution [28]. If there are
less than four coplanar points (four detections), the EKF in VAL lacks a COPOSIT measurement. Consequently, dead
reckoning occurs with only a prediction step in the EKF. Therefore, the correction and prediction steps in the EKF are
identical due to the Kalman gain and measurement innovation being zero from the lack of COPOSIT measurement, i.e.,
H = 09×9. Overall, there will be drift and inaccurate state estimation during the instances with less than four detected
points and no COPOSIT measurements. However, the subsequent COPOSIT measurement will correct the divergence
to create sawtooth patterns in the state estimation and covariance [25].
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Fig. 20 AFRC Helipad Best Matches: Bipartite Graph & WCS
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Fig. 21 Number of Detections vs. Time: COPOSIT requires at least four coplanar points (detections), so the
instances of time with less than four detections cause the state estimation to drift.
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2. EKF Overview
The process noise covariance (Q) and measurement noise covariance (R) values are:

Q = 𝑑𝑖𝑎𝑔

[
25 25 25 0.25 0.25 0.25

]
R = 𝑑𝑖𝑎𝑔

[
25 25 25 0.09 0.09 0.09 0.0001 0.0001 0.0001

]
.

(9)

Table 6 shows the statistics of the runtime for the main VAL functions: COPOSIT, feature detection & correspondence,
and EKF. Similar trends follow Ref. [25] in that the feature detection and correspondence functions take the most time,
EKF runs the fastest on the order of milliseconds, and the COPOSIT function takes about hundredths of a second.

Table 6 VAL Runtime

Process Mean (s) Median (s) Min (s) Max (s) Std (s)
COPOSIT 0.0515 0.0492 0.0463 0.0835 0.00708
Feature Detection & Correspondence 0.796 0.794 0.730 0.894 0.0399
EKF 0.00499 0.00105 0.000348 0.0741 0.0135

3. Error Covariance
Figure 22 shows the error covariance for the position and velocity of the UAS approach and landing. Divergence

occurs towards the end due to the lack of landmarks and fiducials within the field of view. Consequently, COPOSIT
measurements do not exist, so VAL applies dead reckoning. Therefore, the uncertainty in the estimation increases, i.e.,
the confidence in the estimation decreases.
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(a) Error Covariance: Position
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(b) Error Covariance: Velocity

Fig. 22 Error Covariance: Position & Velocity

Similarly, Fig. 23 shows the error covariance for the Euler angles. The lack of COPOSIT measurements produces
divergence ( 20) but is not as drastic as the error covariance divergence for position and velocity ( 105, 104). The
sawtooth pattern occurs again during the times without COPOSIT measurements. Overall, the lack of COPOSIT
measurements towards the end of the approach and landing creates high levels of uncertainty in the state estimation.
Future work may include integrating a nadir camera that contains the landmarks and fiducials during the last portion of
the approach and landing, potentially increasing the number of detections for COPOSIT and higher confidence in the
state estimation. Another strategy could be to implement a vision-based landing technique with a nadir camera that has
the helipad markings within the field of view throughout most of the landing phase [29].
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Error Covariance for Euler angles
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Fig. 23 Error Covariance: Euler Angles

4. State Estimation
The EKF in VAL computes velocity measurements based on the COPOSIT position measurements to yield higher

accuracy in estimation since preliminary tests that neglected COPOSIT velocity measurements led to significant
divergence [25]. Figure 24 shows the position and velocity state estimates, which fluctuate around the nominal states
(black lines). Figure 25 demonstrates similar behavior but with more significant fluctuations in which the lack of
detections significantly affects the Euler angle estimation, leading to substantial drift without COPOSIT measurements.

These fluctuations occur due to the lack of COPOSIT measurements but return to the nominal states when COPOSIT
measurements become available. Thus, sawtooth patterns form, but drastic divergence occurs towards the end of the
approach and landing from the lack of COPOSIT measurements, which arises due to the lack of key landmarks and
fiducials (recall Table 2) in the field of view.

Tables 7 - 8 show the average and standard deviation of the error of the EKF with and without COPOSIT
measurements, which demonstrates how significant COPOSIT has on the state estimation. The average and standard
deviations are significantly larger (orders of magnitude) without COPOSIT measurements. Due to the constant drop-ins
and outs of COPOSIT measurements, the overall position estimation accuracy is worse than the nominal GPS horizontal
accuracy, which ranges from 2 to 4 m (see subsection VI.C). Overall, consistently detecting at least four of the landmarks
and fiducials throughout the trajectory reduces the sawtooth pattern, leading to higher state estimation accuracy.

Table 7 State Estimation Statistics of the Error with COPOSIT Measurements

𝐸 (m) 𝑁 (m) 𝑈 (m) 𝑣𝐸 (m/s) 𝑣𝑁 (m/s) 𝑣𝑈 (m/s) 𝜙 (rad) \ (rad) 𝜓 (rad)
` 7.125 5.303 5.202 0.245 0.179 0.106 0.000754 0.00103 0.000742
𝜎 9.758 6.460 6.763 0.283 0.154 0.131 0.000700 0.00114 0.000903

Table 8 State Estimation Statistics of the Error without COPOSIT Measurements

𝐸 (m) 𝑁 (m) 𝑈 (m) 𝑣𝐸 (m/s) 𝑣𝑁 (m/s) 𝑣𝑈 (m/s) 𝜙 (rad) \ (rad) 𝜓 (rad)
` 59.776 53.001 45.483 10.257 10.646 12.478 0.474 0.351 0.339
𝜎 99.989 84.481 76.818 10.658 11.340 13.305 0.330 0.249 0.228
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Fig. 24 State Estimation: Position & Velocity
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5. Bounded Error
Figures 26 - 28 show the position, velocity, and Euler angle errors with ±2, 3𝜎 centered around the mean error. The

blue lines are the ±2𝜎 bounds, while the red lines are the ±3𝜎 bounds. Initial inspections imply that the errors are
bounded well, but zooming in before the significant divergence at the end shows large spikes in the sawtooth pattern due
to the availability of the COPOSIT measurements. These large amplitudes follow the significant mean and standard
deviation of the errors shown earlier in Tables 7 - 8. Extreme divergence occurs at the end due to the lack of detections
and COPOSIT measurements since all the landmarks and fiducials are outside the field of view.
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Fig. 26 Error with ±2, 3𝜎 Bounds: Position

Figure 29 compares the telemetry, ORB SLAM 2, and VAL EKF position vector magnitude. The VAL EKF position
estimation tends to match with the telemetry data until the end due to the lack of detections and COPOSIT measurements,
which causes divergence and high uncertainty in the EKF state estimation. Conversely, the ORB SLAM 2 position
magnitude does not closely follow the telemetry data well until the end.

Overall, the VAL EKF position magnitude is accurate until the final moments of landing due to the lack of distributed
landmarks and fiducials in the field of view. In contrast, ORB SLAM 2 position magnitude tends to become more
accurate towards the end of the trajectory before landing. The VAL EKF works well when the camera has the distributed
landmarks and fiducials in its field of view. At the same time, ORB SLAM 2 shows convergence towards the final
moments before landing without the distributed landmarks and fiducials in the camera’s field of view. Therefore, future
work can consider combining ORB SLAM 2 or another VSLAM method with VAL EKF to obtain a best-of-both-worlds
approach by including known and unknown a priori features in the scenery.
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Fig. 27 Error with ±2, 3𝜎 Bounds: Velocity
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Fig. 28 Error with ±2, 3𝜎 Bounds: Euler angles
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VII. Conclusion
This initial comparative computer vision study for AAM approach and landing compares ORB SLAM 2 and the

EKF navigation solution from Ref. [24] that combines onboard IMU measurements and coplanar POSIT. ORB SLAM
2 serves as a baseline VSLAM navigation method for comparing against the COPOSIT-EKF system as potential APNT
solutions. However, it may yield inaccurate solutions for approach and landing when there are dynamic features such as
birds or other aircraft. These different approaches deliver alternative onboard APNT solutions to GPS/GNSS-based
methods, which is essential for flying in urban environments with degraded GPS signals. The COPOSIT-EKF has
accurate estimation until the end due to the lack of distributed landmarks and fiducials within the camera’s view, which
causes divergence and drift. Conversely, the error in ORB SLAM 2 tends to decrease during the final moments before
landing. Future work can combine both methods for a best-of-both-worlds APNT solution with a fusion of unknown and
known feature points to yield accurate state estimation throughout the entire approach and landing profile. Conducting
UAV flight tests with approach and landing at the NASA AFRC helipad provides experimental data, which serves as
an excellent test case for simulating future AAM approach and landing. Future work can investigate whether feature
detection and correspondence still produce accurate results at higher cruise speeds. Future flight tests with larger aircraft
like helicopters and different flight conditions such as night, dawn, dusk, fog, and rain will provide additional insight for
simulating and testing AAM approach and landing.
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