Landslide Likelihood Prediction using Machine
Learning Algorithms
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Abstract—The supply of electricity via power plants is critical
to the operation of many critical infrastructure systems in mod-
ern society. Natural hazards can disrupt the power supply, cause
power outages that can halt economic growth, and impede emer-
gency response until power is restored. The proposed work aims
to predict the landslides likelihood in these critical infrastructure
locations in the Northeastern USA using integrated databases of
explanatory variables and machine learning algorithms. First,
data related to landslides are obtained and merged, including
topographic, soil moisture, and precipitation-related data. Five
regression algorithms, namely: Random Forest, Extreme Gradi-
ent Boosting (XGBoost), K-Nearest Neighbor regression (KNN),
Linear Support Vector Regressor (SVR), and Linear regression,
are utilized to predict the landslide probability and evaluated
on the dataset. The accuracy of the models is assessed by using
statistical metrics such as mean absolute error (MAE), mean
squared error (MSE), and root mean squared error (RMSE).
The study results show that Random Forest outperformed other
models with the mutual information feature selection method.
It achieved an MSE of 0.0011 with mutual information-based
feature selection and an MSE of 0.00157 without feature selection.
KNN regressor outperformed the other models with an MSE
of 0.00139 with correlation-based information selection. The
proposed landslide identification model with Random Forest
algorithm shows outstanding robustness and great potential in
tackling the landslide likelihood prediction by employing ML
algorithms.

Index Terms—Ilandslide likelihood, critical infrastructure, ma-
chine learning, regression, random forest and k-nearest neighbor

I. INTRODUCTION

The growing number of natural disasters due to climate
change is of critical concern. Landslides are one of the
predominant geologic hazards that result in massive human
and economic losses. A study on “Economic losses, poverty &
disasters” conducted by the World Health Organization reveals
that between the years 1998 and 2017, landslides affected
around 4.8 million people and caused 18000 fatalities [1]. The
U.S. Geological Survey estimates the impact of landslides as
a fatality between 25 to 50 people each year and an economic
loss of approximately 1 billion dollars [2].
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Power plants are one of the critical infrastructures that are
vulnerable to landslides. Electricity demand is ubiquitous in
our modern world. According to the U.S. Energy Information
Administration ( EIA ), the USA alone consumed 3.8 trillion
kWh ( kilowatt-hours ) of electricity in 2020 [3]. With the
rapid advancement of the digital world, the energy demand
can only be expected to rise exponentially. To prevent extreme
damage to power plants, and improve system resilience against
natural hazards, its crucial to identify areas prone to landslide.

Machine learning (ML) algorithms have been recently em-
ployed as analysis tools to extract important features that can
assist in decision making, perform clustering and prediction
tasks. ML has proven to be very helpful in solving chal-
lenging tasks in various domains. The domain of landslide
prevention has also harnessed the potential of these algorithms
to efficiently and precisely solve various problems. Most
of the machine learning algorithms are data centric. They
require high quality data to generate meaningful predictions.
According to a survey [4], [5], data volumes in the landslide
prevention domain are increasing exponentially due to the
advancement in sensors, the Internet of Things (IoT), and
model simulations . The availability of this cumulative data has
created various opportunities to apply of ML to solve major
problems in this domain.

Possibility of landslide occurrence in a given region is
estimated through landslide susceptibility assessment. The
proposed work predicted the region prone to landslides based
on available data, including conditional factors, by employing
ML algorithms. Landslides can occur due to heavy rainfall,
earthquake, loss of vegetation and support structures in high
elevation, and insufficient soil moisture [6]. Detailed research
on factors affecting a landslide is necessary to determine
landslide-related predictors.

The main objective of this paper is to propose a landslide
likelihood identification method using machine learning al-
gorithms. The training dataset is prepared by stacking vari-
ous layers composed of landslide explanatory variables. An



approach to handle multi-sensor satellite observations having
many noise sources, missing data, and outliers is presented.
Various machine learning algorithms, namely Random Forest,
Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor
regression (KNN), Linear Support Vector Regressor (SVR),
and Linear regression, are trained and compared to evaluate
their performance. The performance of the models was then
measured using mean squared error (MSE), Mean absolute
error (MAE), and Root Mean squared error (RMSE). The
power plants located in regions of the Northeastern USA are
used to validate the method. The proposed work is a pilot
study, and it currently focuses on the Northeast of the United
States of America. It can be further expanded to other parts of
the USA or the entire USA. The figure 1 depicts the regions of
interest. Figure 2 shows the location of various power plants
in the Northeastern region of the USA.

The rest of this paper is organized as follows: Section 2
briefly introduces related works conducted in the domain of
landslides identification. Section 3 demonstrates the method-
ology of the proposed study and the machine learning appli-
cations in landslide detection. Section 4 discusses the results
of the study. Section 5 concludes the paper and talks about
the future work.
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Fig. 1. Region of Interest.(A). Represents the training set with Northwestern
and Northeastern USA as our region of interest. (B). Represents the test set
with the Northeastern USA as the region of interest [7]

II. RELATED WORKS

Landslides can occur due to heavy rainfall, earthquake,
high elevation, and insufficient soil moisture. Various factors
that triggered landslides were considered in the model while
building the information system. Several works have been

Fig. 2. Locations of power plants in the Northeastern USA

done to identify the main predictors that had the potential
to induce landslides. Wicki et al. [8] studied the potential
of in situ soil moisture data for the regional landslide. The
study found that in situ soil moisture data efficiently provides
remarkable information that may be used to detect landslides
early. Johnston et al. [9] identified the influence of urbanization
on precipitation-induced landslide hazards and emphasized
the significance of taking urbanization into account when
estimating landslide hazards. Abraham et al. [10] established a
relationship between landslides, precipitation, and antecedent
soil moisture. They also found that less severe rainfalls can
trigger landslides when the soil wetness is high. Martino et
al. [11] revealed an increase in landslide activity after the
low-magnitude earthquake concerning the activities recorded
in the same months of the previous years. Nakileza et al. [12]
proposed that causal factors such as rainfall, tremors, and land
use were external stimuli responsible for the actual initiation of
mass movements. At the same time, conditional factors such as
geology, weathering, soils, and topography were responsible
for inducing slope instability. Hosseini et al. [13] identified
that the landslide dimensions increased with increasing slope
angle. Most landslides were situated along roads and on faults,
and shallow landslides were more frequent along roads than
those on faults. Matsuyama et al. [14] identified landslide
disasters were likely to occur when SWI in an event exceeded
the maximum value observed in the past ten years.

Several works have been done in the past to identify
the landslide susceptibility modeling using machine learning
techniques. Karianne et al. [15] emphasized the presence of a
vast and highly sophisticated geo-dataset that can provide valu-
able and preventive insights on geo-hazards through machine
learning methods. Goetz et al. [16] discussed the performance
of several data-driven approaches of which random forest
showed the best predictive performance. Chen et al. [17]
studied regional landslide susceptibility by implementing var-
ious machine learning models like random forests and created



landslide susceptibility maps for the perusal of policymakers.
Stumpf et al. [18] made use of high-resolution satellite images
in combination with object-oriented image analysis to generate
features to be used by a random forest ensemble model.
However, the accuracy score of around 80% showed that there
is still room for improvement. Lei et al. [19] made use of
similar imagery along with a newly proposed model, a fully
convolutional neural network with pyramid pooling (FCN-PP),
to extract features and detected landslide locations in a post-
disaster image taken from an airplane. While this approach
showed an impressive accuracy score of up to 95%, it cannot
be used directly in an early warning system to prevent large-
scale disasters as it looks at detecting the landslide regions
after the disaster has already taken place. Wei et al. [20] made
use of precipitation data in combination with groundwater
level and its fluctuation to build a model to predict landslides
in a given region. Using an SVM-based model, they achieved
an RMSE score of 0.144, suggesting that precipitation data is
highly correlated with landslides and can be used as a good
predictor.

Despite several efforts to develop landslide detection sys-
tems by applying ML techniques, the problem still poses
many challenges to the machine learning domain [21]. Class
imbalance is one of the main hindrances for the ML models.
A class imbalance develops when observation in one class is
higher than observation in other classes. Fewer instances in
the training set have medium/high landslide probability. Such
imbalances lead the model to consider susceptible areas as
safe areas. Hence, this problem needs to be mitigated to make
the model efficient. The noise in the dataset is another primary
concern. Multi-sensor satellite observations have many noise
sources, missing data, and outliers. Such complex datasets
pose problems to the ML models as they heavily depend on
the input dataset.

III. METHODOLOGY

In the proposed work, the machine learning algorithms are
employed to achieve the landslide likelihood prediction. The
flow is depicted in the figure 3.
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Fig. 3. Proposed model to predict landslide probability
A. Explanatory variables derived from the data sources

Several explanatory variables were derived from globally
available datasets. These variables are soil moisture, earth-

quake energy, precipitation, elevation, and slope. The sources
of these variables are tabulated in Table I. Slope is the mea-
surement of surface steepness. The formation, development,
and vulnerability of landslides are all significantly influenced
by slope. This was obtained from the Google Earth Pro. The
primary rationale behind utilizing earthquake energy is that
earthquakes trigger landslides. The amount of energy in the
seismic waves generated during the earthquakes determines
its potential to create landslides. The variable was derived
from the earthquake hazards program dataset. Soil moisture
conditions play a vital role in the initiation of landslides.
Also, multiple studies have obtained a strong correlation
between satellite soil moisture and landslide events. The soil
moisture data is extracted from the NASA-USDA soil moisture
dataset in this study. Precipitation is the fundamental triggering
variable in this work. It affects slope stability as it percolates
through soil and rocks and weakens the slope. This variable is
obtained from Goddard Earth Sciences Data and Information
Services Center.

The data layers obtained from each of the explanatory
variables are stacked over one another to form the final dataset.
The stacking of data layers is shown in the figure 5.

TABLE I
EXPLANATORY VARIABLES THAT WERE CHOSEN BASED ON THEIR
RELEVANCE AND CONTRIBUTION TO THE PREDICTIVE STRENGTH OF THE

MODEL.

Derived variable Dataset Reference
Elevation (in feet) and | Google Earth Pro, GPS [22]
Slope Data (in de- | Visualizer
grees)
Precipitation (in | Goddard Earth Sciences [7]
mm/hr) Data and Information Ser-

vices Center (GES DISC)
Soil  Moisture (in | NASA-USDA Global Soil [23]
mm/hr) Moisture Data
EarthQuake Energy | The USGS Earthquake [24]
(in joules) Hazards Program
Landslide Probability Global_Landslide_Nowcast| [25]

B. Landslide data

NASA’s earth observatory provided the landslide probability
value, which is the target variable. They were extracted from
the global landslide susceptibility map [25]. The values of
these probabilities ranged from O to 1.

An example of sample data obtained from the training
set is shown in the figure 4. It represents a location in the
Washington state. The elevation is in feet, the soil moisture
and precipitation are measured in mm/hr, earthquake energy
is in joules, and the run and slope are measured in degrees.
The landslide probability computed in the region is 0.033.

C. Data Preparation

The next stage is to form the training set. Data extraction,
layer stacking, and training set preparation are the different
sub stages involved. Only the necessary variables are obtained
from each dataset during the data extraction. For instance,
the latitude, longitude, date, and precipitation (in mm/hr) are



Fig. 4. Sample taken from the training set. The latitude of the location is
48.783393 and the longitude is -120.983333.

retained from the precipitation dataset. Each of the data layers
obtained is later stacked as shown in Figure 5. Every layer in
the figure denotes a predictor, which is combined to form an n-
dimensional training dataset. The layers are stacked upon one
another based on latitude and longitude values. For training,
the data from Northwestern USA and Northeastern USA are
utilized. The landslide probabilities (target variable) extracted
from the dataset are later merged with this dataset.

The feature vector computed for the figure 4 is listed in the
table II.

1) Handling Class Imbalance and Data Pre-processing:
Unbalanced datasets harm the performance of the regression
algorithms. Imbalance issues are challenging to handle in the
case of regression problems as the target values are continuous
and can have an infinite number of values. In the proposed
study, the target value is landslide probability, a continuous
variable.To better understand the under-sampled instances, the
class category was generated by distributing the probability
values into three different bins (after train-test split): Low,
Medium, and High. These bins were generated using threshold
values obtained from the domain expert from NASA for our
use case. This column was only utilized for knowing about
instance distribution and was dropped during training and
testing.

We have utilized the SMOGN algorithm to solve this
problem in this study. SMOGN [26] combines the power
of random undersampling and two oversampling techniques,
namely SMOTER and the introduction of Gaussian Noise. It
ensures that the samples generated are highly diverse. The
authors identified that the minority classes were the probabil-
ities that generated high and medium landslide risks during
the study. Before, the training set had 3401550 instances.
After applying the SMOGN algorithm, each class (generated
using pandas cut) had 3388518 instances (total of 10,165,554).
The outliers are the unusual values that can distort the sta-
tistical results. The authors conducted a small experiment to
determine if the outliers elimination for the proposed study
is a legitimate step. The correlation matrix of the dataset
was plotted to see the correlation between the predictors and
the target variable. Unfortunately, due to the presence of the

outliers, the precipitation and soil moisture was negatively
correlated to landslide probability which is not the case in

"« reality. Hence, the outliers in the dataset were eliminated using

two different techniques, namely: Winsorization [27], and the
boxplot approach [28]. The rows with null values (missing
values) were also eliminated.

D. Data Split

The dataset was split into train and test sets in a 70-30
ratio. The feature values were scaled using the standard scaling
method [29]. The scaling was performed after the dataset was
split to prevent the data snooping [30]. The training set had
10,165,554 instances, and the test set had 1,457,808 instances
which focused mainly in the Northeastern region of the USA.
The power plant details (latitude, longitude and name) were
integrated with the test set to facilitate the prediction of
landslides in respective power plant locations.

Fig. 5. Data layers stacked. (A). Layers in Training Set. (B). Layers in Test
Set

E. Machine Learning Models

Having established the training dataset, the next step is to
train the ML models and conduct landslide prediction. In this
study, landslide identification is a regression problem; Five ML
algorithms are chosen to evaluate the feasibility of machine
learning in landslide risk prediction.

1) Linear Regression: The linear regression is utilized
to understand the linear relationship between the dependant
variable (landslide probability) and the independent variable
(various predictors). In the study, the multiple linear regression
is employed as a single predictor is not enough to explain the
landslide probability. The linear function is shown in equation
1.

Y:a+b1XX1+b2XX2+...+anXn (1)

where, Y is the dependent variable (landslide probability in our
case) , X; represents independent variables (all predictors), a is
the constant and b; is the regression coefficient of the variable
X;.

2) Random Forest Regression: Random forest regression
(RFR) is a machine learning that ensembles a bag of trees
to achieve the overall prediction. The trees are trained by a
number of bootstrap samples created from the main training
set. Bagging is responsible for the reduction in variance in
the ensemble and prevents overfitting. The regression trees
are characterized by low bias and high variance. In regression
tasks, it outputs the mean prediction of K regression trees. The
mean of the predictions is computed using the equation 2.



TABLE II
EXPLANATORY VARIABLES FOR THE SAMPLE INSTANCE SHOWN IN THE FIGURE 4

Precipitation | Energy | Soil_moisture Latitude Longitude

Elevation Run Slope Landslide probability

0.396931 16.9862 25.39641 48.783393

-120.983333

5997.200195 | 4.870978 | 46.412987 0.033333

K
. 1
RFR prediction = o ,; hi(x) (2)

3) XGBoost Regression: Extreme Gradient Boosting, also
known as XGBoost, is another learning algorithm that uses
an ensemble of decision trees. Each tree is trained to learn
the decision function by aiming to minimize the loss function
using gradient descent. Each tree aims to correct the prior
one in the learning step. The training of the ensemble of K
trees can be characterized as in equation 3, where the first
term denotes the training loss that is being minimized, and
the second term refers to the regularization parameters, which
acts as a limit to the trees complexity:

K

> ()

k=1

Obj = Zloss(yi,zj) +

i=1

3)

The final prediction of the ensemble is calculated using the
equation 4,

K
Yien(x) = Ztr@ek(m), treey, € T 4)
k=1

4) Linear SVR: Support vector regression (SVR) is a
machine learning algorithm employed to predict a quantity.
It operates on either discrete-valued or real-valued inputs.
In the proposed work, multivariate regression is utilized due
to multiple input variables. The output of the SVR can be
computed using the equation 5.

You(z) =Y BiK (x32;) +b (5)
i=1

where (3; and z; are respectively the weight and the position
of each SVs. In addition, n is the number of SVs, b is the
bias, and K (z; ;) is the kernel function corresponding to x;.
Due to the large training dataset, a linear kernel implemented
in liblinear, which means that K is a linear function, defined
as (x - x;).

5) K-Nearest Neighbors Regression: K-Nearest Neighbors
regression (KNN) is a subclass of clustering algorithms that
aims to group the samples of similar "neighborhoods’ based on
their feature values to find a correlation between the features
and the label value. The distance between each sample is
decided using the Euclidean distance of the features.

K
i=

N;
£i=l7 ' N = X sorted by Euclidean distance
(6)

YNy =

To achieve prediction, the KNN algorithm will find K points
closest to the input value, and outputs the average of their
labels as can be seen in equation 6.

E. Feature Selection

Feature selection methods are utilized to eliminate unimpor-
tant features. The focus is on the features that contribute the
most to the target variable. This step helps in reducing the cost
involved in modeling and improves the model performance. In
this study, SelectKBest with the Correlation feature selection
[31] and Mutual Information [32] were used to extract the
best features from the dataset. The SelectKBest function uses
these methods as a score function to determine a score and the
correlation between each feature and the target feature. The
score between each feature and target variable is determined
using these two score functions. A lower score means that the
feature is independent of the target variables. If the resulting
value is lower, the feature is independent of the target feature,
while the higher resulting value indicates that the feature is
related to the target feature.

G. Performance Evaluation Criteria

In the proposed study, standard statistical measures namely:
mean squared error (MSE), root mean squared error (RMSE)
and mean absolute error (MAE) are used to evaluate the
performance of regression model. Root mean square error
(RMSE) denotes the square root of the mean of the square
of all errors . It is computed using the equation 7. Mean
squared error represents the mean of square of the errors. It is
calculated using the equation 8. Mean absolute error denotes
the absolute value of differences between true and predicted
values. Equation 9 is used to calculate this entity.

i (Vi —Yi)?

RMSE = )
n
1 « N2
MSE:n;(Yi—Yi) (8)
1 n—1
MAE = ﬁZUyz—ﬂzD )
1=0

Here, y; denotes the expected value and ; is the predicted
value.

IV. RESULTS AND ANALYSIS

This section presents the landslide probability prediction
results using various ML models. In the modeling, latitude,
longitude, soil moisture ratio, precipitation value, earthquake
magnitude, elevation, run, and slope were input variables,



whereas landslide probability was the output variable. The hy-
perparameters of the models were obtained via hyperparameter
optimization.

The GridSearchCV [33] with three folds (chosen after ex-
perimental analysis) was employed for this task. The optimized
hyperparameters are tabulated in Table III. The hyperparame-
ters of linear regression are not present in the table as there are
no such hyperparameters that can be tuned. As a first step, the
influence of feature selection on the performance of the ML
models is presented, followed by comparing the performance
of models with and without the feature selection method.

A. Outlier Elimination

Figure 6 shows the box plot of explanatory variables before
eliminating outliers. Figure 7 shows the box plot after eliminat-
ing outliers using the Winsorization and the boxplot approach.
The correlation matrix was constructed to understand the
dependence between different variables and their relation to
landslide probability. Figure 8 shows the correlation matrix.
We can see that attributes such as precipitation, energy, eleva-
tion, and soil moisture are all positively correlated to landslide
probability which supports our initial assertion. Also, the slope
is negatively correlated to landslide likelihood. Strong rocks
make up land regions with high slope values, and these kinds
of rocks are stable. Hence, the probability of a landslide is
less. These results were also supported in another study [34]
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Fig. 6. With Outliers: A. Box plot of latitude. B. Box plot of longitude. C.Box
plot of Precipitation. D. Box plot of Slope. E. Box plot of soil moisture. F.
Box plot of Elevation. G. Box plot of Energy

B. Feature Scores obtained using Correlation Feature selec-
tion and Mutual Information Feature Selection method

Figure 4 describes how the features with score values
returned by the SelectKBest function with Correlation feature
selection. The highest score was assigned to precipitation, and
the lowest score was assigned to the slope. Figure 10 describes
the score values returned by the SelectKBest function with
Mutual Information feature selection. The highest score was
assigned to latitude, and the lowest score was assigned to soil
moisture.

o 1 2 3 4 5 [ 7

Feature number

Feature Names Number Score
Precipitation Feature 0  1.29437
Energy Feature 1  1.053706
Soil Moisture Feature 2  0.438734
Latitude Feature 3  1.529635
Longitude Feature 4  1.350683
Elevation Feature 5 1.010534
Run Feature 6 1.053442
Slope Feature 7 0.880499

Fig. 10. Score values of the features obtained using Mutual Information based
feature selection method

C. Performance of the models

All the models were run by employing Correlation and
Mutual information based feature selection methods. In the
proposed study, due to a small feature vector, only the feature
that received the lowest score was eliminated. The models
were also run with all the features (without selecting features)
to evaluate its impact in predicting the landslide probability.
As a result of the correlation-based feature selection method,
slope received the lowest score and was eliminated. After the
Mutual Information feature selection, soil moisture received
the lowest score, and hence it was eliminated while running
the models.

Algorithm 1 represents Linear Regression, 2 denotes Ran-
dom Forest, 3 indicates XGBoost, 4 stands for KNN Regressor,
and 5 denotes Linear SVR. The performance of the models on
the test set can be seen in figure 11-13. After analyzing the
metrics, it can be stated that Random Forest outperforms the
other algorithms with Mutual Information based feature selec-
tion and when all the features are present. KNN regression also
performs equally well, and it outperforms the other algorithms
with correlation-based feature selection method.

V. CONCLUSION & FUTURE WORK

Landslide identification is essential for risk assessment.
Prediction of landslide probability in critical infrastructure
locations using various ML models might help in hazard
monitoring and mitigation. In this study, five popular ML
regression models, Random Forest, XGBoost, KNN regressor,
Linear SVR, and Linear regression, were applied and com-
pared to predict the landslide probability using explanatory
variables. Based on the statistical analysis, a ratio of 70/30 for
training and testing datasets was considered as the best ratio
for training and testing of models. In addition, the performance
of these models was also investigated under the influence



TABLE III
OPTIMIZED HYPERPARAMETERS OF THE MODEL

Algo Random Forest XGBoost KNN Regression | SVR
bootstrap: False objective: reg:linear Leaf size:1 C:20
max_depth: sqrt colsample_bytree : 0.3 p:1 tol:1

Parameters max_features: sqrt learning_rate: 0.1 N_neigbors:3
min_samples_leaf: 1 max_depth: 5
min_samples_split: 2 alpha: 10
n_estimators: 10 n_estimators: 100

©)

Fig. 7. Without Outliers: A. Box plot of Precipitation. B. Box plot of Elevation. C. Box plot of Energy. D. Box plot of slope. E. Box plot of soil moisture
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Fig. 8. Correlation Matrix
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oo
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Feature number

Feature_ Names Number Score

Precipitation Feature 0  10934728.78
Energy Feature 1 2763313.393
Soil Moisture Feature 2 1874710.191
Latitude Feature 3 4370009.482
Longitude Feature 4  4297308.305
Elevation Feature 5 212471.9967
Run Feature 6  4570840.708
Slope Feature 7 65511.44098

Fig. 9. Score values of the features obtained using Correlation based feature
selection method

of the SMOGN algorithm with two feature selection meth-
ods, including Correlation-based feature selection and Mutual
information-based selection method. Results showed that the
performance of all models was acceptable as they achieved
reasonable MSE scores, and the Random Forest regressor
outperformed other models with the mutual information-based
feature selection method. KNN regressor was found to be
good under the influence of the Correlation-based feature
selection method. This study shows the potential of using
ML in predicting landslide likelihood. Future work includes-
expanding to other parts of the USA, and many other attributes,
such as the impact of climate change and vegetation cover,
can be added to improve the model’s prediction capability.
An information dashboard can be developed to display the
predictions generated for each critical infrastructure.
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Fig. 12. (A). Graph depicting error values achieved by algorithms after employing Correlation Based feature selection. MSE, RMSE and MAE values.
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Fig. 13. (A). Graph depicting error values achieved by algorithms after employing Mutual Information feature selection. MSE, RMSE and MAE values.
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