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1. Abstract 
Stormwater and wastewater runoff are a large source of pollutant discharge along the southern California 
coast and are a major concern to the health of local communities and ecosystems. In partnership with the 
Tijuana River National Estuarine Research Reserve and the California Department of Environmental Quality, 
NASA DEVELOP utilized satellite imagery to visualize and analyze the water quality of the Tijuana Estuary 
and southern California coast after major storm and wastewater events. Using Landsat 8 Operational Land 
Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI), we estimated the extent and severity of plumes 
released from the Tijuana River Estuary. We used remotely sensed turbidity to map the extent of plumes, and 
used remotely sensed turbidity, Chlorophyll-a (chl-a), and colored dissolved organic matter (CDOM) to 
quantify and visualize stormwater, wastewater, and mixed plumes from 2013 to 2022. Furthermore, remotely 
sensed CDOM, turbidity, and chl-a were validated with in-situ data from NOAA and the San Diego Public 
Utilities in the San Diego coastal area to evaluate the accuracy of water quality data derived from satellite 
imagery. End products of this project include maps of stormwater, wastewater, and mixed plumes, tables 
illustrating the average area, CDOM, turbidity, and chl-a of each plume type, and validation graphs between 
satellite and in-situ data sources. These end products informed the environmental management of the Tijuana 
River National Estuarine Research Reserve and the public beaches in San Diego. 
 
Key Terms 
plume, remote sensing, water quality, CDOM, turbidity, chlorophyll-a, Tijuana River Watershed, San Diego 
Bay 
 
2. Introduction 
2.1 Background Information 
The water quality in coastal regions of San Diego has been negatively impacted by anthropogenic pollution. 
Stormwater and wastewater are both responsible for causing ocean plumes that can be harmful to humans 
and the ecosystem (Ayad et al., 2020; Ackerman & Weisberg, 2003). The San Diego coastal area is heavily 
used for recreational water activities, such as surfing, where plume polluted waters expose users to increased 
levels of bacteria and other pollutants. These water pollutants can cause acute illnesses (Arnold et al., 2017). 
When certain water quality metrics, such as bacteria or pollutant concentrations in coastal water, exceed 
health standards, beaches are closed to avoid adverse health effects (San Diego, 2022). Additionally, San 
Diego County is home to approximately 200 at-risk plant and animal species including many aquatic species 
that are on the endangered species list (San Diego, n.d.) which are threatened by these plumes. 
  
Following storm events, pollutants including oils, heavy metals, sewage, etc. that have built up in urban areas, 
are flushed into rivers and waterbodies. Once the polluted rivers reach the ocean, toxic plumes are created 
that vary in extent and movement through the coast (Holt et al, 2017). Factors such as tide, wind, and 
currents are the main drivers of plumes (Warrick et al., 2007). Due to the dynamic nature of the pollutants 
within storm water plumes, they can be difficult to track with conventional methods such as suspended 
sediments. Colored dissolved organic matter (CDOM) was found to have a high correlation with plume 
salinity and is a viable parameter that can be used to track the extent of storm water plumes (Warrick et al., 
2007).  
 
There are several wastewater treatment plants located in both the US and Mexico that also create plumes in 
the ocean as well. Due to the different nature of these plumes, they are referred to as wastewater plumes 
(Ayad et al., 2020). Wastewater plumes are comprised of sewage and are often not localized at the estuary like 
storm water plumes. Wastewater is usually discharged at ocean outfalls located offshore, but there are some 
treatment plants that discharge directly onto beaches. Wastewater plumes are highly mobile and tend to travel 
along the coast across international boundaries. This creates political tension due to differing regulations for 
treatment plants.  
 



  
 

 
 

With these concerns in mind, this project set out to use remote sensing to track and evaluate storm water and 
wastewater plume trends off the coast of San Diego (Figure 1). We utilized satellite imagery from 2013 to 2022 
to analyze these plumes by using parameters such as CDOM, chlorophyll-a (chl-a), and turbidity. 
 

 
Figure 1. Study area is depicted by a white polygon located along 

the coast of San Diego, California. 
2.2 Project Partners & Objectives 
For this project, we partnered with the Tijuana River National Estuarine Research Reserve (TRNERR), San 
Diego Regional Water Quality Control Board, Waterkeeper Alliance, City of San Diego, and the City of 
Imperial Beach, and this collaboration sought to better inform partners’ stormwater management and water 
quality improvement efforts. TRNERR is part of the National Estuarine Research Reserve System (NERRS) 
which is a network of protected areas that were established for long-term research, stewardship, and 
educational purposes. TRNERR tracks short-term variability and long-term changes in water quality to assist 
management decisions in protecting the estuary’s ecosystem. Waterkeeper Alliance is a nonprofit organization 
whose efforts lie in preserving and protecting water by connecting and mobilizing more than 300 local 
Waterkeeper groups around the world. Waterkeeper Alliance addresses critical issues related to clean water 
and environmental issues. They use position statements to inform their public policy agenda, priorities, 
advocacy, communications, and all levels of work.   
 
The ultimate aim of this project was to improve the monitoring capabilities of our partners and increase 
understanding of the runoff extent within San Diego’s coastal waters. To do this, we set out to develop maps, 
charts, and timeseries analyses of coastal water quality. We also aimed to create a Google Earth Engine 
(GEE) script to delineate plume extent and thus increase ease of pollution monitoring in the study area. By 
doing so this we enabled partners to determine the effectiveness of treatment plants and best management 
practices (BMPs) put in place to minimize pollution in the study area. 
 
3. Methodology  
3.1 Data Acquisition 
3.1.1 Identifying Plume Dates 
Precipitation data from NOAA (NCEI, n.d) in conjunction with river flow and wastewater data from the 
International Boundary and Water Commission (IBWC) were used to identify the dates of stormwater and 
wastewater plume events (USIBWC, n.d.). The NOAA precipitation data were collected daily at the Brown 
Field Municipal Airport in San Diego. The IBWC river flow data were collected daily with a flow gage at the 
international boundary of the Tijuana River approximately six miles from mouth of the estuary. The IBWC 
wastewater data lists all wastewater spill events that occur at the South Bay International Wastewater 
Treatment Plant. 



  
 

 
 

3.1.2 Satellite Data 
We used the Optical Reef and Coastal Area Assessment (ORCAA) tool (Pippin, H., 2019) to acquire data 
from Landsat 8 OLI collection 2 level 1 and Sentinel-2 MSI. When collecting satellite data, we sorted for 
spatial coverage that includes the study area (Figure 1); temporal coverage from March 1st, 2013 to September 
30th, 2022; and less than 20% cloud cover.  
 
Table 1. Satellite Data 

Satellite Spatial Resolution Temporal Resolution Time Period 
Landsat 8 OLI 30 m 16 days  Feb 2013 - present 
Sentinel-2 MSI 10 m, 20 m 5 days June 2015 - present 

 
3.1.3 In-Situ Water Quality Data 
The CDOM and chl-a in-situ measurements were collected by the city of San Diego at various sampling 
locations off the coast in the San Diego Bay. These samples were collected on a near-daily basis and analyzed 
in a laboratory onshore. Turbidity in-situ measurements were collected by the Boca Rio Water Quality Station 
within the Tijuana Estuary just east of the mouth of the river. This station collects turbidity measurements in 
15-minute intervals and is operated by the NOAA National Estuarine Research Reserve System (NERRS) 
System-wide Monitoring Program (SWMP). It is important to note that CDOM in-situ samples received from 
the city of San Diego did not have specific timestamps, therefore it was unknown whether they were collected 
at approximately the time of satellite overpass. 
 
3.2 Data Processing  
3.2.1 Identifying Plume Dates 
To develop the maps, charts, and time series analyses of coastal water pollution, we identified and classified 
plumes into stormwater, wastewater, or mixed categories using precipitation data from NOAA and flow data 
from the IBWC. We sorted the stormwater dates by selecting the top five percent of flow and precipitation 
dates for all dates with positive values between March 2013 and September 2022. Combined with the dates of 
all wastewater events, we produced a table of plume dates categorized as stormwater, wastewater or mixed. If 
the estuary experienced heavy river flow and no wastewater events, then that day is classified as a stormwater 
plume. If the estuary received only wastewater flow without any rain or flow upstream of the wastewater 
discharge point, then it is classified as a wastewater plume. If there is any rain or flow in the river on a 
wastewater event day, then it is classified as a mixed plume. We identified fifteen dates that include five 
plumes for each of the three types (Table 2). 
 
Table 2. 
Plume Dates 

Stormwater Wastewater Mixed 
Storm 
Event 

Image 
Capture 

Wastewater 
Event 

Image 
Capture 

Storm 
Event 

Wastewater 
Event 

Image 
Capture 

2/27/2022 3/2/2017 2/8/2019 2/8/2019 Continuous 2/23/2017 2/23/2017 

12/6/2018 12/7/2018 10/21/2019 10/21/2019 Continuous 3/5/2019 3/5/2019 
12/4/2018 12/5/2019 2/13/2020 2/13/2020 1/25/2021 

 
1/28/2021 1/28/2021 

12/23/2022 12/27/2019 2/19/2021 2/19/2021 3/3/2021 3/6/2021 3/6/2021 

3/3/2022 3/4/2021 2/9/2022 2/9/2022 3/4/2022 3/4/2022 3/4/2022 

 
 



  
 

 
 

3.2.2 Calculating CDOM, Turbidity, and Chlorophyll-a with ORCAA 
We used the ORCAA 2.0 Google Earth Engine script (Pippin et al., 2019) to process the satellite imagery and 
output maps of plumes. ORCAA 2.0 uses the GEE simple CloudScore function to mask clouds. Using the 
algorithm for turbidity (Nechad et al., 2009), the equation for chlorophyll-a (Mishra and Mishra, 2012) and 
the CDOM equation developed by (Chen et al., 2017), we calculated color dissolved CDOM, turbidity, and 
chlorophyll-a concentration from satellite surface reflectance data. In ORCAA we produced raster images of 
these parameters in the study area for each plume date specified in Table 2. 
 
Table 3.  
Equations for deriving water quality parameters from Landsat 8 OLI and Sentinel-2 MSI 

Calculated Parameter Equation Equation # 

CDOM 
 

aCDOM(440) = 22.283e-1.724X, X = 
Rrs(B3)
Rrs(B5)

 Equation 1 

Turbidity 
 

Turbidity (FNU) = 
AT*ρW
1-ρW/C

 Equation 2 

Chlorophyll-a [Chlorophyll-a] = ao+(a1*NDCI)+(a2*NDCI2) Equation 3 

 
In finding CDOM, equation 1 only required imagery of Sentinel-2. 𝑋𝑋 is the “remote sensing” or marine 
reflectance (𝑅𝑅𝑟𝑟𝑟𝑟) of Band B3 (Green) to Band B5 (Red Edge 1).  
 
Turbidity required the use of both Landsat 8 and Sentinel-2 imagery. In Equation 2, AT, BT, and C are 
calibration parameters for which ORCAA uses the respective values of 378.46, 0.33, and 0.19905 for Landsat 
8 imagery and 366.14, 0.33, and 0.19563 for Sentinel-2 imagery. Furthermore, ρW utilizes the marine 
reflectance of the 645.5 nm band (Band B4) for both Landsat 8 and Sentinel-2 imagery. 
 
Chlorophyll-a only requires Sentinel-2 imagery to calculate. In equation 3, ORCAA uses 14.039 for  ao, 86.115 
for  a1, and 194.325 for a2. Equation 3 utilizes the Normalized Difference Chlorophyll Index (NDCI). NDCI 
uses remote sensing reflectance from the 708 nm and 665 nm bands (Bands B5 and B4 respectively) and is 
described by Mishra and Mishra as:  
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑟𝑟𝑟𝑟(708)−𝑅𝑅𝑟𝑟𝑟𝑟(665)
𝑅𝑅𝑟𝑟𝑟𝑟(708)+𝑅𝑅𝑟𝑟𝑟𝑟(665)

                     Equation 4 
 
 
3.2.3 Delineating Plume Extent 
To map the extent of plumes, we used a threshold value to delineate the area of plume based on turbidity 
raster images generated by ORCAA in Google Earth Engine (Figure 2a). To find the threshold value, we 
calculated the 75th percentile/upper quartile of turbidity values in a turbidity raster image of our study area 
from each stormwater, wastewater, and mixed plume date from Table 2 (Appendix A1). With each individual 
plume having a turbidity threshold, we took the maximum threshold value within each plume type to use as 
the threshold for delineating all plumes within that type (Table 4). This resulted in a vector shapefile of plume 
extent (Figure 2b) for 15 different plumes across three plume types.  
 
 



  
 

 
 

Table 4.  
Turbidity threshold values from 75th percentile calculation 

Plume Type Turbidity Threshold from 75th Percentile (FNU) 

Stormwater 3.49 
Wastewater 1.44 

Mixed 1.86 
 
 

     

            
Figure 2. Stormwater turbidity image from Sentinel-2 MSI on 12-5-2019 (left) and plume delineation vector 

shapefile (right) 
 
3.3 Data Analysis 
3.3.1 Calculating Area, Turbidity, Chlorophyll-a and CDOM 
Our goal was to study the extent and severity of plumes depending on their source. To compare the extent of 
plumes, we used GEE to calculate the average area of stormwater, wastewater, and mixed plumes using five 
plumes for each category. To estimate the severity of each plume type, we used ORCAA to calculate the 
average CDOM, chlorophyll-a and turbidity for 5 plumes within each plume type (Appendix A1). We then 
averaged the values for all 5 plumes within each plume type to quantify the severity of stormwater, 
wastewater, and mixed plumes (Table 5).  
 
3.3.2 Regression Models and Index Validation 
To estimate the accuracy of the remotely sensed water quality parameters, we ran a linear regression model 
between remotely sensed and in-situ CDOM, turbidity, and chlorophyll-a. The results of this analysis 
quantified the accuracy of the remote sensing analysis performed in this study and illustrated the potential of 
using satellite imagery to complement in-situ sampling for estimating water quality.   
 
4. Results & Discussion  
4.1 Table  
The table below shows the average area (km2), CDOM (m-1), chlorophyll-a concentration (mg/m3) and 
turbidity (FNU) across the five plumes analyzed for each of the three plume types.  
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Table 5. Area, CDOM, chl-a and turbidity for each plume type 
Plume Type Area (km2) CDOM (m-1) chl-a (mg/m3) Turbidity (FNU) 
Stormwater 

(average) 10.83 1.04 5.59 5.26 
Wastewater 
(average) 8.20 0.12 5.06 1.85 

Mixed 
(average) 10.83 0.34 5.29 2.89 

 
We observe that stormwater and mixed plume areas range from 8-11 km2 across the plumes analyzed in this 
study. Wastewater plumes had the smallest average area of 8.2 km2. In comparison of all plume types, CDOM 
was found to be highest in stormwater plumes by a large margin at 1.04 m-1 in comparison to 0.12 m-1 and 
0.34 m-1 in wastewater and mixed plumes, respectively. Chlorophyll-a values were found to be highest in 
stormwater plumes (5.59 mg/m3) followed by mixed plumes (5.29 mg/m3), and wastewater plumes (5.05 
mg/m3). Lastly, turbidity values were found to be the highest for stormwater plumes, followed by mixed 
plumes with wastewater plumes having the lowest values. The high turbidity values associated with 
stormwater are likely due to the high sediment load carried by stormwater in the Tijuanna River (Ayad et al., 
2020). 
 
4.2 Plume Maps 
The resulting plume maps are symbolized with each water quality parameter (turbidity, chlorophyll-a and 
CDOM) for stormwater, wastewater, and mixed type plumes (Figures 3, 4, and 5 respectively).  
 

           

            

                
Figure 3. Stormwater turbidity (left), chl-a (center) and CDOM (right) from Sentinel-2 MSI on 12-5-2019 

 
Looking at one of the five stormwater plumes in our study from 12-5-2019 (Figure 3), we see that the average 
CDOM (1.700 m-1), chl-a (6.836 mg/m-3) and turbidity (5.691 FNU) are high when compared to the average 
values for wastewater and mixed plumes (Appendix A1). These values are also greater than the average 

A B C 



  
 

 
 

stormwater values of CDOM (1.04 m-1), chl-a (5.59 mg/m3), and turbidity (5.26 FNU). This data was 
collected one day after a storm event. We know that the response time for a peak in chlorophyll-a 
concentration is longer than that of turbidity and CDOM, (Indicators: Chlorophyll a, n.d.) and this could 
contribute to why we don’t see high concentration of chlorophyll-a in this imagery.  
 

           

            

                
Figure 4. Wastewater turbidity (left), chl-a (center) and CDOM (right) from Sentinel-2 MSI on 2-8-2019 

 
In these water quality maps from less than one day after a wastewater event on 2-8-2019 (Figure 4), we see 
that average turbidity (1.783 FNU), chlorophyll-a (4.825 mg/m3), and CDOM (0.046 m-1) are all relatively low 
when compared to the averages of stormwater and mixed plumes (Appendix A1). This is consistent with the 
other wastewater plumes analyzed in our study and could be a result of a faster dispersal of pollutants or a 
discharge too low to be visualized by remote sensing imagery. 
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Figure 5. Mixed plume turbidity (left), chl-a (center) and CDOM (right) from Sentinel-2 MSI on 3-6-2021 

 
The mixed plume imagery collected on 3-6-2021 (Figure 5), 3 days after a storm event and one day after a 
wastewater event, has an average turbidity of (3.206 FNU), average chl-a of (6.146 mg/m-3) and average 
CDOM of (0.517 m-1). These values are higher than the wastewater plumes but lower values than stormwater 
plumes (Appendix A1). This is consistent with both the other mixed plumes we analyzed and with previous 
studies on mixed plumes in the region (Ayad et al., 2020). 
 
4.3 Index Validation 
CDOM, Turbidity, and chl-a values, derived from Landsat 8 OLI and Sentinel-2 MSI data, were compared to 
in-situ values collected at the various monitoring locations in the San Diego Bay and Tijuana River to evaluate 
the accuracy of the satellite measurements. Because of the nature in which the three water quality parameters 
are measured, the sample size of the different indices varied, which also affected the data analysis that was 
possible. Notably, for the water quality parameters CDOM and chl-a, it was infeasible to evaluate the 
effectiveness of using satellite imagery to analyze storm, waste, and mixed plumes individually because of the 
limited number of dates where both in-situ data and satellite imagery were available. However, this type of 
analysis was possible for turbidity since in-situ measurements were collected on a near-continuous basis.  
 
Table 6.  
Regression model summary statistics for CDOM, chl-a, and Turbidity 

Parameter Equation R2 P-values Sample Size (n) 

CDOM (all) 0.804x + 1.64 0.097 5.2E-9 28 
chl-a (all) 0.772x + 4.79 0.47 1.93E-7 10 
Turbidity (all) 13.2x - 36.1 0.73 0.020 77 
Turbidity (Stormwater)  16.0x - 64.4 0.73 0.023 19 
Turbidity (Wastewater)  0.0930x + 2.51 0.030 0.32 35 
Turbidity (Mixed) 1.56x + 0.517 0.20 0.0025 23 

 
For both CDOM and chl-a, we extracted a 5x5 meter area around the various sampling locations to compute 
the average value for the respective water quality parameters from the satellite imagery. This average value 
was then compared with the in-situ value sampled on the same date. The CDOM in-situ dataset did not 
contain time values, so it was impossible to verify that CDOM sample collection was done at the same time 
as satellite overpass. Contrastingly, the chl-a in-situ dataset did contain these time values. CDOM has 28 
points and chl-a has 10. These points are not differentiated between the various plume types (stormwater, 
wastewater, or mixed). 
 
The remotely sensed CDOM and chl-a values were found to vary in terms of the correlation between 
remotely sensed and in-situ values (r2=0.097, n=28; r2=0.47, n=10, respectively). Furthermore, both 
regression plots were found to be statistically significant as both p-values were less than 0.05, indicating that 
remote sensing had some capabilities to differentiate between varying levels of in-situ concentrations within 
the study area.  Figure 6 is the regression line plots for CDOM and chl-a, respectively. 



  
 

 
 

 

Figure 6. Regression plots for both CDOM and chl-a validation 
 

Overall, in-situ and remotely sensed CDOM did not have high correlation, with the latter tending to 
underestimate higher in-situ values. However, since there was no way for us to verify that in-situ sampling 
time overlapped with satellite overpass for our CDOM dataset, our validation for this parameter is less 
reliable as even within the same day there can be high variation in water quality within the water column in a 
short time span. Contrastingly, chlorophyll-a in-situ and remotely sensed data had a relatively high correlation. 
However, the small sample size reduces the statistical significance of our model, and more chlorophyll-a 
samples should be collected on days of satellite overpass to increase the robustness of our regression plot.  

 

 
 
 
 

Figure 7. Regression plot for turbidity at the Boca Rio Station. The plot contains 77 points: 19 stormwater, 35 
wastewater, and 23 mixed. 

 
For turbidity, we extracted a 5x5 meter area around the Boca Rio Water Quality sampling station to compute  

In
-s

itu
 tu

rb
id

ity
 (F

N
U

)  

Remotely-sensed turbidity (FNU) 

y = 13.2x – 36.1 

R
2
 = 0.73, n = 77, p = 0.020 

Color Dissolved Organic Matter 
( 1) 

Chlorophyll-a (mg/m3) 

Remotely sensed data  

In
-s

itu
 d

at
a 

 

y = 0.804x + 1.64 

R
2
 = 0.097, n = 28, p = 5.2E-9 

y = 0.772x + 4.79 

R
2
 = 0.47, n = 10, p = 1.93E-7 



  
 

 
 

the average turbidity values from the satellite imagery. This average value was then compared with an 
averaged in-situ value sampled on the same date. In-situ measurements are collected every 15 minutes, and the 
measurements at 10:15, 10:30, and 10:45 AM PST (11:15, 11:30 and 11:45 AM PDT) were averaged to 
account for the slight variability in satellite overpass. Furthermore, we were also able to construct linear 
regression plots and evaluate remote sensing for measuring turbidity for each event type individually 
(stormwater, wastewater, and mixed) because more in-situ data was available (Figure 8).  
 
The regression plot for turbidity for all events (Figure 7) suggests that remotely sensed values can estimate in-
situ measurements with relative precision. Turbidity for all events has an R2 of 0.73 with a sample size of 77. 
Similarly, p-value of 0.020 indicates a statistically significant relationship between the two variables. However, 
further analysis on the individual types of plumes in Figure 8 show that remotely sensed data does not measure 
turbidity well for all plume types. Furthermore, the difference in scale between in-situ and remotely sensed 
turbidity values suggest that remotely sensed data tends to underestimate water quality parameters, especially 
when these parameters are present at higher magnitudes. 
 

 
Figure 8. Regression plot for turbidity at the Boca Rio Station for stormwater (top left), wastewater (top right), 

and mixed (bottom) events. The stormwater plot contains 19 points, wastewater 35, and mixed 23. 
 
The regression plots for each plume classification of stormwater, wastewater, and mixed, illustrate that 
remote sensing measures turbidity to varying success for each type. The remotely sensed turbidity values 
correlated strongly with the in-situ data provided by our partners for stormwater events, but not wastewater 
or mixed events (r2=0.73, n=19; r2=0.03, n=35; r2=0.20, n=23 respectively). Thus, stormwater turbidity is not 
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only the most precisely measured parameter by remote sensing, but it is likely that stormwater turbidity 
measurements drive the high correlation in the regression plot for turbidity for all events (Figure 8). 
Furthermore, both stormwater and mixed events had a statistically significant relationship between in-situ and 
remotely sensed data (p= 0.00025; p=0.023, respectively), providing further confidence that remote sensing 
can be used to estimate turbidity in stormwater and mixed event circumstances. Contrastingly, the high p-
value for wastewater events (p=0.32) provides evidence that remote sensing cannot adequately measure 
turbidity within a wastewater context. Stormwater’s ability to be more precisely measured by remote sensing 
comparatively could potentially be explained by the differences in visibility between the different plume types. 
As seen in Section 4.2 Plume Maps, stormwater plumes are the most visible, which make them easier to 
analyze by overpassing satellites. Notably, the stormwater regression plot is also the only model that has a 
large difference in scale between remotely sensed and in-situ values. The stormwater plot is the only model 
with in-situ values significantly greater than 10, and the wastewater and mixed plots do not have this same 
level of discrepancy between in-situ and remotely sensed measurements. This provides further evidence that 
the algorithms used to calculate the three water quality metrics tend to underestimate large values, bringing 
into the questions of the reliability of remote sensing to measure water quality during high pollution events. 
This could potentially be caused by a stronger signal-to-noise ratio that is associated with larger pollution 
events where a higher volume of runoff pollution is involved. 
 
4.4 Errors and Uncertainties  
Due to the dynamic nature of ocean plumes, they are difficult to directly compare. Winds and ocean currents 
have high variability and can have a large impact on plume dispersion. The plumes measured in this study 
could have been dispersed through oceanic processes that might skew the plume area calculations along with 
the water quality metrics. Additionally, plumes are not homogeneous in concentration throughout the water 
column and the remotely sensed measurements only show the surface of the water. Plumes that were 
subsurface could have been misrepresented by remote sensing techniques.  
 
Turbidity was the water quality metric used to map the extent of the plumes. Due to the proximity to the 
coast, turbidity caused by wave action likely interfered with the mapping of plume extent. To help prevent 
this, a buffer along the shoreline was hand drawn so that wave action along the coast could be avoided, 
although it may have not been large enough to crop out all turbidity caused by wave action. Additionally, this 
buffer also cut off a section of the plumes which also would interfere with area and water quality metric 
calculations. 
 
CDOM data was collected daily by the City of San Diego, and we were unable to verify that the in-situ 
measurements were collected at or near the time of satellite overpass in the study area. Since there can be 
considerable variability in the water column within a day, this reduces the confidence of the CDOM 
regression plot. The chl-a regression plot relied on a low number of observations. Stronger trends might be 
observed with more observations. In generating the stormwater turbidity regression plot, we found that 
remotely sensed values can be underestimated when the in-situ values become greater than 20 by nearly 
twentyfold. This could be explained by several reasons. The algorithm used to calculate turbidity from satellite 
imagery might be biased towards lower values. Additionally, wave action or ocean dynamics at the mouth of 
the estuary where turbidity values are collected could be skewing the estimates. 
  
 
4.5 Future Work 
Currently, the delineation script we created in Google Earth Engine uses turbidity as the threshold metric to 
isolate the pollution plumes from its surroundings. While turbidity seemed to be successful at delineating the 
extent of the plume, there were various instances in which certain parts of the plume did not appear to be 
encapsulated within the delineation results. Future projects could attempt to evaluate other algorithms for 
mapping plumes that are less sensitive to wave action or other ocean processes.  



  
 

 
 

Moreover, while we were able to analyze plumes at different stages of development, we were unable to track 
the spatiotemporal evolution of individual plumes. Using satellite imagery with higher temporal resolution 
would allow the us to characterize the initiation, maturation, and dispersal of individual plumes. This is not 
possible with current satellite data alone since Sentinel-2 has a temporal resolution of 5 days. Improvement in 
spectral resolution would also allow more accurate evaluation of plume severities. Specifically, hyperspectral 
imagery could provide more accurate and precise estimates of existing plume metrics, as well as enable the 
development of new metrics. Furthermore, the use of Synthetic Aperture Radar would further increase the 
image record by allowing data collection regardless of cloud cover which is typically persistent during and 
after storm events. 

There are other water quality metrics that may be analyzed to characterize the severity of plumes in addition 
to the metrics used in our study. CDOM, chl-a and turbidity were analyzed in this project due to the readily 
available in-situ data and the ubiquity of these metrics in the scientific literature. However, future studies may 
attempt to analyze other important metrics that are indicative of water quality, such as dissolved oxygen or 
bacteria concentration. 

Future in-situ sampling should be done at satellite overpass time (10:30 AM PST/11:30 AM PDT) to ensure 
an accurate and reliable regression model. Additionally, future endeavors should include more chl-a 
measurements on days of satellite overpass to improve the robustness of our model and further validate the 
remotely sensed water quality indexes. 

 
5. Conclusions 
Toxic ocean plumes caused by runoff have threatened costal water quality in San Diego and are both a public 
health and ecological concern. However, differing plume types can form depending on the source of the 
coastal runoff with varying extends and severities. We produced a script that enables partners to visualize 
pollution plumes and quantify their extent and severity. We also produced various maps to compare the 
extent and severity of the three different plume types, storm, water, and mixed. The differentiation between 
storm water and wastewater plumes has not been studied extensively until recently (Ayad et al., 2020). 
Analysis of these maps generated from the tool demonstrated that these different classifications have 
noticeable visual and chemical distinctions. The results indicate that stormwater and mixed plumes have a 
much larger extent than wastewater plumes. Similarly, though chl-a concentrations were relatively equivalent 
amongst all three plume types, stormwater plumes had noticeably higher levels of CDOM and turbidity. 
Understanding the differences between these plumes will allow the city to make more informed decisions on 
beach closure polices to protect the health of city citizens. Notably, given the greater extent and severity of 
stormwater plumes, longer and stricter beach closure polices could be enacted directly after large rain events 
to ensure public safety. The quantification of wastewater plume extent after runoff events will also allow 
policy makers to make more informed decisions regarding load standards for new treatment plants and 
BMPs.  
 
Validation of remotely sensed data with in-situ measurements also evaluates the use of remote-sensing for 
estimating water quality in our study area. Remote sensing would potentially allow our partners to estimate 
water severity over a much larger area than possible with in-situ sampling. However, this is only achievable if 
remote sensing can approximate these indices with accuracy and precision. Our initial validation illustrates 
that though there is potential for remote sensing to be effective, more work needs to be done to improve the 
estimation tool. While chl-a and turbidity for stormwater events had strong correlations between remotely 
sensed and in-situ data, CDOM, and turbidity for all other conditions saw high variation between these 
measurements. Similarly, turbidity for stormwater events saw a huge difference in scale between in-situ and 
remotely sensed data, indicating that remote sensing tends to underestimate larger values. Overall, our results 
show that remote sensing has the precision necessary to potentially be an effective tool for evaluating water 
quality, but further work needs to be done to make the algorithms that calculate these values more accurate.  
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7. Glossary 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
BMP – Best management practice 
Colored dissolved organic matter – Water quality parameter that measures the amount of dissolved 
carbon-based compounds detectable by remote sensing.   
Chlorophyll-a – Photosynthetic pigment found in chloroplasts of plants, algae, and plankton 
Turbidity – A parameter of water clarify that quantifies that amount of suspended matter 
Google Earth Engine – Online platform that combines satellite imagery and geospatial datasets with 
analytical capabilities.  
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Complete area, CDOM, chl-a and turbidity results 
Plume Type Area (km2) CDOM (m-1) Chl-a (mg/m3) Turbidity (FNU) 
Stormwater     
3/2/2017 3.167 0.474 4.839 4.530 
12/7/2018 9.091 1.179 5.242 6.216 
12/5/2019 15.03 1.700 6.836 5.691 
12/27/2019 18.34 0.609 4.865 5.042 
3/4/2021 8.515 1.231 6.187 4.843 
Average 10.83 1.038 5.594 5.264 
Wastewater     
2/8/2019 15.88 0.046 4.825 1.783 
10/21/2019 3.194 0.105 4.665 1.798 
2/13/2020 2.356 0.118 5.438 1.627 
2/19/2021 9.163 0.241 5.663 2.222 
2/9/2022 10.40 0.109 4.687 1.806 
Average 8.197 0.124 5.056 1.8472 
Mixed     
2/23/2017 15.38 0.454 5.050 4.222 
3/5/2019 6.960 0.227 5.336 2.169 
1/28/2021 5.060 0.155 4.843 2.421 
3/6/2021 5.782 0.517 6.146 3.206 
3/4/2022 21.00 0.354 5.061 2.417 
Average 10.83 0.341 5.287 2.887 

 

 

 

 

 

 

 

 

 

 

 

Appendix B. 

Table B1 
Complete turbidity threshold values calculated using the 75th percentile 



  
 

 
 

Event Dates Turbidity Threshold from 75th Percentile 
(FNU) 

Stormwater  
3/2/2017 2.484 
12/7/2018 2.439 
12/5/2019 3.406 

12/27/2019 3.485 
3/4/2021 2.368 

Wastewater  
2/8/2019 1.441 

10/21/2019 0.953 
2/13/2020 1.203 
2/19/2021 1.090 
2/9/2022 1.328 
Mixed  

2/23/2017 1.864 

3/5/2019 1.559 
1/28/2021 1.356 

3/6/2021 1.336 
3/4/2022 1.858 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C. 



  
 

 
 

 
Figure C1. Wastewater plume turbidity image from Sentinel-2 MSI on 2-8-2019 (left) and the plume 

delineation shapefile (right) 
 
 

 

 
Figure C2. Mixed plume turbidity image from Sentinel-2 MSI on 3-6-2021 (left) and the plume delineation 

shapefile (right) 
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