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The impact of the number of azimuthally propagating waves on the performance of a 
Rotating Detonation Engine (RDE) is investigated using a simplified two-dimensional 
computational fluid dynamic simulation.  The basic RDE configuration examined has no exit 
throat.  The inlet is assumed lossless and does not allow backflow.  The adiabatic, inviscid, and 
premixed simulation utilizes a particularly simple finite rate reaction mechanism that allows 
user control over the relative amounts of deflagration and detonation that occur, the presence 
and extent of a reaction delay associated with fuel and oxidizer mixing, and the number of 
waves present in the domain.  The simplifications and idealizations decouple the effect of wave 
count from other potential loss mechanisms.  Performance is measured using exhaust flow 
total pressure gain relative to the inlet total pressure.  One, two, and three wave solutions are 
computed under identical boundary conditions and grid resolution.  For simulations with no 
mixing delay and minimal deflagration, the number of waves present has negligible impact on 
performance. With a mixing delay, performance decreases with increasing wave number. 
With increased deflagration, performance increases with increasing wave number.  With both 
effects simulated it is found that the two wave solution performs better than either the one or 
three wave solutions.  The causes of these trends are explored.  They imply that for practical, 
RDE’s, the number of waves that are present can impact performance.   

Nomenclature 
a = non-dimensional speed of sound 
Dm = mean diameter  
DT = thermal diffusion coefficient  
Dz = species diffusion coefficient  
EAPi = ideal Equivalent Available Pressure 
F = azimuthal flux vector  
G = axial flux vector  
h = annular channel height 
K0 = non-dimensional reaction rate constant 
l = mean circumference 
mfr = non-dimensional mass flow rate  
P = total pressure  
p = non-dimensional pressure 
PG = Pressure Gain 
q0 = non-dimensional heat addition parameter 
S = source term vector 
t = non-dimensional temperature  
T = non-dimensional temperature  
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Tc0 = non-dimensional threshold temperature  
u = non-dimensional azimuthal velocity 
v = non-dimensional axial velocity 
w = conserved variables vector 
x = non-dimensional azimuthal distance 
y = non-dimensional axial distance 
z = reactant mass fraction 
 
Greek 
 = ratio of specific heats 
 = non-dimensional density 
 
Subscripts 
a = ambient 
det = detonation 
m = inlet manifold 
max = maximum 
 
Superscripts 
* = reference value 
 

I. Introduction 
Rotating Detonation Engines (RDE’s) generally operate with 1-4 dominant detonation waves propagating around 

the annular combustor simultaneously.  When there is more than one wave present, modes of operation can occur 
where all of them travel in the same direction or where they travel in opposing directions.  There is little consensus in 
the community as to what determines the number of waves or their direction.  Experimental RDE’s can even exhibit 
different numbers of waves and wave directions at different times during a single run.  To date, no experiment has 
been published showing a capability to control or determine ahead of time the wave count or mode that will be present 
under a given set of operating conditions (though most experiments are consistently able to repeat the count  and mode 
from run to run).  More importantly, there is little information about the impact that wave count has on RDE 
performance.  This is partly because RDE’s are highly coupled devices, and it is difficult to isolate the performance 
effects of one phenomenon from another.  It may also be partly because RDE technology has not yet developed to the 
point where pressure gain has been demonstrated [1].  This means that the performance impact of wave count, if it is 
of a secondary nature, may be masked by more primary impacts such as backpropagation and forward flow losses 
associated with RDE inlets [2]. 

The present work seeks to assess the performance impact of detonation wave count using a simplified 
computational fluid dynamic (CFD) simulation of an idealized RDE [3].  The use of simplification and idealization 
provides a kind of decoupling of the effect of wave count from other potential loss mechanisms, and it resolves the 
masking issue just discussed.  It also allows the specification of wave count since detonations can be directly initiated 
anywhere in a simple computing domain. 

The fully ideal RDE is first described, followed by a brief description of the simulation.  Preliminary results are 
then presented whereby a single operating point is simulated with either 1, 2, or 3 co-rotating waves present.  It is 
demonstrated that for the fully idealized RDE, the wave count has negligible effect on performance as measured by 
Ideal Equivalent Available Pressure, EAPi [4].  Ideal Equivalent Available Pressure is a single pressure representing 
the maximum work availability of the spatially and temporally non-uniform exhaust flow.  It is defined as the total 
pressure which, when isentropically expanded to the ambient pressure at the mass flux averaged total enthalpy of the 
RDE exhaust, produces the computed ideal specific thrust.  Ideal specific thrust is computed using the ideal specific 
thrust of each fluid element in the exhaust exit plane and then mass flux averaging the result. 

A simple sub-model is then added to approximate what are often called mixing delays observed in most 
experimental RDE’s.  With this sub-model in place, it is found that the more waves that are present, the more EAPi is 
reduced.  A sub-model for another experimentally observed phenomenon, deflagrative pre-burning is also examined.  
Here it is found that the more waves that are present, the less EAPi is reduced.  Simulations are also examined where 
the two phenomena are combined.  These show that peak performance is obtained with 2 waves; however, this 
performance is well below that of the fully idealized RDE. 
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II. Simulation Setup 

A. RDE Description and Operating Conditions 
Shown schematically in Fig. 1, the particular RDE simulated has a mean diameter, Dm of 5.5 in.  The axial length 

is 5.2 in.  The annular channel height, h is uniform along the entire axial length.  The flow is assumed inviscid and 
adiabatic.  As such, the channel height is irrelevant other than to stipulate that it is small in comparison to Dm.  This 
validates the two-dimensional 
(2D) assumption of the CFD 
simulation described below. 

The operating conditions for 
the RDE are a manifold total 
temperature of Tm=540 R, a 
manifold total pressure of 
Pm=58.8 psia, and exits to an 
ambient static pressure of pa=14.7 
psia.  The working fluid is 
premixed hydrogen and air at an 
equivalence ratio of 1.0. 

B. Simulation Description 
Details of the CFD simulation 

are described in Refs. [3, 5].  
Governing equations, numerical 
integration approach and 
boundary conditions specifically 
used in the present work are 
briefly described below. 

 Governing Equations and Non-Dimensionalization 
On the assumptions that the annulus radius of curvature is much greater than its height, and that the working fluid 

is a single calorically perfect gas, the governing equations of motion are written in non-dimensional, detonation frame 
of reference form as follows. 
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Fig. 1  RDE Schematic and associated computational domain 
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The governing equations are closed with the non-dimensional equation of state, which is written as follows. 

 𝑝 ൌ 𝜌𝑇 (6) 

Non-dimensionalization of pressure, density, temperature, and velocity components is obtained using reference 
values p*, ρ*, T*, and the corresponding sound speed, a*.  The x (azimuthal) and y (axial) distances are non-
dimensionalized using the mean circumference, l.  The time is non-dimensionalized using the acoustic wave transit 
time, l/a*.  The non-dimensional annulus height (often called the channel width), h is referenced to the physical annulus 
height at the inlet end of the RDE.  Since the configuration studied here has a uniform annulus height, h=1.0 at every 
axial location.  The source term vector, Eq. 5 normally contains expressions to account for wall friction, area variation, 
wall heat transfer, and reaction rate.  Since the present analysis is adiabatic and inviscid, only the reaction rate and 
area variation terms are non-zero.  However, the latter of these two is also zero because dh/dy=0.0.  With the non-
dimensionalization process now described, unless otherwise stated, all variables discussed are non-dimensional. 

The global finite rate reaction model defined in Eq. 5 is a simplification governed by the reactant mass fraction, z, 
the density , a rate constant, K0, and a threshold temperature, Tc0.  K0 replaces the typical Arrhenius-type reaction 
rate with a step-function. The heat of reaction of the reactant gas mixture, q0 depends on the fuel heating value, the 
air-to-fuel ratio of the premixture, and the reference speed of sound. 

Relevant parameters for the present simulation are listed in Table 1.  In order to delineate between regions of 
detonation and deflagration, a pressure threshold is also applied to the reaction rate constant when T>Tc0. 

 𝐾଴ ൌ ൜
280;𝑝 ൒ 4.0
12; 𝑝 ൏ 4.0 ൠ (7) 

 Numerical Treatment 
The governing equations are integrated numerically in time using an 

explicit, second-order, two-step, Runge-Kutta technique.  Spatial flux 
derivatives are approximated as flux differences, with the fluxes at the 
discrete cell faces evaluated using Roe’s approximate Riemann solver.  
Second-order spatial accuracy (away from discontinuities) is obtained 
using piecewise linear representations of the primitive variable states 
within the cells (aka, Monotonic Upstream-centered Scheme for 
Conservation Laws or MUSCL).  Oscillatory behavior is avoided by 
limiting the linear slopes. 

 Boundary Conditions 
Considering an ‘unwrapped’ RDE (Fig. 1), the following boundary conditions are imposed.  At x=0.0 and x=1.0, 

periodic conditions are used.  This means the rightmost boundary image cells are assigned the value of the leftmost 
interior cells at each y location.  Similarly, the leftmost boundary image cells are assigned the value of the rightmost 
interior cells.  The periodic boundary ensures that the azimuthal dimension of the computational space faithfully 

Table 1 Simulation Parameters 

 1.264 
q0 23.4 
p*, psia 14.7 
T*, R 520 
a*, ft/s 1250 
*, lbm/ft3 0.055 
Tc0 3.5 
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represents an annulus (which is continuous and has no actual boundary).  At the exit plane, y=ymax, constant ambient 
pressure outflow is used along with characteristic equations to obtain , and v for the image cells.  If the resulting flow 
is sonic, or supersonic, then the imposed pressure is disregarded.  If, in addition, the upstream flow is supersonic, then 
p, , and v are extrapolated from the interior.  The possibility for a normal shock solution whereby supersonic outflow 
jumps to subsonic is also accommodated.  The azimuthal velocity component, u, is set equal to the last interior cell at 
each x location in the plane.   

At y=0.0 (the inflow face), fully open boundary conditions are applied as described in Ref. [3].  This face is 
presumably fed by a large manifold at a fixed total pressure, Pm, and total temperature, Tm.  The manifold terminates 
at the face and is separated from it via a perfect valve.  If the interior pressure is less than Pm then isentropic inflow 
occurs. The boundary condition routine determines p, , and v for the inflow face image cells such that the 
characteristic equations are satisfied between it and the first interior cell (at the same x position), while maintaining 
isotropy with the manifold.  The azimuthal velocity component is prescribed during inflow, and it is here that a 
reference frame change is implemented.  Rather than specify u=0 (i.e., no swirl), the negative of the detonation speed, 
udet, is prescribed instead.  As a result of this change to the detonation reference frame, the computational space 
becomes one where a steady-state solution is possible.  If the interior pressure along the inlet face is greater than Pm, 
as might be found just behind the detonation, a slip wall boundary condition is applied (i.e., no flow normal to the 
face is allowed).  This is also sometimes referred to as a symmetry boundary condition. 

 Solution Procedure 
The prescribed detonation speed is not known a priori.  It must be found iteratively.  An initial guess is made for 

udet and the simulation is run for the amount of time corresponding to approximately three annular revolutions of the 
detonation.  The domain is then examined to determine if the detonation has migrated from its initial position. If it has 
moved to the right of where it started, then the initial guess at udet is too high.  If the detonation front has moved to the 
left, then the initial guess is too low.  Based on these results, a new guess is made for udet, and the simulation is run 
for another 3 cycles.  The process continues until the detonation front remains stationary and the entire domain 
becomes temporally stationary.  As described in [3], a course grid is used deliberately.  For the present simulation 
only 108,000 uniformly spaced grid points define the domain (600×180).   

The process of initializing the simulation such that the flow field contains a detonation on which speed iterations 
can be made is outlined in Ref. [3].  The number of waves present in the annulus are prescribed by the user when the 
simulation is initialized.  The course grid and simplified reaction mechanism of the simulation preclude the 
spontaneous formation of additional waves or extinction of initialized waves. 

III. Results 

A. Ideal Solutions 
 Converged flowfield solutions to Eq.1 are shown in Fig. 2 for one, two, and three wave simulations.  Solutions 

are represented by contours of temperature.  Also shown in each contour is a dashed black line representing the region 
where the detonative reaction occurs.  Inside this region the temperature is above Tco and z is above 0.1.   

This is where all the pressure gain occurs.  As the flow exits this region (in the detonation frame of reference) its 
total pressure drops.  This is partly due to losses inherent to the RDE cycle, but mostly due to the necessity that, for 
all fundamentally unsteady constant volume cycles, work must be done to get fluid out of the control volume [6].  The 
EAPi measurement used to assess performance takes this drop into account because it is measured in the exit plane 
(i.e., y=0.3).  Each contour in Fig. 2 lists the associated pressure gain, PG, azimuthal detonation wave propagation 
speed, udet, and mass flow rate, mfr.  PG is expressed as a percentage and defined as follows. 

 𝑃𝐺 ൌ ቀ
ா஺௉೔
௉೘

െ 1ቁ ൈ 100 (8) 

The wave speed is written as a percentage of the theoretical Chapman-Jouguet detonation speed for a one-dimensional 
wave.  It shown in Fig. 1 that PG and mfr are largely independent of the wave number (other than a slight decrease in 
PG in the 3-wave solution).  However, wave speed decreases with increasing wave number.  A possible reason for 
this speed decrease is discussed in Ref. [7] and briefly summarized as follows.  Consider Fig. 3 which shows an 
exploded view of the Fig. 2 reaction regions for the 1 and 3-wave solutions.  Though seemingly narrow in its azimuthal 
extent, this is actually quite a wide reaction zone when compared to other ideal, 2D, CFD RDE solutions [8].  It is an 
artifact of the course grid and simplified reaction mechanism used here.  However, as discussed in Ref. [7] a number 
of small length-scale, large amplitude non-uniformities in real-world RDE flowfields (e.g. intense turbulence, 
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incomplete fuel and air mixing, baroclinic forces, etc.) could give rise to relatively wide reaction zones.  It is evident 
in both Fig. 3a and 3b that fluid streamlines are diverging in the reaction zone.   This implies fluid expansion during 
heat addition.  This in turn implies reduced confinement of the reacting fluid when compared to a strictly one-
dimensional detonation reaction zone.  Reduced confinement leads to reduced pressure to drive the coupled shock 
wave.  Shock propagation speed, which is the same as udet, is directly related to shock pressure ratio.  Thus, the more 

Fig. 2  Contours of temperature for the 1-wave (upper), 2-wave (center), and 3-wave 
(lower) solution to the ideal RDE flowfield 

(a)               (b) 
Fig. 3  Contours of temperature in the reacting region for the (a) 1-wave, (b) 3-wave solution to the 
ideal RDE flowfield 
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divergent the streamlines of Fig. 3, the lower the value of udet.  This process is sometimes referred to as lateral relief 
[9] since it arises from one side of the reaction zone being unbounded (when compared to a one-dimensional 
detonation in a tube where both sides of the reaction zone are bounded by walls).  The lengths of the dashed green 
lines in Fig. 3 labeled 1 and 2 can be used as a crude measure of reaction zone divergence.  Specifically, the difference 
between lengths 2 and 1 is the measure of interest.  It is seen that this difference is similar in Fig. 3a and 3b.  However, 
Fig. 3b is processing only a third of the flow passing through the RDE (there are 3 detonations present in the annulus).  
The divergence per unit of mass flow is therefore 3 times greater for the 3-wave solution than for the 1-wave solution.  
Though not shown, it follows from this argument that the 2-wave solution would have divergence per unit of mass 
that is intermediate between the 1 and 3 wave solutions.  Since more divergence leads to lower detonation speeds, the 
trend shown in the listed udet values of Fig. 2 is expected.  It is interesting to note that this trend is consistent with 
experimental results [10].  Note too that in this idealized scenario, reduced detonation speed does not strongly correlate 
with reduced performance.  Possible reasons for this are discussed in Ref. [7].  

B. Impact of Mixing Delay 
 

It has been noted experimentally [11, 12] that the detonation wave often propagates around the RDE annulus at a 
small axial distance downstream of the head end (i.e., downstream of the inlet trailing edge).  The cause of this so-
called stand-off distance is likely related to the fact that RDE’s are not operated in a premixed fashion.  Instead, fuel 
is injected into the incoming airflow stream and generally takes some time, or axial convective distance, to mix before 
it will detonate.  In order to study the impact of this mixing delay, the present simulation was modified such that the 
Eq. 5 reaction rate constant, K0, was set to 0.0 even if the fluid temperature exceeded Tc0 for all values of y0.015.  
This is approximately 5% of the axial length.  It is longer than is typically observed experimentally.  And the 
assumption that there is no reaction whatsoever in the delay region is likely an oversimplification.  However, these 
parameter value choices do clearly illustrate the mixing delay effect.  These are shown in Fig. 4 in a similar fashion 
to Fig. 2.  The mixing delay, with location denoted by a dashed white horizontal line, creates a flow field with an 
oblique shock running upstream toward the inlet.  The oblique shock is generated by the detonation wave which is 
essentially ‘pushing’ the incoming air back upstream temporarily and compressing it.  In order to show the oblique 
shock clearly, pressure contours in the vicinity of the detonation are shown in Fig. 5 for the 2-wave solution. 

Returning to Fig. 4, this shock is found to be dissipative in that the associated compression does not ultimately 
produce useful work.  The predominant effect is to heat (i.e. add entropy to) a portion of the incoming flow prior to 
detonation. 

The heated flow is then processed by the next detonation, ultimately producing less pressure rise across it and 
lower overall pressure gain. The pressure gain values listed in Fig. 4 are lower than those of Fig. 2.  The streamlines 
shown in Fig. 4 illustrate the process.  The white streamline represents the outer bound of reactant that enters the RDE 
from the manifold, is heated as it passes through the upstream propagating shock, and finally passes through the 
downstream portion of the subsequent detonation.  The yellow streamline represents the outer bound of reactant that 
enters the RDE from the manifold and travels directly through the detonation.  Figure 6 shows total temperature versus 
entropy along two streamlines of the 1-wave solution to illustrate the processes described.  The black curve represents 
a streamline originating at x=0.825, y=0.  It does not pass through the upstream running oblique wave.  The red curve 
represents a streamline originating at x=0.175, y=0.  It does encounter the oblique.  The additional entropy generated 
by the oblique wave is evident.  The total pressure on the black line at the point where the reaction completes is nearly 
twice that of the corresponding point on the red line. 

The mixing delay is assumed to be the same axial length regardless of the number of waves present.  As such, Fig. 
4 illustrates that as the number of waves increase, the fraction of incoming reactant that is heated by the upstream 
running oblique shock increases.  Consequently, as the wave count goes up the pressure gain goes down.  Since the 
shock heating makes the incoming reactant less dense, it follows that mixing delay reduces mass flow rate relative to 
the fully idealized scenario of Fig. 2.  To illustrate this in the detonation frame of reference, consider the dashed green 
lines marked with the circled number 1 in the 1-wave contours of Figs. 3 and 2.  The average normal mass flux rate 
across these lines, multiplied by their lengths closely approximates the RDE mass flow rate.  The average mass flux 
rate can be approximated by the product of udet and the average density along the dashed line.  For the Fig. 4 line, this 
density is 87% of the corresponding Fig. 3 density (due to the shock heating).  The Fig. 4 dashed line is 12.5% longer 
than that of Fig. 3.  The value of udet for Fig. 4 is 99% of the value for Fig. 3.  Thus, the mass flow rate of the Fig. 4, 
1-wave solution is estimated to be 1.125×0.87×0.99=0.97 that of the Fig. 3, 1-wave solution, which it is.  This brief 
analysis demonstrates that for any of the flowfield temperature contours shown, the warmer the entering fluid becomes 
prior to encountering the detonation, the lower the mass flow rate.  For the mixing delay solutions as the wave count 
goes up, a larger fraction of the flow is shock heated, so the mass flow rate goes down. 
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The wave speeds are only slightly 
affected by the mixing delay and so follow 
the same trend as Fig. 2.  That each wave 
speed listed is slightly less than its Fig. 2 
counterpart is likely due to the observation 
that the mixing delay adds a small degree 
of so-called lateral relief in the upstream 
direction and therefore magnifies the effect 
discussed in the previous sub-section. 

C. Impact of Deflagrative Pre-Burning 
Because RDE inlets generally have 

some type of geometric flow restriction 
followed by a near step change in cross 
section, there are necessarily regions in the 
annulus where hot, post-detonation gases 
are trapped and/or recirculating.  These can 
in turn ignite portions of the incoming fuel 
and air mixture (even if they are not fully 
mixed) [13]. The result is a sort of partial 

flame holding process whereby some of the incoming chemical energy is lost to deflagrative heat release during the 
fill process rather than being released in the detonation reaction zone.  It will be referred to as pre-burning in this work.  
In order to explore this highly three-dimensional phenomenon in the context of the current simulation, the reaction 

Fig. 4  Contours of temperature for the 1-wave (upper), 2-wave (center), and 3-wave 
(lower) solution to the RDE flowfield with mixing delay 

 
Fig. 5  Contours of Log(pressure) near the reacting region for the 
2-wave solution to the RDE flowfield with mixing delay 
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rate constant in Eq. 5 was modified as 
follows.  In regions where the T<Tc0 the 
reaction rate was changed from 0.0 to 
K0=2.0.  This is just 0.7% of the detonative 
value, thus assuring that the reaction 
proceeds slowly in this region.  Such a 
simple model has proven effective at 
interpreting results from experimental 
RDE’s with backward facing steps at the 
inlet exit plane [14].  The results for the 1, 
2, and 3-wave solutions are shown in Fig. 
7 in similar fashion to Fig. 2.  The effect of 
the pre-burning is evident in the 
temperature contours; particularly in the 1-
wave solution.  Here the incoming 
premixture is at an elevated temperature 
(i.e., a lighter shade of blue) directly ahead 
of the detonation wave when compared to 
the temperature at the same location in Fig. 
2.  This location is shown as a dashed green 
line in the upper contour of Fig. 7.  In the detonation frame of reference this line can be thought of as a plane across 
which the reactant flows before passing through the detonation.  To highlight the changing temperature of the inlet 
flow, contour lines representing T=1.5 and 2.0 are shown as dashed red lines.  Also shown in yellow is a representative 

Fig. 6  Total temperature vs entropy along two streamlines of the 
one-wave solution 
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inflow streamline.  Following this streamline from left to right in the figure clearly demonstrates the heating that 
occurs due to the low-level reaction taking place as a fluid element moves through the fill zone.  The mass flux 
averaged reactant fraction along the dashed green line is 0.85 for the 1-wave solution, 0.89 for the 2-wave solution, 
and 0.93 for the 3-wave solution.  This indicates that more of the reactant is consumed via pre-burning as the wave 
count goes down.  This makes sense since the time available for pre-burning goes up as wave height (i.e., axial extent 
of the detonation front) goes up, and the wave height goes up as the wave count goes down.    

Reactant consumed in pre-burning does not contribute to pressure gain because the flow is unconfined during heat 
release (i.e., it is reacting at near-constant constant pressure as in a conventional combustor).  This is reflected in the 
performance results shown in Fig. 7, which trend opposite to those of Fig. 4.  Here it is seen that the pressure gain of 
the 1-wave solution is substantially less than that of the 2-wave solution.  The pressure gain of the 2-wave solution is 
slightly above that of the 3-wave solution.  However, if the pressure gains are viewed relative to those from the Fig. 2 
ideal simulations, the 2 and 3-wave solutions are shown to experience the same 9% performance reduction.  The 1-
wave solution shows a 19% reduction from the ideal.  Considering the mass flux averaged reactant fractions above, 
this result implies that the amount of deflagrative pre-burning has a non-linear effect on performance.  Pre-burning 
approximately 10% of the reactant reduces pressure gain by 9% from the ideal, while pre-burning 15% of the reactant 
reduces pressure gain by 19%. 

As might be expected, mass flow rate is reduced when pre-burning is allowed since pre-burning reduces the density 
of the incoming reactant mixture.  The detonation wave speed is barely affected by pre-burning. 

 Contact Surface Deflagration 
Another region in the RDE flowfield where performance limiting deflagration can occur is along the contact 

surface between the incoming premixture and the post-detonative hot gas products.  The portion of the white 
streamline above the dashed mixing delay line in Fig. 4 runs along this surface.  In all the simulation results shown 
so-far however, there is virtually no deflagration occurring here.  The mass flow rate across the plane labelled 1 in 
Fig. 3a is over 99% of the total flow entering the RDE inlet, and it has a mass flux averaged reactant fraction of z=0.99.  
This implies that virtually all of the reaction is detonative.  This is an expected result because the deflagration requires 
both thermal and mass diffusion in order to take place, and the present simulations are all inviscid.  Thus, the only 
diffusion that can occur is numerical.  If the inlet was not an idealized one, and the simulation was in 3 dimensions 
(i.e. included radial variations), this contact surface would become significantly distorted [2].  This distortion, when 
combined with large pressure and azimuthal velocity gradients can lead to vorticity and an associated fluid ‘tumbling’ 
that effectively produces mass and thermal diffusion in the contact surface region, even if the simulation is inviscid.  
Real-world RDE’s are therefore expected to have significant contact surface burning. 

  In order to cursorily examine this form of deflagration with the current simulation, the following axial diffusion 
terms are added to the energy and species components of the source vector, S in Eq. 5. 
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 (9) 

The diffusion coefficients chosen are Dz=0.0014 and DT=0.0075.  These represent values that are approximately 
500 times those associated with actual molecular diffusion.  Although turbulent eddy viscosity could conceivably 
produce coefficients of these magnitudes, the present values are chosen simply because they are large enough to create 
a readily observable effect.  For the same reason, the deflagrative reaction rate constant in Eq. 7 is raised to K0=25, 
and the ignition temperature is lowered to Tc0=2.5.   

Only the one-wave solution is considered, and the results are shown in the temperature contours of Fig. 8.  The 
upper contour plot represents the solution with the diffusion coefficients set to zero (but with the modified K0 and Tc0).  
The lower plot represents the solution with the diffusion coefficients set to the values listed above.  The yellow 
streamline shown in each contour plot shows the path of the first particle of unreacted premixture to enter the RDE 
during the refill phase of the cycle.  In the upper plot, this streamline follows the contact surface nearly exactly because 
there is no mechanism for deflagration to occur.  In the lower plot, there is substantial deflagration which heats the 
flow in what is now a diffusion region.  As a result, the axial velocity component increases and the streamline is further 
downstream (and with a much lower reactant mass fraction) by the time it intersects the oblique wave.  The white 
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streamline in the lower plot follows the first particle of unreacted premixture to enter the RDE that passes through the 
detonation proper without undergoing any deflagrative reaction.  The fluid in between these streamlines is, for the 
most part, deflagrating.   

 The mass flux averaged reactant fraction of the fluid crossing the dashed green plane in the lower contour plot of 
Fig. 8 is z=0.91.  Thus, approximately 9% of the reactant is consumed in deflagration.  This produces a pressure gain 
reduction of -6% when compared to the upper contour plot.  The result indicates that contact surface deflagration 
incurs slightly less performance degradation per unit of reactant consumed than the deflagrative pre-burning examined 
previously.  This may be because at least some of the contact surface burning may be reheating the fluid that has been 
through the detonation and is partially expanded (roughly akin to afterburning).  While this is not an efficient way to 
add heat, it is not nearly as inefficient as adding heat prior to detonation.  It is noted as well that even with very large 
diffusion coefficients (along with lowered Tc0 and raised deflagration K0), the one wave solution only deflagrated 9% 
of the reactant through contact surface deflagration.  Deflagrative pre-burning, on the other hand, consumed 15% of 
the reactant for the one wave solution.  These results indicate that contact surface burning is likely a secondary 
performance factor (compared to pre-burning) for the purposes of the present work.  As such, no further simulations 
were conducted with the diffusion source terms of Eq. 8.  

D. Impact of Combined Pre-burning and Mixing Delay 
Given the opposing trends described in Sections B and C, it is interesting to consider the impact of combining 

them.  This was done in the present work; however, the mixing delay was modified such that the same slow pre-
burning deflagration (i.e., K0=2.0) took place in this region rather than no reaction at all.  This is an arguably more 
realistic approximation of the mixing delay. The results are shown in Fig. 9 in similar fashion to Fig. 2.  It is shown 
that the impact on pressure gain is substantial for all three wave counts.  Interestingly though, it is found that the 2-
wave solution yields peak performance in terms of pressure gain.  The additional reaction that takes place in the mixing 
delay region seems to be the greatest source of performance reduction.  The mass flux averaged reactant fractions of 
the fluid entering the detonations are z=0.80, 0.84, and 0.84, respectively for 1, 2, and 3-wave solutions.  Given this 
large pre-burning fraction, it is not surprising that the mass flow rate through this simulation scenario is the lowest of 
all those examined.  It is also consistent with the results of Sections III B and C in that the detonation speeds listed in 
Fig. 9 are the lowest of all the simulation scenarios. 

IV. Discussion 
The performance results presented thus far are summarized in Fig. 10.  The upper plot shows PG of the 1, 2, and 

3-wave solutions for the Ideal, Mixing Delay, Pre-burning and Combined scenarios.  The lower plot shows the PG 

Fig. 8  Contours of temperature for the 1-wave solution with no diffusion (upper), 
and with diffusion (lower) controlling the contact surface deflagration 
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reduction from the Ideal scenario.  The results highlight the challenges and criticality of RDE inlet design, along with 
shedding light on the performance impact of wave count.  The inlet typically consists of a restriction followed by an 
abrupt expansion.  This arrangement provides a surface against which the rotating detonation can generate thrust.  It 
also mitigates backflow of hot, high-pressure, post-detonative fluid into the inlet manifold, and minimizes the 
dissipative upstream propagation of shock waves.  However, the surface also becomes a kind of dump diffuser for 
fluid traveling in the forward direction during the refill process.  This can lead to large momentum (i.e., total pressure) 
losses for the incoming flow.  Successful inlet design must balance these two competing objectives of minimizing 
both backflow and forward flow losses [2].  The present results bring additional considerations to this already complex 
fluidic balance.  Dump diffusers can act as flame holders by recirculating hot gas in the vicinity of the abrupt 
expansion.  This can in turn lead to significant pre-burning and the noted performance degradation therefrom.  Flame 
holding of this type is generally reduced if the fuel and oxidizer are not well mixed.  As such, it is tempting to consider 
inlet fuel injection strategies that allow more mixing to take place in the RDE annulus proper.  Doing so however, 
may generate the mixing delay losses just described.  In summary then, the results indicate that developing high 
performing RDE’s requires a multi-variable inlet design optimization strategy which successfully “threads the needle” 
of numerous competing factors. 

On the other hand, the results shown thus far are largely qualitative.  Neither the mixing delay length, nor the pre-
burning rate constant choices were based on experimental measurements.  Such measurements are exceptionally 
difficult to obtain with accuracy using current techniques.  Thus, while the computed performance trends described in 
this study related to wave count, mixing delay, and pre-burning are likely correct, their degree of impact may require 
calibration. 

A summary plot for mfr is shown in Fig. 11.  Figure 11a is similar in format to Fig. 10a.  There are no obvious 
trends in terms of wave count for various scenarios.  Figure 11b combines data from Fig. 10a and 11a, and dispenses 

Fig. 9  Contours of temperature for the 1-wave (upper), 2-wave (center), and 3-wave 
(lower) solution to the RDE flowfield with mixing delay and deflagrative pre-
burning 
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with wave count as a parameter.  Here, a 
clear correlation is visible.  Higher PG 
tracks with higher mfr.  Given that the 
mechanisms proposed for reduced mfr are 
directly related to PG, this correlation is 
expected.  It is also somewhat intuitive.  
Nearly all air breathing propulsion systems 
demonstrate this trend. 

Figure 12 summarizes the udet data in 
the same manner as Fig. 11. Interestingly, 
Fig. 12a shows a clear trend in that udet goes 
down with increasing wave count.  
However,  Fig. 12b shows a poor 
correlation between  PG and udet. 

V. Conclusion 
A simplified two-dimensional 

computational fluid dynamic simulation 
was utilized to investigate the impact of the 
number azimuthally propagating waves on 
the performance of a Rotating Detonation 
Engine (RDE).  The RDE was idealized in 
that it was assumed adiabatic, inviscid, and 
possessing a lossless inlet that does not 
allow backflow.  To avoid complications 
arising from internal wave reflections the 
RDE configuration examined had no exit 
throat.  The inlet was assumed lossless and 
did not allow backflow.  One, two, and 
three wave solutions were computed 
subject to identical boundary conditions 
and grid resolution.  For this fully idealized 
scenario the number of waves present has 
negligible impact on performance, though 
the detonation wave speed decreased as the 
wave count increased.  Performance was measured as average total pressure gain across the device.  The simple finite 
rate reaction mechanism of the simulation allowed user control over the relative amounts of deflagration and 
detonation that occur, as well as the presence and extent of a reaction delay associated with fuel and oxidizer mixing.  
With a mixing delay implemented, performance decreased as the number of waves increased. With increased 
deflagration prior to detonation, performance increased as the number of waves increased.  With both effects simulated 
it was found that the two-wave solution performed better than either the one or three wave solutions.  The causes for 
the performance trends were explored, and the implications for RDE inlet design were discussed.  It was shown that 
for practical RDE’s (i.e., those yielding positive pressure gain), the number of waves that were present impacted 
performance. 
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(b) 
Fig. 11  Summary of (a) mfr of the 1, 2, and 3-wave solutions for the 
Ideal, Mixing Delay, Pre-burning and Combined scenarios; (b) PG 
vs. mfr for all solutions 
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(a) 

(b) 
Fig. 12  Summary of (a) udet of the 1, 2, and 3-wave solutions for the 
Ideal, Mixing Delay, Pre-burning and Combined scenarios; (b) PG 
vs. udet for all solutions 
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