

1

Time Resolved Visualization Of A Liquid Jet In An RDE Using MHz Rate Diesel PLIF

Chris A. Fugger Mikhail Slipchenko Sukesh Roy Spectral Energies, LLC

Prof. Terrence R. Meyer Prof. Guillermo P. Paniagua Prof. James Braun Dr. Venkat Athmanathan Matt Hoeper Robert Wang Austin Webb Purdue University

Doug Perkins NASA Glenn Research Center

Overview

 \square Motivation for RDE injector behavior studies **QLimited characterization of RDE processes □Demonstrate advanced time-resolved imaging** diagnostics for RDEs

qLeverage recent advancements in megahertzrate, burst-mode-laser technology

 \Box Investigate RDE mixing, fuel spray, and combustion behavior

QExperiment

qLiquid fuel jet injection in an Annular RDE

Motivation

Spectral

Eñergies NJ

- \Box Mixing what does it look like and how does it impact performance?
	- \square Non-premixed, stratification
	- \Box Pre-wave and post-wave burning
- \Box Product mixing with reactants
- \Box Injectors Reverse flow. Ox/Fuel recovery times

Objectives

Q Transition/develop/evaluate 100 kHz – 1 MHz | igts (longer than cycle times) laser-based imaging measurements for mixing, behavior, and burning

 \square Improve characterization of injector dynamics and mixing related processes, toward liquid RDEs

Optically Accessible Annular RDC

q **Turbine-integrated High-pressure Optical RDC (THOR) built in collaboration with Spectral Energies and Prof. Meyer, Prof. Paniagua and Prof. Braun.**

Why build another RDE?

 \Box Experimental test bed to understand detonation physics from labscale to engine relevant testing

Design Goals:

- Canonical geometry and injector design
- \Box Relatively simple modeling effort
- \Box Maximum optical access (inlet plenum-exit)
- **Q** Maximum modularity (Geometry, Fuels, Oxidizers)
- \Box Scalability for various TRL levels
- **Concurrent URANS simulations** for understanding key flow physics
- Premixed THOR (Meyer collaboration with Dan Paxson)

Optically accessible test rig

Turbine-integration efforts (Meyer/Paniagua collaboration with DOE UTSR)

q **Non-premixed and premixed operation**

- Provide benchmark data for model evaluation
	- \Box Currently 3 other groups simulating this RDE (NASA/PU/Argonne)
	- q **Fluid geometry is open and available to community for testing.**
- q **3+ years of continuous advancements in diagnostics and RDE physics understanding** 5

THOR Overview

- \Box Geometric Parameters
	- \Box ID = 114 mm Length \sim 95 mm
	- \Box 1.4 mm air slot for axial-air
	- **Q** JICF injection of hydrogen
	- \Box 100 fuel injection holes
	- \Box 10° expansion angle

- \Box URANS simulation parameters (Metacomp CFD++ solver)
	- \Box 45 million cells
	- \Box Structured uniform grid
	- 1-step reaction model for H_2 -air system (Frolov,2016)
	- \Box Boundary layer mesh refinement
	- □ k-omega SST Turbulence model

Measurements in RDEs

Unique Features

- Versatile laser source
- 2. High power and high speed (MHz rates)
- 3. Adjustable repetition rate
- 4. Capabilities for multiple, simultaneous measurements
- 5. In-situ diagnostic tools

1 MHz OH-PLIF Imaging (Combustion)

THOR RDE Diagnostics Advancement Portfolio

Spectral

Energies, W

NASA

Liquid Jet Physics in RDC Environment

Current state of the art

- **Full liquid injector based RDC – lack of optical access**
- **Simulations** challenging and cost prohibitive
- **Single-shot straight channel experiments don't inform inter-cyclic injector response**
- Additionally **curved wall physics** (e.g. ARSC) are **absent** in straight channel experiments

Approach Rationale

- Utilize THOR's optical access to inject liquid through a 'single-element' injector and use the H₂/air detonations as a detonation driver.
- Minimize computational cost by having a small twophase flow domain

Goals

- Improve 'multi-cycle' injector response by injecting liquid into a continuous impulse of rotating $H₂/air$ detonations
- Provide benchmark data for model validation
- Minimize impact of liquid fuel injector on detonation

Low speed video

Sample MHz refill movie

Experimental Setup

Experiment

Spectral

Energies, W

- \Box THOR as a detonation driver \Box Air-H₂
- \Box Replaced a H₂ injection orifice with a single liquid fuel jet
- \Box Liquid fuel orifice diameter = 0.3 mm
	- \square Diesel flow rates between
		- 0.2-1.5 g/s

Distribution A: Approved for public release; distribution is unlimited.

3D printed injector admitting diesel in RDE

Imaging Diagnostics

 $\sqrt{2}$

Diagnostics

Specura

Eñergies W

- \Box A range of laser-based imaging diagnostics were initially explored, such as
	- \square 355-nm Fuel PLIF
	- q NO-PLIF
	- **Q** Tracer PLIF
	- \Box Mie Scattering
- \square 355-nm Fuel PLIF was chosen
	- □ High SNR
	- \Box BML has suitable THG pulse energy
	- \Box No need for added tracer
- \Box 200 kHz 1 MHz rep rates
- \Box 10 ms BML duration
	- $\Box \sim 40$ consecutive detonation periods are imaged per test

Test Matrix

Varied chamber mass flux (low to high air injector stiffness)

Varied momentum flux ratio (liquid jet to air crossflow)

QNeeded to verify no significant detonation wave perturbation from diesel spray **QIdentical chamber conditions (** \dot{m}_{air} =0.46 kg/s, Φ ~1) \Box Corroborated with high frequency pressure measurements

No Liquid Fuel No Liquid Fuel

100 kHz Aft-End Chemiluminescence

Liquid Fuel Spray - Detonation Interaction Large FOV

NA SA

• There is a significant dwell period where diesel is not being issued into the channel

Spectra

Eñergies NJ

- Diesel injector element does not appear to turn off and recovers well within one detonation period
- This corresponds to Case 2 (0.46 kg/s and q=0.29)

10.7 mm

Liquid Fuel Spray - Detonation Interaction Small FOV

• Case 1 (0.46 kg/s and $q=0.6$)

Eñergies, w

- Previous data necessitated a test case that can monitor near-field jet response
- Liquid fuel is completely consumed or displaced from the channel within a few microseconds,
- No liquid fuel moves axially upstream after the detonation wave

15

Fuel Spray Trajectory

• Leading edge of the fuel spray is tracked throughout the cycle

ectral

Eñergies W

- Trajectories of the fuel spray immediately prior to the detonation wave arrival are averaged
- Trajectories are compared with an experimentally-derived steady flow model

$$
\frac{y}{d_j} = 4.73q^{0.3} \left(\frac{x}{d_j}\right)^{0.3}
$$

Distribution A: Approved for public release; distribution is unlimited.

Fuel Spray Dwell Time Methodology

- Sampled PLIF signal immediately downstream of the BFS to monitor dwell time/refill dynamics
- Averaging 30-40 cycles per test to produce refill signal
- Characteristic refill time defined as point where intensity achieves 10%

Fuel Spray Dwell Time Scaling

- A scaling is sought that captures the fuel spray dwell time in relation to other hypothesized parameters
- Lower air mass flow rate cases typically have longer fuel spray dwell times
- The fuel spray dwell time is observed to have a weak dependence on fuel spray to air crossflow momentum flux ratio

 ∇P_{AirInj}

 $\beta =$

 $\overline{\nabla P}_{LiaFuel}$

• As a jet in crossflow injection scheme, the fuel spray dwell time should display some dependency on the air injector recovery P'_{det} P'_{det}

 $\alpha =$

- Fuel injector recovery scaling
	- Injector response $\sim f(P'_{det}, \nabla P_{inj}, ...)$
- Detonation impulse strength relative to injector pressure drops appears to influence liquid fuel refill time

Distribution A: Approved for public release; distribution is unlimited.

- A fuel spray has been directly visualized in an RDC with megahertz-rate liquid fuel PLIF imaging
	- Allowed direct visualization of unsteady liquid fuel injector dynamics
	- Quantified various time scales of the liquid fuel dwell time and refill process
- Fuel spray trajectory quantified and compared with a steady-state model
- Liquid fuel dwell time is observed to be \sim 20-40% of the detonation cycle period
	- No strong dependence on momentum flux ratio
	- Peak detonation pressures relative to air inlet plenum is a key factor

1 MHz Laser-Based Imaging of a Fuel Spray in an RDC

Summary

- This work was funded by NASA STTR Contract 80NSSC19C055
- Portions of the imaging equipment used in this work were funded by AFOSR Award No. FA955016-1-0315 (Dr. Martin Schmidt, Program Officer) and DTRA Award No. HDTRA1-17-1-0031 (Dr. Jeffery Davis, Program Manager)
- Matt Hoeper acknowledges partial support from NSTGRO Fellowship Program: No. 80NSSC21K129

Appendix

- Presence of liquid fuel spray does not attenuate detonation wave propagation
- Azimuthally space measurements at 45° ahead and behind the liquid spray
- Obtain pressure measurements in the injection nearfield and far-field
	- Axially at 10 mm and 68 mm from injection point
- Instrumentation
	- PCB 113B21 (200 psi)
	- 2.5 MHz sampling (low pass filter at 200 kHz)
	- Captures \sim 300 ms of data (\sim 1000 limit cycles)
	- Sampling area: ~5.6 mm diameter

Chemiluminescence Quenching

Example of broadband OH* chemiluminescence

Diesel Injection During Hot Fire

Typical Laser Sheet Intensity Profile

A typical laser sheet intensity profile for the large field of view cases.

Liquid Fuel Refill Comparison

A comparison between apparent leading edge (axial distance) of liquid fuel spray as it refills the channel and OH PLIF signal as fresh reactants enter the channel.

Liquid Fuel Spray - Detonation Interaction Small FOV

- Liquid fuel is completely consumed or displaced from the channel within a few microseconds,
- No liquid fuel moves axially upstream after the detonation wave

