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Simultaneous Localization and Mapping (SLAM) is a promising technique that provides
localization information and precise mapping of the physical environment without having much
prior knowledge of the surroundings. SLAM may have a vital role in aeronautics and aerospace,
where vehicles and aircraft must operate in complex environments with traditional localization
services that may be degraded or unavailable. This paper compares several pre-canned 3D
SLAM algorithms based on vision and LiDAR, namely ORB-SLAM, ORB-SLAM2, LOAM,
A-LOAM, and F-LOAM on NASA UAS (Unmanned Aircraft System) flight test data. The
NASA ARC UAS flight test demonstrates preliminary SLAM algorithm results, which serve
as a stepping stone to simulated AAM (Advanced Air Mobility) concepts. Conducting AFRC
UAS flight test for simulated AAM approach and landing with SLAM algorithms provides
an Alternative Precision Navigation and Timing solution based on distributed landmarks and
fiducials in the landing zone. These algorithms use the telemetry data as ground truth for a
baseline comparison. The criteria of the performance comparison include robustness, accuracy,
re-localization, response to environmental changes, and real-time effectiveness, which are
currently qualitative but to be quantitative in the future.

I. Introduction
SLAM estimates sensor motion and reconstructs 3D structure in an unfamiliar environment [1, 2]. Its original

purpose was to attain autonomy in robots [3]. However, soon after in the years, its applications broadened into the field
of computer vision, augmented reality [4], and self-driving technology [5–7].

SLAM with visual information from cameras is visual SLAM (vSLAM), in which vSLAM estimates the camera’s
trajectory by visually reconstructing the environment based on keyframes and detected features. The vSLAM technique
spreads vastly because of its suitability for camera pose estimation, map optimization, and relocalization using easily
accessible GoPros or smartphones. vSLAM has three main stages – initialization, tracking, and mapping [8]. Each
algorithm uses a different approach for each module mentioned in the later sections. In general, the first stage involves
defining a global coordinate system and reconstructing a portion of the environment in the global coordinates as an
initial map. Next, continuous tracking and mapping provide periodic estimations of the camera position and orientation.
Then the algorithm tracks the initial map in the image to approximate the camera pose of it for the map by obtaining
the 3D correlation between the image and the initial map from feature matching. The initial map then expands by
calculating the 3D structures of the scenario when the camera captures unknown regions not mapped before. Finally,
relocalization comes into play when SLAM loses track due to fast camera movements and other external disturbances
where it computes the camera pose with the map again to continue tracking. Global map optimization suppresses or
reduces the accumulated errors due to the estimation, and the loop closing is essential to estimate the error accumulated
due to camera motion. The search for a closed loop in the current image compared to the previously observed images
takes place, and if one of the once-obtained views gets noticed, it means a loop is detected. Bundle adjustment can
minimize this error by accurately estimating the camera localization and the geometrical map [9].
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The SLAM algorithm that uses LiDAR and optional inertial sensor data to generate a 3D map of the environment is
called LiDAR-based SLAM. LiDAR Odometry and Mapping (LOAM) is a method to estimate the state and map the 3D
LiDAR data in real time. LOAM generates the real-time odometry and map using range measurements for a 2-axis
LiDAR moving in 6 DOF (degree of freedom) [10].

This paper reviews the initial results of the real-time open-source pre-canned SLAM algorithms using the flight test
data obtained from NASA Ames Research Center (ARC) and NASA Neil A. Armstrong Flight Research Center (AFRC).
This paper aims to compare the feature-based approach module in vSLAM for monocular camera inputs and LiDAR
SLAM algorithms against the telemetry data as ground truth. Though these algorithms originally were not written for
flight datasets, the reason to choose them is to test their ability to detect features from the sky and their capability to plot
flight trajectories with precision. Unfortunately, the features on the ground do not appear the same when seen from an
aircraft (due to scaling), so this will serve as a preliminary survey for the prospective SLAM algorithms for flights [11].
Future work may include processing more datasets and comparing other SLAM algorithms.

II. SLAM Algorithms
This section outlines the theory and mechanisms of the SLAM methods under consideration. Since the flight test

payload has a LiDAR, IMU, and a visual sensor, this will have a mixture of LOAM and vSLAM algorithms.

A. ORB-SLAM
ORB-SLAM uses Parallel Tracking And Mapping (PTAM), where the threads for tracking, mapping, and loop

closing run in parallel (as shown in Fig.1). In monitoring, the camera localizes and decides on the keyframe to insert.
Feature matching of the current frame with the previous frame optimizes the pose using motion-only bundle adjustment.
If the tracking gets lost in the middle of the execution, the place recognition function kicks in to perform relocalization.
The embedded bag of words in DBoW2∗ [12] (an open-source C++ library) performs loop detection and relocalization.
After the initial feature matching and camera pose estimation, the co-visibility graph of keyframes generates the visible
map [13]. The mapping operates on the keyframes and performs local Bundle Adjustment (BA) to 3D reconstruct the
surroundings. Only the high-quality feature points remain after sorting the information from tracking, eliminating
redundant keyframes. Finally, in the loop closing, the system searches for a loop in every new keyframe. When
two keyframes share a lot of bag of words, they qualify for the loop closer. If a loop gets detected, the similarity
transformation aids in fusing all the identical points. A pose graph optimization in g2o† [14] (an open-source C++
framework) over similarity transformations takes place to correct the scale drift [15].

Fig. 1 Block Diagram of ORB-SLAM with its three parallel threads - tracking, local mapping and loop closing

B. ORB-SLAM2
ORB-SLAM2 builds upon ORB SLAM. The apparent difference is that ORB SLAM has only monocular modes of

operations while the ORB-SLAM2 has RGB-D and Stereo modes along with the monocular mode [16]. The algorithm
∗https://github.com/dorian3d/DBoW2
†https://github.com/RainerKuemmerle/g2o
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also has improved the bag of words for the ORB vocabulary and full bundle adjustment after loop closing. It can also
run on Robot Operating System. The improved bag of features allows ORB-SLAM2 to detect more key features than
ORB-SLAM, which leads to better performance. Figure 2 shows the processes similar to ORB-SLAM in a single block
and the different procedures in green blocks.

Fig. 2 Block Diagram of ORB-SLAM2 with its four parallel threads - tracking, local mapping, loop closing and
full bundle adjustment

C. ORB-SLAM3
ORB-SLAM3 builds on ORB-SLAM2 with a significant difference in the concept of relocalization. This algorithm

can relocalize quickly even when poor visual information is available after the tracking is lost [17]. It is helpful when
the flight is taking a swift turn. It also requires IMU values along with the frame inputs. Unlike ORB-SLAM, which
assumes all camera components to be pin-hole models, ORB-SLAM3 also offers the Kannala-Brandt [18] fish-eye
model.

D. LOAM
After each sweep, the points received from the LiDAR scan register to the point cloud. LiDAR odometry processes

the combined point cloud after a few sweeps, where the movement of the LiDAR between two consecutive sweeps
computes the estimated motion to correct any distortion. Then the output is sent to LiDAR mapping for matching and
registering the undistorted cloud onto the map at a frequency of 1Hz (as shown in Fig.3). Transforming and integrating
the LiDAR odometry and LiDAR mapping yields an output that runs at 10 Hz. The advantage of using LiDAR is that it
is insensitive to ambient lighting and optical texture in the scene [10], whereas the camera turns sightless to extreme
brightness and darkness.

Fig. 3 Block Diagram of the LOAM software
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E. A-LOAM
The Advanced LOAM (A-LOAM‡) is a simple and clean implementation of LOAM with less complicated

mathematical derivations and operations. It uses Eigen (C++ template library for linear algebra) and Ceres Solver (C++
library for modeling and solving significant, complex optimization problems) to enhance the code.

F. F-LOAM
The Fast LOAM (F-LOAM) is an optimized version developed from LOAM and Advanced LOAM (A-LOAM), with

the computational cost reduced by a factor of three. The LOAM and A-LOAM algorithms use iterative methods for
scan-to-scan match and scan-to-map. Still, F-LOAM uses a non-iterative two-stage, computationally inexpensive, and
accurate process. During each scan, the edge and planar features are extracted and mapped with the local edge map and
local plane map, respectively [19].

III. Experiment Setup
This section describes the flight test setup and software used to run the SLAM solutions.

A. NASA ARC Flight Test Setup
The goal of the ARC flight test campaign was to obtain high-definition RGB camera images and 3D scanning LiDAR

data to support multiple studies. These studies include airborne autonomy for hazard perception, safe beyond-visual-line-
of-sight operations, GPS-free navigation, and real-time mapping. In this campaign conducted in November-December
2021, the dataset was collected at a low altitude of <100m, targeting different suburban/urban structures of interest,
including roads, buildings, trees, people, vehicles, and vegetation. The payload had Velodyne VLP16 3D Scanning
LiDAR, Xsens MTI-20 VRU IMU, Intel NUC i7 CPU, a FLIR DUO-R Thermal IR, and 4K Visual Camera, along with
a GoPro Max camera as the ground sensor. Figure 4(a) shows the block diagram of how the sensors and components
connect in the payload, and Fig.5(b) is the location where the payload mounts on the flight. Subsection V.A mentions
the different routes taken.

Fig. 4 ARC flight payload block diagram

B. NASA AFRC Flight Test Setup
The NASA Armstrong sUAS Lab conducted a flight test campaign using a Freefly Alta8 multicopter from March to

June 2022. The aircraft collected 4K-resolution 60 FPS video following a trajectory resembling a notional eVTOL
9-degree approach and landing at the helipad. The camera is a RED DSMC2 mounted on a Movi Pro gimbal. In
addition to the video, it logged the data from the Pixhawk autopilot and Movi Pro. Nearby weather stations recorded
meteorological conditions, augmented by an ASC (vendor – Atmospheric Systems Corp.) 4000 (i.e., 4000 Hz frequency

‡https://github.com/HKUST-Aerial-Robotics/A-LOAM
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(a) (b)

Fig. 5 ARC flight images (a) The flight in its landing/takeoff pad with the team calibrating (b) The payload with
the sensors and the NUC i7 CPU

band) mini SODAR (sound detection and ranging) monitoring 3D winds in the boundary layer. As mentioned earlier,
subsection V.A talks about the flight routes.

(a) (b)

Fig. 6 AFRC flight images (a) The flight and payload with the sensors (b) The flight in its landing zone

C. Software Setup
For the software setup, a virtual machine on a Mac Book Pro and an Intel NUC with Kubuntu runs Ubuntu 18.04,

16.04, and 20.04. These machines drive the SLAM algorithms, namely ORB-SLAM2, LOAM, F-LOAM, and A-LOAM
setup, based on the instructions provided in their respective official GitHub sites. In the ORB-SLAM2 pre-processing
phase, the dataset videos had to be converted into images to run through the algorithms. So, it utilizes a custom python
code to convert the video at 30-60fps and to snip only the exciting part of the video for the analysis. It is also necessary to
auto-generate a text file with the image file name and the corresponding time using a python script during the conversion
process.

IV. Understanding the SLAM Outputs
Figure 7 is the output window that pops up when the ORB-SLAM2 code executes. The window to the right, referred

to as Map Viewer, displays the keyframes, key features, and even the previously mapped points. The red dots mean
reference map points, the black dots denote all the identified map points, and the blue squares represent the keyframes,
i.e., frames with comparatively unique data. The green line shows the mapped trajectory, and the green box or envelope
implies the current position\location of the camera frame. The window on the left presents the actual video with the
current frame in the picture with all the detected feature points as tiny green boxes.

Executing the LiDAR SLAM algorithm opens a ROS visualization window called RViz, as shown in Fig.8(a). The
sidebar in the left column has several settings that change the display’s appearance. The rainbow-colored dots are the
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Fig. 7 Sample Output from ORB-SLAM2

Fig. 8 Sample output from A-LOAM

points seen in the current LiDAR sweep or scan. The white dots are the dots from the point cloud, i.e., points from the
old sweeps. The green line in Fig.8(b) is the trajectory marked by A-LOAM. The square plane is a grid used to mark the
ground along the axis. The keyframe trajectory text file§ that saves the trajectory information contains every single pose
with its

• timestamp - A float datatype provides the time in seconds since the Unix epoch
• tx ty tz - Three float values give the position of the optical center of the color camera with respect to the world

origin as per the motion capture system
• qx qy qz qw - Four float values offer the orientation of the optical center of the color camera in the form of a unit

quaternion (following vector-first formalism) with respect to the world origin as per the motion capture system
Similarly, in the output text file obtained from A-LOAM’s output rostopic, the timestamp is saved to its nanoseconds
with the position (x,y,z) and orientation (x,y,z,w).

V. Results

A. Dataset Description
Table 1 highlights the different datasets for the SLAM analysis, their routes, and descriptions. The trajectory gives

each dataset the reference names used in the upcoming sections.
§https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats
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Dataset Name Trajectory\Routes
Altitude
(m
AGL)

Ground
Speed
(m/s)

DART_SQ Takes a simple square path around the DART region in NASA Ames as
shown in Fig.9(a) 30 2

DART_ACTUAL Takes a path around a building in NASA Ames DART site Fig.9(b) 30 2
NFAC A route near the National Full-Scale Aerodynamics Complex Fig.9(c) 30 2

DFM_1 A straight route in the Defrance Mid Road starting from point A to B
like in the Fig.9(d) 30 2

DFM_2 A straight route in the Defrance Mid Road starting from point B to A
(vice versa of DFM_1) Fig.9(d) 30 2

AFRC A route in the Edwards Airforce center Fig.9(e) 460 3

AFRC_CONES A route in the Edwards Airforce center with cones around the landing
site Fig.9(e) 460 3

Table 1 Information of the different routes

(a) DART_SQ (b) DART_ACTUAL

(c) NFAC (d) DFM_1 and DFM_2

(e) AFRC and AFRC_CONES

Fig. 9 Routes taken by the different flights
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B. DFM_1 Dataset
In Fig.10, (a) gives the output from the ORB-SLAM2, (b) and (c) the outcomes from A-LOAM, and (d) shows

the initial result from F-LOAM. The route can be seen in these images but looks a little warped because it can be
challenging to output absolute measurements with only one monocular camera without supervised calibration. One
could think of initialization by doing a small translation of the camera or using IMU calibration like in ORB-SLAM3, or
Lego-LOAM¶ [20]. Using such algorithms that use inertial SLAM can help overcome warping. However, it is essential
to overcome such distortions as it leads to inaccurate SLAM solutions causing higher estimation errors.

(a) (b)

(c) (d)

Fig. 10 SLAM results for the DFM_1 dataset

C. DFM_2 Dataset
Figure 11(a) displays the output from running the dataset with ORB-SLAM2, and Fig.11 (b),(c) shows the A-LOAM

algorithm outputs. Since the route is opposite the DFM_1, the results look identical but still have minor differences.

D. NFAC Dataset
Figures 12(a) and (b) show the outputs from the A-LOAM, while (c) represent the Matlab plot of the true value

from the flight’s telemetry data and the A-LOAM result obtained. These images show how closely accurate the SLAM
algorithms produce their results. Especially, Fig.12(b) shows how the LiDAR has captured the wind tunnel on the left of
the image.

¶https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
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(a) (b)

(c)

Fig. 11 SLAM results for the DFM_2 dataset

E. DART_SQ Dataset
Figure 13 shows the incomplete trajectory of ORB-SLAM2. In the actual video, multiple swift turns and sudden

jumps cause ORB-SLAM2 to lose track and cause discontinuities in the estimated trajectory. It usually relocalizes
quickly, but in some cases, added complexity makes it challenging to get back on track. More analysis is in section VII
of this paper.

F. DART_ACTUAL Dataset
Unlike DART_SQ, DART_ACTUAL lacks visual perturbations such as jitter, sudden jumps, and swift turns, which

provides smoother tracking. Figure 14(a) is how the trajectory looked from an ORB-SLAM2 display window versus
Fig.14(b) shows the unscaled plot of the trajectory based on the output recorded from ORB-SLAM2. Figure 14(c) is
the A-LOAM output of the rosbag recorded by the payload’s Velodyne LiDAR. Due to unknown factors, part of the
trajectory in the dataset does not appear appropriately near the landing phase. Future investigations will look into what
caused the drop in data. Figure 14(d) is the F-LOAM output of the trimmed rosbag to avoid the unpredictable behavior
of the SLAM due to the improper data.

G. AFRC Dataset
This dataset runs on both ORB-SLAM and ORB-SLAM2. One of the initial tests helped declare that ORB-SLAM2

was much more efficient than ORB-SLAM in these considered datasets. Figure 15(a) and (b) compares ORB-SLAM
and ORB-SLAM2 such that ORB-SLAM2 yields better performance and more detected features due to an improved
bag of features. ORB-SLAM’s bag of features could not detect the helipad markings, leading to inaccurate estimation.
Contrarily, ORB-SLAM2 detects numerous features associated with the helipad markings and has a more accurate
estimate. Figure 15(c) Fig. 15c shows the output trajectory of ORB-SLAM, and Fig.15(d) shows the unscaled position
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(a) (b)

(c)

Fig. 12 SLAM results for the NFAC dataset

Fig. 13 ORB-SLAM2 output of the DART_SQ dataset
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(a) (b)

(c) (d)

Fig. 14 SLAM results for the DART_ACTUAL dataset

of ORB-SLAM2, which demonstrates a better estimation of the trajectory.

H. AFRC_CONES Dataset
Though the previous dataset yielded promising results, adding distributed cones as fiducials (mock landing lights) to

the helipad region gives even better results. Based on the preliminary analysis, the SLAM solutions with distributed
fiducials and higher-quality video seem to perform better than those without distributed fiducials. Figure 16(a) shows
the ORB-SLAM2 output as seen in its viewer window, and Fig.16 (b) show the tracked features during landing.
ORB-SLAM2 detects the cones at a higher altitude because of the higher quality video and the visual prominence of the
cones compared to the background. These SLAM solutions demonstrate encouraging results, but future flight tests and
datasets will provide more insight into distributed sensing for AAM concepts and operations[11].

VI. Error Analysis
This section is about the method of comparison and calculation between the SLAM and the true values, i.e., telemetry

data. For example, the normalized output values obtained from ORB-SLAM2 range from -1 to 1, but the true values,
i.e., the values obtained from the flight sensors like Pixhawk, are much higher. Similarly, the LiDAR SLAM outputs are
on a different scale than the telemetry values. This scale difference poses a scaling problem, and the SLAM outputs
must convert to actual values. The relation to scale these values is from the general equation for a straight-line, i.e.,
y-intercept form,

𝑦 = 𝑚𝑥 + 𝑏 (1)

where m is the slope, and b is the y-intercept. In this SLAM context, the scaled data is,
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(a) (b)

(c) (d)

Fig. 15 SLAM results for the AFRC dataset

(a) (b)

Fig. 16 SLAM results for the AFRC_CONES dataset
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𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑
= 𝐾 · 𝑃𝑠𝑙𝑎𝑚𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑

+ 𝑇 (2)

Again, K is the slope, and T is the y-intercept. Then LP Simplex in Excel Optimizer solves the slope ’m’ and the
intercept ’b’ values. The three equations after rewriting this further as their x,y, and z components are,

𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑𝑥
= (𝐾𝑥𝑠𝑙𝑎𝑚 · 𝑃𝑠𝑙𝑎𝑚𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝑥

) + 𝑇𝑥𝑠𝑙𝑎𝑚
𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑𝑦

= (𝐾𝑦𝑠𝑙𝑎𝑚 · 𝑃𝑠𝑙𝑎𝑚𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝑦
) + 𝑇𝑦𝑠𝑙𝑎𝑚

𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑𝑧
= (𝐾𝑧𝑠𝑙𝑎𝑚 · 𝑃𝑠𝑙𝑎𝑚𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝑧

) + 𝑇𝑧𝑠𝑙𝑎𝑚

(3)

where, 𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑𝑥
, 𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑𝑦

, 𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑𝑧
are the scaled SLAM values of x, y, z respectively. 𝑃𝑠𝑙𝑎𝑚𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝑥

,
𝑃𝑠𝑙𝑎𝑚𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝑦

, 𝑃𝑠𝑙𝑎𝑚𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑𝑧
are the unscaled SLAM values of x, y, z respectively, and 𝐾𝑥𝑠𝑙𝑎𝑚 , 𝐾𝑦𝑠𝑙𝑎𝑚 , 𝐾𝑧𝑠𝑙𝑎𝑚 , 𝑇𝑥𝑠𝑙𝑎𝑚 ,

𝑇𝑦𝑠𝑙𝑎𝑚 , 𝑇𝑧𝑠𝑙𝑎𝑚 are the constant values obtained from the Excel Solver/Optimizer.
Since the values obtained from SLAM are discrete, the overall error formula is,

𝜀 ≊
𝑁−2∑︁
𝑖=0

[(𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑( 𝑖)
− 𝑃𝑝ℎ( 𝑖) )

2 (𝑡 (𝑖 + 1) − 𝑡 (𝑖))] (4)

where N is the total number of entries in the SLAM output, and 𝑃𝑝ℎ( 𝑖) are the true values from the telemetry data.
Further rewriting the equation into x,y,z components with (𝑡 (𝑖 + 1) − 𝑡 (𝑖)) as Δ𝑡 gives,

𝜖𝑥 ≊
𝑁−2∑︁
𝑖=0

(𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑( 𝑖)
− 𝑃𝑝ℎ( 𝑖) )

2Δ𝑡

𝜖𝑦 ≊
𝑁−2∑︁
𝑖=0

(𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑( 𝑖)
− 𝑃𝑝ℎ( 𝑖) )

2Δ𝑡

𝜖𝑧 ≊
𝑁−2∑︁
𝑖=0

(𝑃𝑠𝑙𝑎𝑚𝑠𝑐𝑎𝑙𝑒𝑑( 𝑖)
− 𝑃𝑝ℎ( 𝑖) )

2Δ𝑡

(5)

As mentioned, ORB-SLAM2 does not generate keyframes constantly, but the overall solution has a regular time
increment. New keyframes occur after reaching a certain threshold of detected feature points. The SLAM and telemetry
datasets do not have time synchronization automatically, so manual time synchronization is required. Future work
involves investigating an automated time synchronization method between ORB-SLAM2 and the telemetry data.

Following Eqn.3 and Eqn.5 gives multiple plots for each SLAM output for different datasets. In all of the plots seen
in appendix A, (a), (b), and (c) are all comparisons between the true x, y, and z values with their corresponding scaled x,
y, z values (both in meters) using the Eqn.3 versus elapsed time in seconds. Similarly, all the (d) plots are the error
comparison between 𝜖𝑥 , 𝜖𝑦 , and 𝜖𝑧 in the Eqn.5 versus the elapsed time in seconds.

VII. SLAM Result Discussion
ORB-SLAM2 loses track/features when the flight takes a quick turn, sudden jump, and dip. It also did not perform

to the fullest on the datasets with jello effect [21] (rolling shutters cause wobbly distortion effects) is in the video. One
such feature-losing scenario is in the DART_SQ dataset, a video from the NASA STEReO Team on the DART site
following the route shown in Fig.9(a).

The video is 132 sec long, and conversion to images at 30fps gives a total of 3940 photos in the dataset. The video
has a resolution of 1920x1080 and is in mp4 format, which is then converted into jpeg images using a python code. In
this scenario, the flight first takes a left turn after take-off, performs three right turns to complete the route shown, and
finally, a left turn to orient itself towards the landing site.

In the processing video (which is 10 min 51 sec), the first time a delay in tracking was when the flight took a right
turn around the time 2 min 46 sec (as seen in Fig.17 (a)), but only at 2 min 58 sec it thoroughly detects the rest of the
prominent features (as seen in Fig.17 (b)). There is a delay of 12 sec in the processing time, which equates to 5 sec in the
actual video. Similarly, in the second right turn, the tracking gets delayed/lost at around 4 min 46 sec (Fig.18(a)), and
only at 4 min 51 sec (Fig.18(b)) it detects the rest of the features. This delay counts to 5 seconds in the actual video time.

13



(a) (b)

Fig. 17 Snapshots from the first right turn taken by the flight in the DART_SQ scenario

(a) (b)

Fig. 18 Snapshots from the second right turn taken by the flight in the DART_SQ scenario

(a) (b)

Fig. 19 Snapshots before and during the final right turn taken by the flight in the DART_SQ scenario
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Next, at 7 min 23 sec just before the final right turn, it can be seen that the ORB-SLAM2 tracks most of the features
in Fig.19(a). However, during the right turn at 7 min 33 sec, it can be seen (in Fig.19(b)) that most of the features are
not detected, and only a few points to the left are acquired (just like in the first turn). The boxes/trailers in the top right
corner are some of the distinct features which ORB-SLAM2 was supposed to identify but could not.

(a) (b)

Fig. 20 Snapshots from the final right turn taken by the flight in the DART_SQ scenario

Fig. 21 Snapshot of when the sudden jump happens and ORB-SLAM2 loses all of its features

There is a dip (nose pointing to the ground) noticed at around 7 min 35 sec eliminating the boxes in the top right of
the scene adds to the complexity, but it is still tracking the points from the previous frame, as seen in Fig.20(a). Right
after the dip at 7 min 37 sec shown are the features still tracked in Fig.20(b), and that is when the sudden jump happens
at 7 min 38 sec making ORB-SLAM2 lose all of the features (in Fig.21). An assumption is that the top right boxes
needed to be in view much longer for ORB-SLAM2 to detect those as features.

The yaw and yaw rate plots from the recorded telemetry log files, as seen in Fig.22, help to understand how fast the
UAS flight can turn. From these graphs and the initial dataset analysis, it seems the turn rates need to be less than 1 rad
per sec for the right turns, or if the turns are faster than 1 rad per sec, then the scene needs to pause for at least 4-5
seconds to acquire all the features ultimately. From the hardware perspective, since the camera is angled 30 degrees
downwards, the view at 30 m is better than at 10 m because it has more features in its field of view. Likewise, Velodyne
LiDAR rotates 360 degrees and can perform better at 10-30 m rather than higher altitudes since it must maintain a
visual reference to the ground plane.
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(a)

(b)

Fig. 22 Yaw and yaw speed vs time plot

VIII. Conclusion & Summary
The analysis of the off-the-shelf pre-canned SLAM algorithms using the NASA flight test data and the preliminary

comparison between these visual versus LiDAR SLAM algorithms gives a better understanding of SLAM algorithms
for flights. In addition, the results compared with the UAS telemetry data provide a fundamental review of the
deviation/accuracy in the SLAM outputs. In conclusion, based on the currently available dataset, having numerous
distributed key features and landmarks in the scenery for the AAM approach and landing and other AAM concepts
will help generate accurate SLAM solutions by maintaining keyframes with these distributed features and landmarks.
Furthermore, in the LiDAR SLAM and vSLAM’s initial error analysis, the LiDAR SLAM looks more accurate and
robust to lighting and weather changes, yielding better estimation results. In this preliminary study, various challenges
addressed will be learning lessons for the upcoming flights.
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A. Error Analysis Plots

(a) (b)

(c) (d)

Fig. 1 x, y, z and the error versus the elapsed time plot for NFAC A-LOAM outputs

(a) (b)

(c) (d)

Fig. 2 x, y, z and the error versus the elapsed time plot for DFM_1 A-LOAM outputs
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(a) (b)

(c) (d)

Fig. 3 x, y, z and the error versus the elapsed time plot for DFM_2 A-LOAM outputs

(a) (b)

(c) (d)

Fig. 4 x, y, z and the error versus the elapsed time plot for AFRC ORB-SLAM2 outputs
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(a) (b)

(c) (d)

Fig. 5 x, y, z and the error versus the elapsed time plot for AFRC_CONES ORB-SLAM2 outputs

(a) (b)

(c) (d)

Fig. 6 x, y, z and the error versus the elapsed time plot for DART_SQ ORB-SLAM2 outputs
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(a) (b)

(c) (d)

Fig. 7 x, y, z and the error versus the elapsed time plot for DART_ACTUAL ORB-SLAM2 outputs

(a) (b)

(c) (d)

Fig. 8 x, y, z and the error versus the elapsed time plot for DFM_1 ORB-SLAM2 outputs
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(a) (b)

(c) (d)

Fig. 9 x, y, z and the error versus the elapsed time plot for DFM_2 ORB-SLAM2 outputs
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