Comparison of Acoustic Models and Trajectory Generation Methods for an Acoustically-Aware Aircraft

Kasey A. Ackerman and Irene M. Gregory
NASA Langley Research Center
Hampton, VA 23681

AIAA SciTech Forum
National Harbor, MD
January 2023

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.
Motivation

- Noise management is one of the major barriers to Urban Air Mobility
- Approaches to noise mitigation (non-exhaustive)
 - Vehicle configuration
 - Directivity control via propeller phase synchronization
 - Trajectory optimization
Objective

- Create framework for trajectory generation integrating location-based acoustic metrics and vehicle performance limitations
 - Multiple trajectory optimization methods and acoustic noise models
 - Mission-relevant constraints
 - Mission duration, airspace restrictions, ...
 - Vehicle dynamic constraints
 - Aircraft structural limitations, min/max airspeed, ...
 - Vehicle separation/obstacle avoidance
 - Acoustic constraints at a number of discrete observer locations
Comparison of Models and Methods

- Two acoustic source noise models
 - Omni-directional model based on propeller tip Mach Number
 - Directional hemisphere-based model

- Two trajectory planning methods
 - Pre-mission full-trajectory planner using polynomial parameterization
 - Receding horizon (near) real-time nonlinear model predictive control (MPC) trajectory planner

- Compare trajectory planning performance using both noise models and trajectory generation methods
Vehicle Dynamics

- Fixed-wing distributed propulsion aircraft
 - Can represent tilt-wing or split-propulsion vehicle in forward flight
 - Coordinated flight aircraft model*
 - Basic aerodynamic model
 - Simplified motor/propeller model
 - Assumes underlying tracking controller

- Parameter values taken from model of NASA’s GL-10 aircraft

Acoustic Models

- Metric is *sound pressure level (SPL)*
- Model data from the Propeller Analysis System of the Aircraft Noise Prediction Program (PAS-ANOPP)
- Omni-directional model
 - Based on effective propeller tip Mach number
- Hemisphere model
 - Directional noise emission
 - Interpolation over airspeed, angle of attack, propeller speed, direction to observer
- Optional frequency weighting
Pre-Mission Trajectory Planner*

- Full trajectory optimization with polynomial parameterization
 - Simplified (differentially flat) vehicle dynamics, acoustic source model, and propagation model
 - Implemented as a 2nd order Hermite interpolation problem
 - Bézier polynomial representation of spatial path and parametric speed
 - Numeric (discrete) evaluation of mid- to high-fidelity acoustic source and propagation models

MPC Motion planner*

- Model Predictive Path Integral Control (MPPI)**
 - Stochastic optimization technique used as nonlinear MPC
 - Framework to efficiently solve a finite horizon nonlinear optimal control problems
 - State cost function can be arbitrarily complex
 - Sampling-based optimization leverages GPU for efficient computation

Figure credit: J Pravitra, KA Ackerman, N Hovakimyan, EA Theodorou, “L1-Adaptive MPPI Architecture for Robust and Agile Control of Multirotors,” IROS, 2020.
Comparison – Acoustic Constraint Inactive

Omni-Directional Model
- Obs. 1
- Obs. 2

Hemisphere Model

- Pre-mission Planner
- MPC Planner

- Max SPL w/o Constraint

- Colorbar:
 - Flight Path
 - Target Flight Path
 - Observer Location
 - Start
 - End

- SPL [dB] (Constraint is 65.0 dB)

kasey.a.ackerman@nasa.gov

2023 AIAA SciTech Forum
Comparison – Acoustic Constraint Active

Omni-Directional Model

Hemisphere Model

Pre-mission Planner

MPC Planner

Obs. 1

Obs. 2

kasey.a.ackerman@nasa.gov

2023 AIAA SciTech Forum
Planner Comparison – Hemisphere Model

Hemisphere Model

Omni-Directional Model

Pre-mission Planner

MPC Planner

SPL at Observers

Obs. 1 w/o constraint
Obs. 1 w/ constraint
Obs. 2 w/o constraint
Obs. 2 w/ constraint
Constraint

Time [s]

SPL [dB]

SPL at Observers

Obs. 1 w/o constraint
Obs. 2 w/o constraint
Obs. 1 w/ constraint
Obs. 2 w/ constraint
Constraint

Time [s]

SPL [dB]
Planner Comparison – Hemisphere Model

Pre-mission Planner

- **Hemisphere Model**
- **Omni-Directional Model**

MPC Planner

- **Hemisphere Model**
- **Omni-Directional Model**
Noise Model Comparison

- Omni-directional propeller speed model

SPL Hemisphere w/o Constraint

SPL Hemisphere w/ Constraint

Max SPL w/o Constraint

Max SPL w/ Constraint

kasey.a.ackerman@nasa.gov

2023 AIAA SciTech Forum
Noise Model Comparison

- Hemisphere model

Max SPL w/o Constraint

Max SPL w/ Constraint

Max SPL w/o Constraint

Max SPL w/ Constraint

SPL Hemisphere w/ Constraint

SPL Hemisphere w/o Constraint
Summary

- Compared two different trajectory planning methods and two acoustic noise models
 - Full trajectory planning with guaranteed constraint satisfaction
 - Finite horizon planning has greater freedom in trajectory planning
 - Better able to exploit directionality of hemisphere model
 - Directionality of noise emission makes large difference in maximum noise levels seen on ground
 - Higher peak noise, but shorter duration with hemisphere model
- Future efforts focused on combining planner methods to leverage advantages of each
- Acknowledgements
 - Dr. Kyle Pascioni (NASA Langley Research Center)
 - Dr. Javier Puig Navarro (National Institute of Aerospace)
POC: Kasey Ackerman
kasey.a.ackerman@nasa.gov