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Autonomous operations are a crucial aspect in the context of Advanced Air Mobility and
other emerging aviation markets. In order to enable this autonomy, an accurate and detailed
understanding of the positions of the various vehicles in the air is necessary. Full localization
independent of on-board sensors makes the system suitable for noncooperative vehicles. This
paper focuses on the object tracking part that relies on distributed ground-based sensor fusion,
considering specific properties and limitations of different sensor types. Results show satisfactory
performance in nominal scenarios with full coverage. Dropouts of individual sensors affect
the accuracy of the tracking results, which agrees with expectations for partial coverage, when
full localization is not achievable anymore. Finally, a study is performed to identify which
parameters have the largest impact on the fit error.

I. Introduction

Recently, there have been numerous developments in the area of advanced air taxi operations. Combined with
other novel transportation concepts such as autonomous aerial cargo delivery etc., they form the Advanced Air

Mobility (AAM) ecosystem that will help to meet the challenging mobility needs of an increasing population density
in metropolitan areas, taking into account the limited capacity of the currently available transportation infrastructure.
To realize the full vision of AAM, technology will be needed to allow a few operators to operate many vehicles
(m:N). As most m:N implementations will require highly autonomous vehicles, the current state-of-the-art will have
to advance for on-board autonomous functionality. One of the key areas requiring further technology development
is sensor-based perception techniques. For this perception, techniques are being developed to address problems such
as GPS-free Alternative Positioning, Navigation and Timing (APNT) [1]. Advanced sensing and tracking algorithms
will be necessary from the ground in an urban environment, where traditional traffic tracking infrastructure such as
air traffic radars will be useless. This infrastructure will be needed for traffic monitoring, traffic guidance, as well as
spacing and separation in order to increase overall capacity and efficiency in the airspace. In this context, ground-based
perception systems, capable of APNT, are critical to safe autonomous operations. This APNT relates to all moving
objects in the sky, which can be cooperative (aircraft, AAM vehicles, etc.) as well as noncooperative (smaller drones,
birds, ...). The distinction between both lies in the fact that there is some form of data exchange (ADS-B or similar) with
the former category in order to coordinate path planning and separation. This exchange of information is nonexistent for
the latter category, which means that other sensors will be required to detect and track these objects independently
from the ground. Ground-based object detection and tracking are two essential prerequisites for the purpose of traffic
monitoring, and also to provide some off-board redundancy for detect and avoid (DAA). For multi-target tracking, there
is an additional challenge of observation-to-track association.
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A. Focus of this paper
This paper focuses on the single object tracking part that relies on adaptive multi-sensor fusion in a distributed
ground-based sensor setup, taking into account specific properties and limitations of different sensor types. The
sensor fusion is done centrally by means of a Kalman Filter, relying on the raw measurements from the network of
non-collocated ground-based sensors. Some other approaches include local processing at the individual sensor or node
of sensors level, after which the different local estimates are integrated by some form of consensus filter, for example
using weighted averages. The sensor fusion strategy used here is adaptive, so that lower sampling rates of specific
sensors are taken into account, as well as loss of signal (for example because the object is outside the field of view or the
useful range for a particular sensor location and viewing angle, or because of a sensor malfunction resulting in a sensor
signal dropout), and invalid data. This capability is achieved by incorporating valid flags in the weighting matrix of the
Kalman filter. This paper also explores which sensor properties and/or network characteristics have a dominant impact
on the accuracy of the estimate, such as the latency and the number of sensors.

B. Literature survey
As already introduced before, most literature considers local processing at the individual sensor or node of sensors

level, after which the different local estimates are integrated by some form of consensus filter, for example using
weighted averages. [2] considers a distributed sensor network, consisting of a set of processing nodes collecting data
from sensors. The nodes communicate with each other, so that each node updates its local estimate with information
received from the other nodes. [3] reviews developments in distributed sensor networks from four aspects: network
structure, data processing paradigm, sensor fusion algorithm with emphasis on fault-tolerant algorithm design, and
optimal sensor deployment strategy. [4] describes the solution to a real-time distributed resource allocation application
involving distributed situation assessment. The solution decomposes the environment into a number of sectors, where
individual sensor nodes in a sector are specialized dynamically to address different parts of the objective to track
objects moving in the environment in real-time, given uncertainty and constraints on sensor loads, communication,
power consumption, action characteristics, and clock synchronization. [5] investigates a binary decentralized detection
problem in which a network of wireless sensors provides relevant information about the state of nature to a fusion center.
The fusion center attempts to accurately reconstruct the state of nature. Optimal sensor configuration and capacity
constraints are considered. The gain offered by having more sensors exceeds the benefits of getting detailed information
from each sensor. The method of [6] consists of two parts. First a distributed sensor fusion algorithm integrates two
different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two
phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an
estimate at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a
confidence of the estimate at each time step. The final estimate is iteratively updated during the movement of the sensors
via weighted average. [7] studies the problem of location detection for commercial aircraft and methods to improve
location detection over any terrain the flight path traverses. The proposed techniques are based on the internet-of-things
model for aircraft, where the aircraft can communicate with each other within a certain range. Distributed algorithms
detect location using such methods that work effectively when the aircraft is outside the range of radar and on an oceanic
route. Using the proposed methods, the precise location of all aircraft can be tracked to a higher degree.

The approach followed in this paper is centralized and does not rely on middle layer sensor nodes. Although resulting
in an overall longer communication path, it removes adverse effects caused by the consensus filter.

C. Paper Structure
The structure of this paper is as follows. Sections II and III describe respectively the scenario and the relevant sensor
characteristics which have been used to evaluate the performance of the developed object tracker. Section IV elaborates
how these distributed sensor data are combined in a Kalman Filter based object tracker setup. Section V shows some
results for four different scenarios. The first one is a flight across the bay, the second one is a similar set up but where
the cameras have a reduced visual range, the third one is a landing scenario and the final one is a brief study that focuses
specifically on the impact of sensor latency on the accuracy of the estimate. Finally, Section VI gives some overall
conclusions and recommendations based on this work.
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II. Scenarios
There are two main scenarios in this publication, both are in the San Francisco Bay Area. A longer flight from the

East Bay to downtown San Francisco is the first one, where a few distributed sensors are strategically located along
the flight path in order to achieve full coverage. The second scenario focuses specifically on the landing portion of
the aforementioned scenario, which is near the Fifth and Mission parking structure downtown San Francisco. For this
second scenario, a few distributed sensors are strategically placed at shorter range around the vertiport and along the
approach path.

A. First scenario: flight across the bay
The first scenario considered in this publication to evaluate the centralized object tracking capabilities of the network

of distributed ground sensors is as follows. A 6 person quadrotor eVTOL vehicle, illustrated in Fig. 1 and discussed
in detail in previous work [8–10], flies from middle harbor shoreline park near Oakland (labeled MHP) over the San
Francisco Bay to the parking structure near Mission and Fifth Avenue in downtown San Francisco (FMG), as illustrated
in Fig. 2. The data for this scenario is obtained from a high fidelity simulation in a custom NASA flight software called
‘Reflexion’ and visualized by a commercial software called X-plane [11]. In addition to the takeoff and landing locations,
several additional sensors are located along the trajectory of the vehicle, namely on the East tower of the Bay Bridge
(Oakland span) (labeled BBE), Alameda Naval Station (ANS), the antenna tower on the top of Yerba Buena Island
(YBA), the West tower of the Bay Bridge (BBW), and the Salesforce Tower (SFT). An overview of the general outline of
the scenario and the sensor locations is given in Fig. 3. Table 1 gives detailed coordinates and viewing directions per
camera location. The yellow marker is the common reference point (origin) for the local East-North-Up reference frame.

Fig. 1 6 passenger quadrotor eVTOL vehicle used for the scenario

Fig. 2 3D view of the flight trajectory overlaid over the bay area of San Francisco

3



 25'  24'  122°W 

 23.00' 

 22'  21'  20' 

 47.00' 

 47.50' 

  37°N 

 48.00' 

 48.50' 

 49.00' 

     

MHP

     

FMG

     

BBE
     

YBA

     

ANS

     

BBW

     

SFT

Fig. 3 Map view of the flight track from Middle Harbor Shoreline Park to Fifth and Mission Garage

In this scenario, there can be either a camera or a combination of camera and radar located in each sensor location.
Both have an identical field of view, which is 60 deg horizontally and 33.75 deg vertically (which makes the aspect ratio
9/16). The cameras have typically a range of 4,000 m and the radars have only half that range, namely 2,000 m. Heavier
ground based radars may have a better range, but these conservative values are taken to reflect low cost sensors with
more limited performance in an urban environment. For this scenario, the viewing directions of the individual cameras
and radars are set up in such a way as to optimize global coverage over the trajectory of the vehicle. The coverage of the
individual sensors is illustrated by means of sensor cones in Fig. 4. Cameras provide 2D info only by means of azimuth
and elevation. The radars provide 3D info by adding range information to the two aforementioned sensed variables. Sec.
III discusses the sensor characteristics together with the synthetic measurements of these sensors, perturbed by these
disturbances.
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(a) EO camera coverage map
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(b) Radar coverage map

Fig. 4 Sensor coverage maps for all the distributed sensors in the scenario

Each sensor location as shown in Fig. 4 has a camera but only the departure and arrival points have cameras as well
as radars.

Fig. 5 shows the number of cameras that are simultaneously observing the target at any given time. For successful
triangulation, in absence of a radar measurement, at least two different camera observations are necessary. The
significant overlap of coverage provides redundancy in case of sensor failures or degraded measurements, etc.
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Table 1 Distributed camera locations and angles across the bay

Camera Name Latitude (◦) Longitude (◦) Abs. Alt. (m) Heading (◦) Elev. (◦)
Mission Harbor Shoreline Park (MHP) 37.8058404 -122.3238733 4.53 260 0
Tower of Bay Bridge East Span (BBE) 37.815309 -122.358504 160 165 0
Yerba Buena Island Antenna Tower (YBA) 37.809956 -122.365332 104 165 0
Alameda Naval Station (ANS) 37.782494 -122.331785 0 345 0
Tower of Bay Bridge West Span (BBW) 37.800911 -122.375117 160 165 -9
Salesforce Tower (SFT) 37.789782 -122.396968 326 80 0
Fifth & Mission Garage (FMG) 37.783379 -122.405077 26 45 0
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Fig. 5 Number of cameras simultaneously observing the target

B. Second scenario: Landing in downtown San Francisco
The second scenario focuses on the landing portion of the aforementioned flight over downtown San Francisco

down towards the Fifth and Mission parking structure, as illustrated in Fig. 6. A few distributed sensors are strategically
placed at shorter range around the vertiport and along the approach path. The rooftop of the parking structure is the only
location with a collocated camera and radar (FMG), looking towards the bay along the approach path as also shown
in the previous scenario in Fig. 4. In addition, other cameras are placed on the tower of the San Francisco Chronicle
building (SFC) to the West, the rooftop of the San Francisco International hotel (SFI) to the South, the high rise building
at Market and Fourth to the North, and the SF Marriot Marquis to the Northeast, and finally the Salesforce Tower farther
to the East. Due to the orientation in the urban environment, some cameras have a much shorter range than others, as
illustrated in Fig. 7. Specific location and orientation details per camera are given in Table 2.

Fig. 8 shows the number of cameras that are simultaneously observing the target at any given time. The significant
overlap of coverage in short range provides more redundancy compared to the previous scenario.

Table 2 Distributed camera locations and angles around landing area, [12]

Camera Name Lat (◦) Long (◦) Abs. Alt. (m) Heading (◦) Elev. (◦) Range (m)
Fifth & Mission Garage (FMG) 37.783379 -122.405077 26 45 16.875 1,000
San Francisco Chronicle (SFC) 37.782546 -122.406520 34 45 16.875 1,000
San Francisco Intercontinental (SFI) 37.781944 -122.404722 110 345 -15 300
Marriot Marquis Hotel (MMH) 37.785278 -122.404167 135 165 -45 300
Market & Fourth Street (MFS) 37.784684 -122.405732 76 165 -10 300
Salesforce Tower (SFT) 37.789782 -122.396968 326 225 -10 1,200
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Fig. 6 3D view of the landing trajectory overlaid over the financial district area of San Francisco, [12]

(a) Full landing (b) Zoom of touchdown area

Fig. 7 Camera coverage maps for the landing scenario
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Fig. 8 Number of cameras simultaneously observing the target for the landing scenario
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III. Sensor Characteristics
There are two types of sensors that are considered in the aforementioned scenarios, namely electro-optical camera’s

and radar. Each sensor type has different sensed variables, together with their respective sensor characteristics, such as
limitations on field of view and useful range, noise, latency, update rate and resolution. Some characteristic values from
the literature of state-of-the-art sensor hardware [13] are given in Table 3.

Table 3 Sensor characteristics

sensor EO camera radar
sensed variables azimuth [deg] azimuth [deg]

elevation [deg] elevation [deg]
range [m]

limits on field of view az: 60deg az: 60deg
(16/9) el: 33.75deg el: 33.75deg

max useful range 4,000m 2,000m
min useful range 0m 20m

noise sigma 9.1 · 10−3deg az: 1deg
el: 3deg
range: 3.25m

latency 0.1s 0.1s
update rate 30fps 10Hz
resolution 1.3 · 10−3deg az/el: 1deg

range: 3.25m

A. Sensor readings for flight across the bay
Fig. 9 shows the synthetic measurements for the flight across the bay, provided by the different distributed cameras

and radars with the disturbances included, such as noise and resolution. Noise clearly has a larger impact on the radar
measurements.

(a) Camera measurements
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(b) Radar measurements

Fig. 9 Simulated camera and radar measurements with disturbances for across the bay scenario
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B. Sensor readings for landing in downtown San Francisco
Fig. 10 shows the synthetic measurements for different distributed cameras only in the landing scenario. The long

range cameras in FMG and SFC observe the vehicle first between t=490s and t=500s. The shorter range cameras
perpendicular on the flight path observe the vehicle starting around t=510s. Touchdown happens near t=550s, after
which all observations remain constant over time.

Fig. 10 Simulated camera measurements with disturbances for landing scenario

IV. Object Tracker Setup
The actual object tracker is based on a conventional Kalman Filter as elaborated in detail in Ref. [8, 14]. The filter

gain calculation is modified in order to incorporate valid flags for the different sensor measurements, which makes
this method adaptive and robust against invalid data, loss of signal between the different distributed sensors, outliers
and lower sampling rates. This new implementation integrates the measurements from EO cameras and radars in the
different locations, whenever each of them is available. This modular architecture is fairly straightforward to extend so
that other sensors and sensor locations can be incorporated as well. Fig. 11 illustrates the general overview how the
Kalman Filter is set up. The prediction step assumes constant velocity for calculating the predicted state x̂𝑘 based on the
previous state x𝑘−1. The state consists of six elements, namely the three position coordinates and the three velocity
coordinates, all in ENU coordinates (East–North–Up) with respect to a predefined fixed referenced point. Predicted
measurements ẑ𝑘,𝑖 are calculated for each sensor location 𝑖, which are a function of the predicted state h𝑖 (x̂𝑘) and the
sensor location coordinates. These predicted measurements consist of the measured variables that are provided by the
relevant sensors for each location, namely range, azimuth and elevation from the radar (when available) as well as
azimuth and elevation from the EO camera. By comparing the actual measurement z𝑘,𝑖 with the predicted measurement
ẑ𝑘,𝑖 for each sensor location 𝑖, one can calculate the innovation 𝜀𝑖 = z𝑘,𝑖 − ẑ𝑘,𝑖 = z𝑘,𝑖 − h𝑖 (x̂𝑘). Main drivers for the
innovation are errors in the predicted state (due to the constant speed assumption) and sensor disturbances. Next, the
information from all individual sensor locations and sensors is stacked together in one large innovation array 𝜀. As
last but one, the Kalman gain matrix W is calculated by means of the predicted covariance P̂𝑘 , measurement matrix
H =

𝑑h(x)
𝑑x , and the innovation covariance matrix S. This Kalman gain matrix W is weighted with valid flags to deal

appropriately with the sensor measurements as explained previously. The corrected state x𝑘 is calculated by means of
predicted state x̂𝑘 , the innovation 𝜀 and the Kalman gain matrix W via the following equation: x𝑘 = x̂𝑘 + W · 𝜀. Finally,
the corrected covariance P𝑘 is calculated. The complete procedure is described in more detail below.

A. State Prediction x̂𝑘

The one step ahead prediction of the state vector is split up as follows:

x̂𝑘 =

[
x̂𝑘1

x̂𝑘2

]
(1)
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Fig. 11 General overview of the Distributed Sensor Kalman Filter setup

With the position in the upper half of the vector:

x̂𝑘1 =

ˆ
𝐸

𝑁

𝑈

 𝑘 =


𝐸

𝑁

𝑈

 𝑘−1

+ Δ𝑡 ·

¤
𝐸

𝑁

𝑈

0𝑘−1

(2)

And the velocity in the lower half of the vector:

x̂𝑘2 =

¤̂
𝐸

𝑁

𝑈

 𝑘 =

¤
𝐸

𝑁

𝑈

0𝑘−1

(3)

Note that the coordinates are East–North–Up with respect to a predefined fixed reference point and that the velocity is
assumed to be close to constant. Moreover:

¤
𝐸

𝑁

𝑈

0𝑘−1

= L⊤ ·

¤
𝐸

𝑁

𝑈

𝑇𝑘−1

(4)

where L⊤ is the rotation matrix from the target ENU-frame to the reference point ENU-frame, as elaborated in the
Appendix. Next step is to rotate from ENU to ECEF reference frame:

𝑋

𝑌

𝑍

0ECEF

= T


𝐸

𝑁

𝑈

0𝑘−1

(5)

where T is the rotation matrix from the ENU reference frame to the ECEF reference frame, as defined in the Appendix.
The predicted target position is converted straight from ECEF to WGS-84 (i.e. latitude, longitude and altitude) via the
transformation elaborated in the appendix, resulting in the predicted target position coordinates

[
𝜙𝑡 𝜆𝑡 ℎ𝑡

]⊤
pred

.
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B. State Error Covariance Prediction P̂𝑘

P̂𝑘 = FP𝑘−1F⊤ + Q (6)

with:

F =



1 0 0 Δ𝑡 0 0
0 1 0 0 Δ𝑡 0
0 0 1 0 0 Δ𝑡

1 0 0
03×3 0 1 0

0 0 1


Q = G𝚪G⊤ (7)

and:

G =



0.5Δ𝑡2 0 0
0 0.5Δ𝑡2 0
0 0 0.5Δ𝑡2

Δ𝑡 0 0
0 Δ𝑡 0
0 0 Δ𝑡


𝚪 =


𝜎2
𝑒 0 0

0 𝜎2
𝑛 0

0 0 𝜎2
𝑢

 (8)

C. Predicted Measurement Calculation ẑ𝑘
The total predicted measurement vector ẑ𝑘 consists of the predicted measurement vectors ẑ𝑘,𝑖 of each individual

sensor location 𝑖. The predicted measurement vectors of EO camera with or without radar consist of range 𝜌 (if radar is
included), elevation 𝛼, and azimuth 𝛾, and are described as follows:

ẑ𝑘,𝑖 =

[
ẑ𝑘,𝑖radar ẑ𝑘,𝑖EOcam

]⊤
(9)

ẑ𝑘,𝑖radar =

[
𝜌̂𝑖 𝛼̂𝑖 𝛾̂𝑖

]⊤
(10)

ẑ𝑘,𝑖EOcam =

[
𝛼̂𝑖 𝛾̂𝑖

]⊤
(11)

since the EO cameras in this scenario do not measure distance information due to the lack of stereo view and depth
perception. The individual measured variables are defined as follows:

𝜌̂𝑖 =

√︃
𝑋̂2
𝑆𝑖
+ 𝑌2

𝑆𝑖
+ 𝑍̂2

𝑆𝑖
=

√︃
𝐸̂2
𝑖
+ 𝑁̂2

𝑖
+ 𝑈̂2

𝑖
(12)

𝛼̂𝑖 = arctan
−𝑍̂𝑆𝑖

𝜌̂𝑖hor

(13)

𝛾̂𝑖 = arctan
𝑌𝑆𝑖

𝑋̂𝑆𝑖

(14)

where:
𝜌̂𝑖hor =

√︃
𝑋̂2
𝑆𝑖
+ 𝑌2

𝑆𝑖
(15)

and:
ˆ
𝑋𝑆𝑖

𝑌𝑆𝑖

𝑍𝑆𝑖

 = M⊤
𝑖 ·

ˆ
𝐸𝑖

𝑁𝑖

𝑈𝑖

 𝑘 (16)

where M⊤
𝑖

is the rotation matrix from the 𝑖th sensor-based ENU reference frame to the sensor fixed reference frame of
the 𝑖th sensor, as defined in the Appendix. It rotates the East-North-Up coordinates for each sensor location towards the
sensor orientation (viewing direction of camera (and radar if applicable)). These local ENU𝑖 coordinates are calculated
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from the aforementioned predicted state in WGS-84 coordinates
[
𝜙𝑡 𝜆𝑡 ℎ𝑡

]⊤
pred

via the transformation elaborated in
the appendix, resulting in the predicted target position coordinates in ECEF, and a subsequent rotation from ECEF to
the local sensor’s ENU as follows:

ˆ
𝐸𝑖

𝑁𝑖

𝑈𝑖

 𝑘 = T⊤
𝑖

ˆ
𝑋

𝑌

𝑍

0ECEF

(17)

where T⊤
𝑖

is the rotation matrix from the ECEF reference frame to the local sensor ENU reference frame, as defined in
the Appendix.

D. Kalman Filter Gain W
The following steps are performed in order to calculate the gain of the filter:
1) Calculate measurement matrix H
2) Calculate innovation covariance matrix S
3) Calculate gain matrix W

Each step will be elaborated in detail next:

1. Measurement matrix H
The measurement matrix H is basically the Jacobian of the predicted measurement vector:

ẑ𝑘 =

[
ẑ𝑘,1 . . . ẑ𝑘,𝑖 . . . ẑ𝑘,𝑁

]⊤
with 𝑁 the number of sensors and ẑ𝑘,𝑖 =

[
ẑ𝑘,𝑖radar ẑ𝑘,𝑖EOcam

]⊤
=

[
ĥradar𝑖 (x̂𝑘) ĥEOcam𝑖

(x̂𝑘)
]⊤

with respect to the state

vector x̂𝑘 =

[
x̂𝑘1 x̂𝑘2

]⊤
, with x𝑘1 being the position components and x𝑘2 the velocity components, both in the ENU

reference frame. The measurement matrix H basically consists of the blocks H =

[
H1 . . . H𝑖 . . . H𝑁

]⊤
with 𝑁

the number of sensors and decomposing each H𝑖 in 4 blocks results in the following structure:

H𝑖 (x𝑘) =
𝑑ĥ𝑖 (x̂𝑘)
𝑑x̂𝑘

=


𝑑ĥradar𝑖 (x̂𝑘1 )

𝑑x̂𝑘1

𝑑ĥradar𝑖 (x̂𝑘1 )
𝑑x̂𝑘2

= 03×3
𝑑ĥEOcam𝑖 (x̂𝑘1 )

𝑑x̂𝑘1

𝑑ĥEOcam𝑖 (x̂𝑘1 )
𝑑x̂𝑘2

= 02×3

 (18)

The measurements depend only on the position components and thus x𝑘1 . Both nonzero blocks in Eq. (18) are elaborated
next:

𝑑ĥradar𝑖
(
x̂𝑘1

)
𝑑x̂𝑘1

=


𝑑𝜌̂𝑖
𝑑𝐸𝑖

𝑑𝜌̂𝑖
𝑑𝑁𝑖

𝑑𝜌̂𝑖
𝑑𝑈𝑖

𝑑𝛼̂𝑖

𝑑𝐸𝑖

𝑑𝛼̂𝑖

𝑑𝑁𝑖

𝑑𝛼̂𝑖

𝑑𝑈𝑖
𝑑𝛾̂𝑖
𝑑𝐸𝑖

𝑑𝛾̂𝑖
𝑑𝑁𝑖

𝑑𝛾̂𝑖
𝑑𝑈𝑖

 =


𝑑𝜌̂𝑖
𝑑𝑋𝑆𝑖

𝑑𝜌̂𝑖
𝑑𝑌𝑆𝑖

𝑑𝜌̂𝑖
𝑑𝑍𝑆𝑖

𝑑𝛼̂𝑖

𝑑𝑋𝑆𝑖

𝑑𝛼̂𝑖

𝑑𝑌𝑆𝑖

𝑑𝛼̂𝑖

𝑑𝑍𝑆𝑖
𝑑𝛾̂𝑖
𝑑𝑋𝑆𝑖

𝑑𝛾̂𝑖
𝑑𝑌𝑆𝑖

𝑑𝛾̂𝑖
𝑑𝑍𝑆𝑖

 · M⊤ =


𝑋̂𝑆𝑖

𝜌̂0

𝑌̂𝑆𝑖
𝜌̂0

𝑍̂𝑆𝑖

𝜌̂0
𝑋̂𝑆𝑖

·𝑍̂𝑆𝑖

𝜌̂hor0 𝜌̂
2
0

𝑌̂𝑆𝑖 ·𝑍̂𝑆𝑖

𝜌̂hor0 𝜌̂
2
0

−𝜌̂𝑖hor
𝜌̂2

0
−𝑌̂𝑆𝑖
𝜌̂2

hor0

𝑋̂𝑆𝑖

𝜌̂2
hor0

0


· M⊤ (19)

The denominators 𝜌̂0 and 𝜌̂hor0 in Eq. (19) are singularity protected as follows:

𝜌̂0 = max
(
𝜌̂𝑖 , 𝜀𝜌

)
(20)

𝜌̂hor0 = max
(
𝜌̂𝑖hor , 𝜀𝜌hor

)
(21)

where 𝜀𝜌 and 𝜀𝜌hor are fairly small positive values to prevent singularities.

𝑑ĥEOcam𝑖

(
x̂𝑘1

)
𝑑x̂𝑘1

=

[
𝑑𝛼̂𝑖

𝑑𝐸𝑖

𝑑𝛼̂𝑖

𝑑𝑁𝑖

𝑑𝛼̂𝑖

𝑑𝑈𝑖
𝑑𝛾̂𝑖
𝑑𝐸𝑖

𝑑𝛾̂𝑖
𝑑𝑁𝑖

𝑑𝛾̂𝑖
𝑑𝑈𝑖

]
=

[
𝑑𝛼̂𝑖

𝑑𝑋𝑆𝑖

𝑑𝛼̂𝑖

𝑑𝑌𝑆𝑖

𝑑𝛼̂𝑖

𝑑𝑍𝑆𝑖
𝑑𝛾̂𝑖
𝑑𝑋𝑆𝑖

𝑑𝛾̂𝑖
𝑑𝑌𝑆𝑖

𝑑𝛾̂𝑖
𝑑𝑍𝑆𝑖

]
· M⊤ =


𝑋̂𝑆𝑖

·𝑍̂𝑆𝑖

𝜌̂hor0 𝜌̂
2
0

𝑌̂𝑆𝑖 ·𝑍̂𝑆𝑖

𝜌̂hor0 𝜌̂
2
0

−𝜌̂𝑖hor
𝜌̂2

0
−𝑌̂𝑆𝑖
𝜌̂2

hor0

𝑋̂𝑆𝑖

𝜌̂2
hor0

0

 · M⊤ (22)
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2. Innovation covariance matrix S
The innovation covariance matrix is calculated as follows:

S = HP̂𝑘H⊤ + Rsensors (23)

where: Rsensors = diag
[
Rsensor1 . . .Rsensor𝑖 . . .Rsensor𝑁

]
with Rsensor𝑖 = diag

[
𝜎2
𝜌radar 𝜎2

𝛼radar 𝜎2
𝛾radar 𝜎2

𝛼EOcam 𝜎2
𝛾EOcam

]
.

A diagonal matrix of sensor valid flags is defined similarly: Msensors𝑖valid
= diag [𝜇radar 𝜇radar 𝜇radar 𝜇EOcam 𝜇EOcam].

These valid flags 𝜇• are one for valid sensor readings or zero for invalid ones. These flags allow to take into account
lower sampling rates for specific sensors, signal dropouts (e.g. object is outside field of view), sensor malfunctions,
invalid signals, etc. This setup assumes that there is a monitoring algorithm in place that drives the valid flag values
accordingly. This valid flag matrix is needed for calculating the inverse of the innovation covariance matrix:

S−1
valid = Msensorsvalid · S−1 · Msensorsvalid (24)

3. Gain matrix W
The Kalman filter gain matrix is calculated with all the aforementioned information as follows:

W = P̂𝑘H⊤S−1
valid (25)

Wvalid = WMsensorsvalid (26)

Invalid flags in Msensorsvalid will result in zero columns in Wvalid. As a consequence, that sensor information will not be
used for the correction step. This means that the prediction step will have a higher relative importance for the states
that are the main drivers of these invalid measurements, except when there are other valid sensor measurements that
contain significant information of these states. When valid measurements are sparse, the Kalman Filter will extrapolate
a trajectory that will gradually diverge from reality. This growing uncertainty is indicated by the rank and/or condition
number of the observability matrix, as well as by the standard deviation of the estimates. More information in Sec. V.B.

E. State Update x𝑘

The state update step relies on the total sensor measurements vector covering all sensor locations, which will give
only measurement values for the locations where the tracked object is in the field of view. This is illustrated in Fig.
12. The vehicle is flying from East to West in Fig. 12(a). The yellow circles correspond to the time instants for which
vertical dashed lines are shown in Fig. 12(b). The corresponding shape of the measurement vector for these specific
time samples is shown in Tab. 4. This table shows that the total sensor measurements vector is only partially populated
where observations are available. Throughout the flight, the non-empty elements move from the left hand side of the
vector to the right hand side.
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(b) Camera measurements

Fig. 12 Sample measurements at discrete time instants along the track
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time MHP ANS BBE YBA BBW SFT FMG
𝛼 𝛾 𝛼 𝛾 𝛼 𝛾 𝛼 𝛾 𝛼 𝛾 𝛼 𝛾 𝛼 𝛾

𝑡 = 300𝑠 . . . . . . ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
𝑡 = 325𝑠 ∅ ∅ ∅ ∅ . . . . . . ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
𝑡 = 350𝑠 ∅ ∅ ∅ ∅ . . . . . . . . . . . . ∅ ∅ ∅ ∅ ∅ ∅
𝑡 = 375𝑠 ∅ ∅ ∅ ∅ ∅ ∅ . . . . . . ∅ ∅ ∅ ∅ ∅ ∅
𝑡 = 400𝑠 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ . . . . . . ∅ ∅ ∅ ∅
𝑡 = 450𝑠 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ . . . . . . . . . . . .

Table 4 Measurement vector values for specific time samples

The innovation is calculated first, which is the difference between the predicted measurements ẑ𝑘 and the actual
sensor measurements z𝑘∗, including sensor limitations and perturbations:

𝜀 = z𝑘 − ẑ𝑘 = z𝑘 − h (x̂𝑘) (27)

This innovation 𝜀 is then used to calculate the state update by means of the previously computed Kalman Gain matrix:

x𝑘 = x̂𝑘 + Wvalid · 𝜀 (28)

F. Geodetic Coordinates Calculation
Next step is calculating the absolute position of the target in WGS-84 coordinates. This is achieved by combining

the known sensor position and the relative position of the target with respect to the sensor position, which is the first half
of the corrected state vector x𝑘1 . Since both are defined in different ENU reference frames, they are first converted to the
ECEF (earth centered earth fixed) reference frame, then added together and converted back to WGS-84.

The sensor position is converted straight from WGS-84 (i.e. latitude, longitude and altitude) to ECEF via the
transformation elaborated in the appendix, resulting in the position coordinates [𝑋 𝑌 𝑍]⊤ECEF. The relative position of
the target with respect to the sensor position in ECEF coordinates is calculated as follows:

𝑋

𝑌

𝑍

 (𝑆→𝑇 )ECEF

= T


𝐸

𝑁

𝑈

 𝑘 = Tx𝑘1 (29)

where T is the rotation matrix from the ENU reference frame to the ECEF reference frame, as defined in the Appendix.
The absolute position of the target in ECEF coordinates is then calculated as follows:

𝑋

𝑌

𝑍

𝑇ECEF

=


𝑋

𝑌

𝑍

ECEF

+

𝑋

𝑌

𝑍

 (𝑆→𝑇 )ECEF

(30)

As the last step, this absolute target position is converted back to WGS-84 (i.e. latitude, longitude and altitude) via
the reverse transformation elaborated in the Appendix.

G. Velocity Update
The velocity components of the target, which are the second half of the corrected state vector x𝑘2 are defined with

respect to the sensor ENU reference frame, these are transformed to the target ENU reference frame as follows:
¤
𝐸

𝑁

𝑈

 𝑘𝑇 = L⊤

¤
𝐸

𝑁

𝑈

 𝑘 = L⊤x𝑘2 (31)

∗In the numerical calculations, an ‘empty’ measurement scalar in z𝑘 is usually represented by a ‘NaN’. In order to prevent numerical issues these
have to be replaced by zeros together with their respective valid flag being set to zero in Wvalid so that they are ignored.
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H. State Error Covariance Update P𝑘

By first defining:
W𝐻 = I6×6 − WvalidH (32)

where I6×6 is a 6-by-6 identity matrix, the state error covariance matrix is then updated in the reference point reference
frame:

P𝑘 = W𝐻 P̂𝑘W⊤
𝐻 + WvalidRsensorsW⊤

valid (33)

which is finally converted to the target reference frame via the aforementioned rotation matrix L:

P𝑘𝑇 =

[
L 03×3

03×3 L

]
P𝑘 (34)

V. Results and Discussion
Four different sets of results are included here. First, the nominal results for a flight across the bay are presented.

These are followed by a failure case of the same scenario where all the ground based optical sensors are impacted by
reduced visibility. The third set focuses on the landing scenario. Finally, an in-depth study is performed to quantify the
impact of the sensor latency on the accuracy of the estimates.

A. Nominal Results for Flight Across the Bay
Fig. 13 shows a map view comparison of the estimated track with the true path, alongh with the locations of

the cameras and their viewing angles. A three dimensional comparison of the estimated track and the true path in
East-North-Up coordinates is given in Fig. 14. Both figures confirm a good fit of the estimate with the true path.
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Fig. 13 Map view comparison of estimate and true path

Fig. 15 shows the fit errors component-wise in two different reference frames, namely east-north-up and World
Geodetic System. It shows the importance of the reference frame, as the WGS figure shows minimal errors in three
dimensions, but the impact on the ENU reference frame is significant as that fit error is several meters per dimension.
The initial spike around t=275s is caused by the convergence of the estimate. Around t=460s is the time instant when
the vehicle leaves the field of view of the Salesforce tower camera, leaving only the camera and radar at the vertiport
FMG for tracking. This results in a significant increase in noise, since the single 2D camera cannot fully compensate for
the 3D noise from the radar measurements. The runaway around t=525s occurs when the vehicle leaves the field of view
of the sensors at the vertiport FMG.

Fig. 16 shows the standard deviations for the estimated position and velocity components in the ENU reference
frame. From top to bottom one can observe the standard deviations for the predicted position, the corrected position and
the corrected velocity estimate, with each graph depicting the three components east north and up. Besides showing
similar trends for the aforementioned time instants t=460s and t=525s, another significant change is observed around

14



Fig. 14 Three dimensional comparison of estimate and true path in East-North-Up coordinates
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(a) Fit errors in the East-North-Up reference frame
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(b) Fit errors in the World Geodetic System (WGS)

Fig. 15 Fit errors in two different reference frames

t=415s. This is the time instant when the distributed sensing tracker transitions from 3 non-collocated observers (2
cameras and 1 combined camera - radar) to only 2 observers (1 camera and 1 combined camera - radar). It is noteworthy
that the tracker manages to reduce the standard deviation gradually over time after the latter transition. This does not
happen with the former events.

As a validation check of the object tracker results, the expected sensor measurements are reconstructed based on the
estimated positions and these are compared with the actual sensor measurements. This is done in Fig. 17 for the radar
and Fig. 18 for the camera. Fig. 17(a) shows the reconstructed radar measurements, based on the estimated positions. In
Fig. 17(b), these reconstructed radar measurements are used to compare the actual radar disturbances (left column) with
the fit errors (right column). The radar disturbances are the differences between radar observation and ground truth.
These disturbances are caused by the sensor properties such as noise, resolution, latency, etc. The fitting error is the
difference between the Kalman Filter estimate and the ground truth. The difference between sensor disturbances and
fitting error is the influence of the Kalman Filter. First of all, radar is only available around the vertiports, which is
reflected by the measurements only being available in the beginning and at the end. The latency, which is modeled at
0.1s in this study, has the largest effect on the range measurements, which is primarily due to the orientation of the radar
with respect to the path. For the radar at the starting point, the measurement is closer by than the real position. For
the radar at the arrival site, the measurement is farther away than the real position. Thanks to the availability of other
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Fig. 16 Estimate standard deviation in the ENU reference frame

camera measurements, the tracker is capable of filtering out much of the radar induced noise. However, the tracker
cannot compensate for the latency, and after t=460s only the camera at the vertiport is left. A collocated 2D camera and
3D radar result that the camera can compensate for the radar induced noise in azimuth and elevation, but not in the
range due to the lack of depth since this is not a stereo camera.

(a) Reconstructed radar measurements
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(b) Sensor disturbances versus fit error

Fig. 17 Radar properties

Fig. 18 shows similar results for the camera measurements. The color coding for the different cameras is consistent
with the labeling in Fig. 9. The difference in the scale of the Y-axis shows a much smaller magnitude of camera noise
compared to radar noise. Significant camera disturbances are visible for azimuth as well as elevation in the left column
of Fig. 18(b). These disturbances are not symmetric around the zero line due to the latency, which is the main driver for
these disturbances. Note that the absolute magnitude of the disturbance is proportional to the slope of the corresponding
graph in Fig. 18(a), which makes it speed and thus time dependent. This is especially apparent in the azimuth plot.
Again, comparing camera disturbance with fit error shows the beneficial effect of the Kalman Filter. The noisy behavior
is reduced whenever the geometry and the number of sensors allows, but this setup cannot compensate for the latency.

Next step is analyzing the observability matrix O =

[
H HF HF2 · · · HF𝑛−1

]⊺
, where process matrix F is

defined in Eq. 7 and measurement matrix H is discussed in section IV.D. 𝑛 is the order of the system, which is 6 in this
case. Fig. 19(a) shows that the observability matrix has full rank, indicating full reconstructibility of the state vector.
Fig. 19(b) shows the evolution of the condition number of the observability matrix 𝛾 =

𝜎max
𝜎min

over time. This qualitative
assessment also confirms full reconstructibility of the state vector, but also shows in which timespans the tracking
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(a) Reconstructed camera measurements
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(b) Sensor disturbances versus fit error

Fig. 18 Camera properties

problem becomes more ill-posed. This is the case up to around t=325s, the time instant when the vehicle leaves the
noisy radar cone of the takeoff site. Also noteworthy are the aforementioned time instants t=415s, when the vehicle
transitions from observed by 3 cameras to only 2 cameras and t=460, when the vehicle leaves the field of view of the
Salesforce tower camera. However, the most significant increase in the condition number occurs around t=440s, which
is when the vehicle enters the noisy radar cone of the landing site.
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Fig. 19 Analysis of observability matrix

Finally, the evolution of the global 3D fit error in the ENU reference frame is studied over time. Fig. 20 shows this
value, which is basically the Euclidian norm of the 3 individual fit error components shown in Fig. 15(a). For most of
the flight, this fit error is around 5m. However, this value increases significantly, and becomes more noisy, as soon
as there is only one collocated camera left to compensate for the noisy radar measurements, which happens around
t=460s. Also, the general (slightly) decreasing and subsequently increasing trend of the fit error over time correlates
well with the number of cameras that have the vehicle in their field of view, as was shown in Fig. 5. More independent
non-collocated camera observations result in a lower fit error. But the relative difference is most significant for smaller
camera numbers, especially less than 3.
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Fig. 20 Evolution of global 3D fit error over time

B. Failure case results for flight across the bay
For the aforementioned flight across the bay scenario, a failure case is considered where all the ground based

cameras are impacted by reduced visibility, for example caused by unfavorable weather conditions. As a result, the
maximum detection range of the cameras is reduced from 4,000m to 2,000m. The corresponding coverage map and
camera measurements are shown in Fig. 21. The coverage map as shown in Fig. 21(a) shows that specific parts of the
trajectory, encircled by red ellipses, are not simultaneously observed by two different cameras. This results in a loss of
sufficient information for successful triangulation. Note that radar measurements are available at takeoff and landing site
to complement the cameras there. Fig. 21(b) shows the camera measurements and cofirms that there are four distinct
time intervals in which only one camera measurement is available instead of the minimum required number of two.

(a) EO camera coverage map for failure case (b) Camera measurements with disturbances for failure case

Fig. 21 Camera coverage map and measurements for all the distributed sensors in the failure case

The map in Fig. 22 shows the estimated path and compares it with the true path for the failure case. Comparing
this figure with Fig. 21 shows that the estimated path drifts away from the true path exactly when there is not enough
information available for triangulation. This drift happens fairly quickly, but the correction is instantaneous and along
the line of sight as soon as an extra camera observation becomes available so that triangulation is possible again.
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Fig. 22 Map view comparison of estimate and true path for the failure case

Analysis of the observability matrix for the failure case, shown in Fig. 23, predicts when the inferior track estimate
can be expected. The rank of the observability matrix, shown in Fig. 23(a), as well as its condition number depicted in
Fig. 23(b), both indicate lack of information for the track estimate in the four time intervals that were already pinpointed
in the camera measurement time histories in Fig. 21(b), where a second camera observation is missing.

(a) Rank (b) Condition number

Fig. 23 Analysis of observability matrix for the failure case

C. Results for landing scenario
The landing scenario was introduced in Section II.B and this section discusses some select results, which are

presented in a similar way as in section V.A. The map view in Fig. 24 compares the estimate with the true path for the
landing scenario, and shows fairly accurate results, despite this scale not being optimal for a detailed accuracy analysis.

Fig. 25(a) shows the three components of the fit error between estimate and true path in the East-North-Up reference
frame, which allows for a more detailed accuracy analysis. The error is more noisy in each axis as long as there are less
than three camera observations available, which is up to t=507s. The close proximity and unfavorable orientation of
both cameras at FMG and SFC with respect to the track in this phase of flight (almost collocated) also impacts the
estimate accuracy. The addition of the non-collocated observation information from SFT as a third camera from t=507
onwards has a significant impact on the accuracy of the estimate. The magnitude of the standard deviations in Fig. 25(b)
confirms these observations. The additional incremental improvement of the standard deviation around t=526s happens
when a fourth camera observation is added into the mix.
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Fig. 24 Map view comparison of estimate and true path for landing scenario
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Fig. 25 Fit errors and estimate standard deviation for the landing scenario

Fig. 26 compares sensor disturbances versus fit error to analyze the effect of the Kalman Filter on the sensor
disturbances. Fig. 26(a) gives this information for the radar and Fig. 26(b) for all the cameras. Comparing left column
with right column in each figure shows that the filter reduces the noise levels significantly. Just like in the nominal
scenario, the latency is the dominant driver for the sensor disturbances and the fit error, since it is not compensated for
by the filter.

The low values for the condition number of the observability matrix, shown in Fig. 27, show that this problem is
well-posed throughout the entire scenario. The slight jumps in the values correspond to the changes in the number of
cameras that have the tracked vehicle in sight, as shown in fig. 8.

Finally, the evolution of the global 3D fit error in the ENU reference frame is studied over time. Fig. 28 shows this
value, which is basically the Euclidian norm of the 3 individual fit error components shown in Fig. 25(a). For most of
the later part of the landing, where more than 4 cameras are tracking the vehicle, this fit error is steady and around 5m.
However, this value increases significantly, and becomes more noisy, as soon as there are fewer camera observations
available, which happens in the initial phase of the landing. The general decreasing trend of the fit error over time
correlates well with the number of cameras that have the vehicle in their field of view, as was shown in Fig. 8. More
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Fig. 26 Sensor disturbances versus fit error for the landing scenario
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Fig. 27 Analysis of observability matrix condition number for the landing scenario

independent non-collocated camera observations result in a lower fit error. But the relative difference is most significant
for smaller camera numbers, especially less than 3. This confirms earlier observations in section V.A for the nominal
flight across the bay. The final phase of flight close to touchdown shows that the fit error is around 5m, with touchdown
at t=550s which causes the negative spike due to the combined effect of latency and sudden stop in vertical descent
versus constant velocity assumption in the Kalman Filter. The time span between t=550s - 560s is with the vehicle
on the landing platform. An achieved tracking accuracy around 5m, with sufficient cameras around the landing zone,
is necessary and sufficient, given the size of the FATO (final approach and takeoff area, not less than 6m) and TLOF
(touch down and lift off area, not less than 15m) on a typical helipad [15].

D. Impact of sensor latency on accuracy of estimate
Based on the results for the nominal flight across the bay in section V.A, a sensitivity analysis was performed to

investigate the impact of the sensor latency on the accuracy of the estimate, as shown in Fig. 29. Based on the speed of
the vehicle in the scenario, which is around 30 m/s, and the chosen value for the sensor latency, a certain theoretical
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Fig. 28 Evolution of global 3D fit error over time for the landing scenario

value for the fit error is depicted, which is a linear function of the latency. However, the addition of noise, resolution, etc.
cause further fit errors in addition to this theoretical value, and these are shown in the figure. Also this trend is a linear
function of the latency. The purpose of this graph is to derive a value of a certain maximum allowable latency such that
the resulting estimate accuracy is within a certain required threshold. For example, if one needs a maximum in flight
fit error of not more than 10 m (among others for traffic separation purposes) for typical speeds used in this scenario,
then this graph shows that the maximum allowable total sensor latency cannot exceed 280ms. This is a requirement
that applies to the combined pipeline of sensors latency, signal transportation delay, and sensor fusion computational
load. One can expect significantly higher accuracy requirements in the terminal area around the touchdown point of the
vertiport, but this flight phase will also involve significantly lower vehicle speeds, which will at least partially offset the
requirements for the maximum allowable sensor latency in the vertiport touchdown area.
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Fig. 29 Estimate accuracy as a function of sensor latency for a vehicle speed of 30 m/s
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VI. Conclusions and Recommendations
In this research, a baseline distributed ground sensor based Kalman Filter is developed as an object tracker in

the context of Urban/Advanced Air Mobility, where a capability is needed such that eVTOL vehicles as well as
non-cooperative objects (drones, birds) can be tracked from the ground based on ground based sensors only. The sensors
considered in this baseline approach are strategically placed non-collocated EO cameras and radars at the vertiports.
These cameras are placed at geographically likely locations and not geometrically optimized, however their viewing
directions are strategically chosen in order to achieve full camera coverage of the flightpath. Both cameras and radars
have their specific advantages and drawbacks. Radar measurements are notably more noisy than camera observations.
However, camera measurements provide azimuth and elevation only, thus lacking range information. Therefore multiple
cameras are needed en-route to permit triangulation. Other sensor modalities than EO cameras and radars may offer
drastically different benefits (and new disadvantages). This sensor fusion strategy is made adaptive, so that lower
sampling rates of specific sensors are taken into account, as well as loss of signal (for example because the object is
outside the field of view or the useful range of a particular camera, or because of a sensor malfunction resulting in
a sensor signal dropout), and invalid data. This capability is achieved by incorporating valid flags in the weighting
matrix of the Kalman filter. Initial results shown in this research confirm satisfactory performance as long as enough
cameras are available to permit triangulation. The accuracy of the estimate depends on many factors, from which the
latency and the number of cameras observing the target are the most important ones. It was observed that less than four
and especially less than three cameras observing the target simultaneously deteriorates the accuracy of the estimate
significantly. The impact of the latency also depends on the vehicle speed, among other effects. Finally, adding even
only a single camera helps to remove radar noise partially, although not along the line of sight of the camera because the
camera provides only two dimensional information (azimuth and elevation).

Subsequent research in this project will focus on the estimate to track association, which is an important aspect
for tracking multiple vehicles. Replacing the synthetic camera measurements by YOLO measurements based on the
X-plane renderings, as was done in [8], is an important next step to analyse the feasibility of the approach in a controlled
environment. An important challenge here is finding the centroid of the detected ellipsoid, especially at closer ranges,
as elaborated in [8]. The research team is also looking into robust strategies to deal with the aforementioned latency
effects. As a next step, flight tests with real camera and radar hardware are absolutely necessary to understand further
the practical implications of this approach.

Appendix: Reference Frame Transformations for Kalman Filter
Throughout this paper, five different reference frames are used: geodetic (WGS-84), Earth-Centered Earth-Fixed

(ECEF), East–North–Up (ENU), body fixed and sensor spherical reference frames. They are all illustrated in Fig. 30.

Fig. 30 Reference frames used by Kalman Filter
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The geodetic reference frame expresses the spherical coordinates as longitude 𝜆𝑠 with respect to the Greenwich
meridian, latitude 𝜙𝑠 with respect to the equator and altitude ℎ𝑠 above the average sea-level. The ECEF reference
frame is Cartesian with the origin in the Earth center and its coordinates are as follows: the 𝑍ECEF axis extends through
true North, 𝑋ECEF points through the earth surface where the equator and Greenwich meridian intersect, and 𝑌ECEF is
finally perpendicular on the two previous axes. The ENU Cartesian reference frame is sensor centered with the axes
pointing East–North–Up. As illustrated in Fig. 30, the ‘up’ direction is location dependent, as well as the others. As a
consequence, the ENU frames for different sensors and target are all differently oriented. This difference increases for
increasing distances between all of them. This must be reflected in the calculations. Next is the body fixed reference
frame, which is Cartesian and centered at the sensor’s center of gravity. The 𝑋𝐵 axis points forward, 𝑌𝐵 axis points to
the right and the 𝑍𝐵 axis is downwards. Finally, the sensor centered spherical reference frame expresses the coordinates
as range 𝜌 (distance from center of gravity), elevation 𝛼 (vertical angle with respect to the 𝑋𝐵 − 𝑌𝐵-plane) and azimuth
𝛾 (horizontal angle with respect to the forward axis). The sensor measurements from radar and camera are expressed in
this spherical reference frame. Note that both latter sensor fixed reference frames are sensor attitude dependent, i.e. the
viewing direction.

The transformations between the different aforementioned reference frames are illustrated in Fig. 31. The
transformations between body-fixed, ENU, ECEF as well as between different ENU’s of different sensors and target
at different locations are pure angular rotations by means of the respective rotation matrices M (𝜙, 𝜃, 𝜓) over the
three Euler angles between body fixed and ENU, T (𝜆𝑠 , 𝜙𝑠) over longitude and latitude between ENU and ECEF and
L (𝜆𝑠 , 𝜙𝑠 , 𝜆𝑡 , 𝜙𝑡 ) over longitude and latitude of both locations between different ENU’s at different locations. The
mappings between body fixed and sensor spherical as well as between geodetic and ECEF are more complex nonlinear
transformations. Each of them is elaborated next.

Fig. 31 Transformations between the different reference frames

Transformation from body-fixed to spherical and backwards
The sensor spherical coordinates are defined as a function of the body-fixed coordinates as follows:

𝜌 =

√︃
𝑋2
𝐵
+ 𝑌2

𝐵
+ 𝑍2

𝐵
(35)

𝛼 = arctan
−𝑍𝐵

𝜌hor
(36)

𝛾 = arctan
𝑌𝐵

𝑋𝐵

(37)

(38)

where:
𝜌hor =

√︃
𝑋2
𝐵
+ 𝑌2

𝐵
(39)
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And the other way around:

𝑋𝐵 = 𝜌 cos𝛼 cos 𝛾 (40)
𝑌𝐵 = 𝜌 cos𝛼 sin 𝛾 (41)
𝑍𝐵 = 𝜌 sin𝛼 (42)

Rotation from body-fixed to ENU and backwards
From body-fixed to ENU is a sequential rotation over the three Euler angles roll 𝜙, pitch attitude 𝜃 and yaw 𝜓[16]:

M (𝜙, 𝜃, 𝜓) =


sin𝜓 cos 𝜃 cos 𝜙 cos𝜓 + sin 𝜙 sin𝜓 sin 𝜃 − sin 𝜙 cos𝜓 + cos 𝜙 sin𝜓 sin 𝜃
cos𝜓 cos 𝜃 − cos 𝜙 sin𝜓 + sin 𝜙 cos𝜓 sin 𝜃 sin 𝜙 sin𝜓 + cos 𝜙 cos𝜓 sin 𝜃

sin 𝜃 − sin 𝜙 cos 𝜃 − cos 𝜙 cos 𝜃

 (43)

The transpose is used for the backwards direction.

Rotation from ENU to ECEF and backwards
From the vehicle centered ENU to the earth centered ECEF is a sequential rotation over the longitude 𝜆𝑠 and latitude

𝜙𝑠 of the current position[16]:

T (𝜆𝑠 , 𝜙𝑠) =

− sin𝜆𝑠 − cos𝜆𝑠 sin 𝜙𝑠 cos𝜆𝑠 cos 𝜙𝑠

cos𝜆𝑠 − sin𝜆𝑠 sin 𝜙𝑠 sin𝜆𝑠 cos 𝜙𝑠

0 cos 𝜙𝑠 sin 𝜙𝑠

 (44)

The transpose is used for the other way around.

Rotation between ENU’s
A rotation between ENU’s is basically a rotation from the first ENU to ECEF and subsequently from ECEF back to

the second ENU:
L (𝜆𝑠 , 𝜙𝑠 , 𝜆𝑡 , 𝜙𝑡 ) = T⊤ (𝜆𝑡 , 𝜙𝑡 ) · T (𝜆𝑠 , 𝜙𝑠) (45)

Substituting Eq. (44) results in:

L (𝜆𝑠 , 𝜙𝑠 , 𝜆𝑡 , 𝜙𝑡 ) =
= T⊤ (𝜆𝑡 , 𝜙𝑡 ) · T (𝜆𝑠 , 𝜙𝑠)

=


− sin𝜆𝑡 − cos𝜆𝑡 sin 𝜙𝑡 cos𝜆𝑡 cos 𝜙𝑡
cos𝜆𝑡 − sin𝜆𝑡 sin 𝜙𝑡 sin𝜆𝑡 cos 𝜙𝑡

0 cos 𝜙𝑡 sin 𝜙𝑡


𝑇 

− sin𝜆𝑠 − cos𝜆𝑠 sin 𝜙𝑠 cos𝜆𝑠 cos 𝜙𝑠

cos𝜆𝑠 − sin𝜆𝑠 sin 𝜙𝑠 sin𝜆𝑠 cos 𝜙𝑠

0 cos 𝜙𝑠 sin 𝜙𝑠


=


cos (𝜆𝑡 − 𝜆𝑠) sin (𝜆𝑡 − 𝜆𝑠) sin 𝜙𝑠 − sin (𝜆𝑡 − 𝜆𝑠) cos 𝜙𝑠

− sin (𝜆𝑡 − 𝜆𝑠) sin 𝜙𝑡 cos 𝜙𝑡 cos 𝜙𝑠 + sin 𝜙𝑡 sin 𝜙𝑠 cos (𝜆𝑡 − 𝜆𝑠) cos 𝜙𝑡 sin 𝜙𝑠 − sin 𝜙𝑡 cos 𝜙𝑠 cos (𝜆𝑡 − 𝜆𝑠)
sin (𝜆𝑡 − 𝜆𝑠) cos 𝜙𝑡 sin 𝜙𝑡 cos 𝜙𝑠 − cos 𝜙𝑡 sin 𝜙𝑠 cos (𝜆𝑡 − 𝜆𝑠) sin 𝜙𝑡 sin 𝜙𝑠 + cos 𝜙𝑡 cos 𝜙𝑠 cos (𝜆𝑡 − 𝜆𝑠)


(46)
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Transformation from ECEF to geodetic and backwards

ECEF ⇒ geodetic
The target position in WGS-84 geodetic coordinates is obtained following the 15-step process presented below

(extracted from RTCA DO-317A)[14]:

𝑟ecef =

√︃
𝑋2
𝑡 + 𝑌𝑡 2 (47)

𝐸2 = 𝑎2 − 𝑏2 (48)
𝐹 = 54𝑏2𝑍2

𝑡 (49)

𝐺 = 𝑟2
ecef +

(
1 − 𝜀2

)
𝑍2
𝑡 − 𝜀2𝐸2 (50)

𝐶 =
𝜀4𝐹𝑟2

ecef
𝐺3 (51)

𝑆 =
3
√︃

1 + 𝐶 +
√︁
𝐶2 + 2𝐶 (52)

𝑃 =
𝐹

3
(
𝑆 + 1

𝑆
+ 1

)2
𝐺2

(53)

𝑄 =
√︁

1 + 2𝜀4𝑃 (54)

𝑟𝑜 =
−𝑃𝜀2𝑟ecef

1 +𝑄
+

√︄
𝑎2

2

(
1 + 1

𝑄

)
−

𝑃
(
1 − 𝜀2) 𝑍2

𝑡

𝑄(1 +𝑄) −
𝑃𝑟2

ecef
2

(55)

𝑈 =

√︃(
𝑟ecef − 𝜀2𝑟𝑜

)2 + 𝑍2
𝑡 (56)

𝑉 =

√︃(
𝑟ecef − 𝜀2𝑟𝑜

)2 + (
1 − 𝜀2) 𝑍2

𝑡 (57)

𝑍𝑜 =
𝑏2𝑍𝑡

𝑎𝑉
(58)

𝜙𝑡 = tan−1
(
𝑍𝑡 + 𝜀′2𝑍𝑜

𝑟ecef

)
(59)

𝜆𝑡 = tan−1
(
𝑌𝑡

𝑋𝑡

)
(60)

ℎ𝑡 = 𝑈

(
1 − 𝑏2

𝑎𝑉

)
(61)

where:
𝑎 = 6.378137 · 106𝑚, semimajor axis of the Earth
𝑏 = 6.3567523142 · 106𝑚, semiminor axis of the Earth
𝜀 = 0.081819190842622, first eccentricity of the Earth
𝜀′ = 0.082094437935831, second eccentricity of the Earth
𝜙𝑡 = target latitude [rad]
𝜆𝑡 = target longitude [rad]
ℎ𝑡 = target geodetic altitude [m]

geodetic ⇒ ECEF
The ownship’s Earth-Centered, Earth-Fixed (ECEF) position is calculated by[14]:

𝑋𝑆

𝑌𝑠

𝑍𝑠

 =


(𝑁𝑠 + ℎ𝑠) cos 𝜙𝑠 cos𝜆𝑠
(𝑁𝑠 + ℎ𝑠) cos 𝜙𝑠 sin𝜆𝑠(
𝑁𝑠

(
1 − 𝜀2) + ℎ𝑠

)
sin 𝜙𝑠

 (62)

where:
𝜙𝑠 = ownship geodetic latitude [rad]
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𝜆𝑠 = ownship geodetic longitude [rad]
ℎ𝑠 = ownship geodetic altitude [m]
𝑁𝑠 =

𝑎√
1−𝜀2 sin2 𝜙𝑠

𝑎 = 6.378137 · 106𝑚, semimajor axis of the Earth
𝜀 = 0.081819190842622, first eccentricity of the Earth

If the altitude of the ownship is measured as height above Mean Sea Level (MSL) from a barometric sensor, it
should be converted to WGS-84 Height Above Ellipsoid (HAE) using the following steps:

𝜉 (𝜙𝑠) = 𝑔0eq

1 + 𝑘 sin2 𝜙𝑠√︃
1 − 𝜀2 sin2 𝜙𝑠

(63)

𝑅 (𝜙𝑠) =
𝑎

1 + 𝑓 + 𝑚𝑟 − 2 𝑓 sin2 𝜙𝑠

(64)

ℎ𝑆 =
𝑅 (𝜙𝑠)ℎ

𝑅 (𝜙𝑠 ) 𝜉 (𝜙𝑠 )
𝜉 ( 𝜋

4 )
− ℎ

(65)

where:
𝜙𝑠 = ownship geodetic latitude [rad]
𝜀 = 0.081819190842622, first eccentricity of the Earth
𝑔0eq = 9.7803253359𝑚/𝑠2, theoretical gravity at the equator
𝑔0pl = 9.8321849378𝑚/𝑠2, theoretical gravity at the poles

𝑘 =
𝑏·𝑔0pl
𝑎·𝑔0eq

− 1
𝜉 (𝜙𝑠) = normal gravity on the surface of an ellipsoid at 𝜙𝑠 [𝑚/𝑠2]
𝑎 = 6.378137 · 106𝑚, semimajor axis of the Earth
𝑏 = 6.3567523142 · 106𝑚, semiminor axis of the Earth
𝑓 = 𝑎−𝑏

𝑎
, flattening of the Earth

𝑚𝑟 = 0.003449787, gravity ratio
𝑅 (𝜙𝑠) = radius of the Earth at 𝜙𝑠 [m]
ℎ = measured ownship height above MSL
ℎ𝑠 = ownship geodetic altitude [m]
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