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Overview

Liquid 
Fuel 1 MHz Imaging of a Fuel 

Spray in an RDE

URANS
qMotivation for RDE injector behavior studies

qLimited characterization of RDE processes
qDemonstrate advanced time-resolved imaging 

diagnostics for RDEs
qLeverage recent advancements in megahertz-

rate, burst-mode-laser technology
qInvestigate RDE mixing, fuel spray, and 

combustion behavior

qExperiment
qLiquid fuel jet injection in an Annular RDE
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Motivation and Objectives

Motivation
qMixing – what does it look like and how 

does it impact performance?
qNon-premixed, stratification
qPre-wave and post-wave burning
qProduct mixing with reactants

q Injectors – Reverse flow. Ox/Fuel recovery 
times

AFRL RDE (2017)
Pre and Post Wave Burning

OH* Chemiluminescence 
(path integrated)

AFRL RDE (2015)
Fuel turns off 22% of cycle

10 Hz Fuel PLIF

AFRL RDE (2019)
Structure of Combustion Products

1 kHz IR Water Imaging 
(path integrated)

Heister (Purdue, 2019)
Long recovery time for liquid 
jets (longer than cycle times)q Transition/develop/evaluate 100 kHz – 1 MHz 

laser-based imaging measurements for mixing, 
behavior, and burning

q Improve characterization of injector dynamics 
and mixing related processes, toward liquid 
RDEs

Objectives
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q Turbine-integrated High-pressure Optical RDC (THOR) built in 
collaboration with Spectral Energies and Prof. Meyer, Prof. 
Paniagua and Prof. Braun.

q Experimental test bed to understand detonation physics from lab-
scale to engine relevant testing

q Design Goals:
q Canonical geometry and injector design
q Relatively simple modeling effort
q Maximum optical access (inlet plenum-exit)
q Maximum modularity (Geometry, Fuels, Oxidizers)
q Scalability for various TRL levels
q Concurrent URANS simulations for understanding key flow 

physics

q Non-premixed and premixed operation

q Provide benchmark data for model evaluation
q Currently 3 other groups simulating this RDE 

(NASA/PU/Argonne)
q Fluid geometry is open and available to community for 

testing.
q 3+ years of continuous advancements in diagnostics and RDE 

physics understanding 5

Optically Accessible Annular RDC

Optically accessible 
test rig

Premixed THOR
(Meyer 

collaboration with 
Dan Paxson)

Turbine-integration 
efforts

(Meyer/Paniagua 
collaboration with 

DOE UTSR)

Why build another RDE?
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THOR Overview

q Geometric Parameters
q ID = 114 mm Length ~ 95 mm
q 1.4 mm air slot for axial-air
q JICF injection of hydrogen
q 100 fuel injection holes
q 10° expansion angle

Optical config. Instrumented config. URANS (Tstatic) Low-speed video

q URANS simulation parameters (Metacomp CFD++ solver)
q 45 million cells
q Structured uniform grid
q 1-step reaction model for H2-air system (Frolov,2016)
q Boundary layer mesh refinement
q k-omega SST Turbulence model

Tstatic(K)
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Burst Mode Lasers for High-Speed Diagnostics for RDEs

Unique Features
1. Versatile laser source
2. High power and high speed (MHz rates)
3. Adjustable repetition rate 
4. Capabilities for multiple, simultaneous 

measurements 
5. In-situ diagnostic tools

Transportable burst-mode laser system 
developed by Spectral Energies, LLC

Measurements in RDEs

1 MHz OH-PLIF Imaging (Combustion)

1 MHz Fuel-PLIF Imaging (Liquid Spray)



Distribution A: Approved for public release; distribution is unlimited. 

Femtosecond Laser-
Activation and 

Sensing of Hydroxyl 
(FLASH) velocimetry

THOR RDE Diagnostics Advancement Portfolio

MHz OH-PLIF 

Detonation Structure and Evolution
• 3-D detonation structure
• Azimuthal reflected shock combustion
• Mixing effects on detonation structure

MHz Seeded Tracer 
PLIF (NO, Dyes, etc.)

Coherent anti-
Stokes Raman 

Scattering

MHz Liquid PLIF, 
Fuel PLIF and Mie 

Scattering

Background oriented 
Schlieren (BOS)

Advanced Measurements 
in THOR

Liquid 
Fuel

C
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1 MHz OH-PLIF

Liquid Injection
• Physics of liquid injection refill and recovery 

dynamics
• Liquid injector response

Mixing
• Fuel/Oxidizer mixing and distribution
• Trace gaseous flow paths
• Combustion products mixing

Quantitative Temperature and Species
• Feasibility of high precision exhaust 

thermometry
• Exhaust pattern factor

Flowfield velocity
• Tracer free velocity mapping at repetition rate 

up to 1 MHz

1 MHz Fuel 
Spray Imaging



Distribution A: Approved for public release; distribution is unlimited. 

9

Liquid Jet Physics in RDC Environment

Low speed video

Non-
premixed 

Air/H2
Liquid 
Fuel Detonation 

Channel

Sample MHz refill movie

Approach Rationale
• Utilize THOR’s optical access to inject liquid through

a ‘single-element’ injector and use the H2/air
detonations as a detonation driver.

• Minimize computational cost by having a small two-
phase flow domain

Current state of the art
• Full liquid injector based RDC – lack of optical

access

• Simulations challenging and cost prohibitive

• Single-shot straight channel experiments don’t
inform inter-cyclic injector response

• Additionally curved wall physics (e.g. ARSC) are
absent in straight channel experiments

Goals
• Improve ‘multi-cycle’ injector response by injecting

liquid into a continuous impulse of rotating H2/air
detonations

• Provide benchmark data for model validation
• Minimize impact of liquid fuel injector on

detonation
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Experimental Setup

Experiment
qTHOR as a detonation driver

qAir-H2
qReplaced a H2 injection orifice 

with a single liquid fuel jet
qLiquid fuel orifice diameter = 

0.3 mm
qDiesel flow rates between 

0.2-1.5 g/s

3D printed single element liquid injector

3D printed
injector
admitting
diesel in RDE
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Diagnostics
q A range of laser-based imaging 

diagnostics were initially explored, such 
as
q 355-nm Fuel PLIF
q NO-PLIF
q Tracer PLIF
q Mie Scattering

q 355-nm Fuel PLIF was chosen
q High SNR
q BML has suitable THG pulse 

energy
q No need for added tracer

q 200 kHz – 1 MHz rep rates
q 10 ms BML duration

q ~ 40 consecutive detonation 
periods are imaged per test

Imaging Diagnostics
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Varied chamber mass flux 
(low to high air injector 
stiffness)

Varied momentum flux 
ratio (liquid jet to air 
crossflow)

Test 
Condition

Flow Rates
Equiv. Ratio

[-]

Momentum 
Flux Ratio

[-]

Liquid 
Fuel Inj. 
Pressure

[bar]

Nom. 
Wave 
Speed
[m/s]

Nom. 
Cycle 
Freq.
[kHz]

Throat 
Mass Flux
[kg/m2/s]

Air
[kg/s]

Hydrogen
[kg/s]

Liquid 
Fuel

[gr/s]

1

0.46 0.012

0.91

~1

0.60 15.3

1560 3.9 7502 0.64 0.29 8.0

3 0.45 0.14 4.3

4

0.23 0.006

0.63 0.51 7.6

1450 3.6 3805 0.45 0.26 4.3

6 0.34 0.15 2.6

Test Matrix 
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No Liquid Fuel With Liquid Fuel
Liquid 

Injection 
Location

qNeeded to verify no significant detonation wave perturbation from diesel spray
qIdentical chamber conditions (�̇�air=0.46 kg/s, Φ~1)
qCorroborated with high frequency pressure measurements

100 kHz Aft-End Chemiluminescence

Aft-End Exhaust Imaging
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• There is a significant dwell 
period where diesel is not being 
issued into the channel

• Diesel injector element does not 
appear to turn off and recovers 
well within one detonation 
period

• This corresponds to Case 2 
(0.46 kg/s and q=0.29)

50 µs

60 µs

70 µs

80 µs

90 µs

100 µs

BFS

Can’t resolve this!

200 kHz diesel 
PLIF showing 3 

cycles

Liquid Fuel Spray - Detonation Interaction 
Large FOV
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Detonation ChannelInjector
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Liquid Fuel Spray - Detonation Interaction 
Small FOV

• Case 1 (0.46 kg/s and q=0.6)
• Previous data necessitated a test case that can monitor 

near-field jet response
• Liquid fuel is completely consumed or displaced from 

the channel within a few microseconds, 
• No liquid fuel moves axially upstream after the 

detonation wave

5 mm

Top of Channel

BFS 1 MHz diesel PLIF
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Fuel Spray Trajectory 

• Leading edge of the fuel spray is tracked 
throughout the cycle  

• Trajectories of the fuel spray immediately prior 
to the detonation wave arrival are averaged

• Trajectories are compared with an 
experimentally-derived steady flow model 

𝑦
𝑑!
= 4.73𝑞".$

𝑥
𝑑!

".$
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• Sampled PLIF signal immediately downstream of the BFS to 
monitor dwell time/refill dynamics 

• Averaging 30-40 cycles per test to produce refill signal
• Characteristic refill time defined as point where intensity 

achieves 10%

Fuel Spray Dwell Time Methodology
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• A scaling is sought that 
captures the fuel spray dwell 
time in relation to other 
hypothesized parameters 

• Lower air mass flow rate cases 
typically have longer fuel spray 
dwell times

• The fuel spray dwell time is 
observed to have a weak 
dependence on fuel spray to air 
crossflow momentum flux ratio

Fuel Spray Dwell Time Scaling
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• As a jet in crossflow injection scheme, the fuel spray dwell time should display some dependency on the air 
injector recovery 

• Fuel injector recovery scaling
• Injector response ~ 𝑓(𝑃!"#$ , ∇𝑃%&' , … )

• Detonation impulse strength relative to injector pressure drops appears to influence liquid fuel refill time

Fuel Spray Dwell Time Scaling

19

𝛽 =
𝑃!"#$

∇𝑃(%)*+",
𝛼 =

𝑃!"#$

∇𝑃-%./&'.



Distribution A: Approved for public release; distribution is unlimited. 

20

• A fuel spray has been directly visualized in an 
RDC with megahertz-rate liquid fuel PLIF 
imaging
• Allowed direct visualization of unsteady 

liquid fuel injector dynamics
• Quantified various time scales of the liquid 

fuel dwell time and refill process
• Fuel spray trajectory quantified and compared 

with a steady-state model
• Liquid fuel dwell time is observed to be ~20-

40% of the detonation cycle period
• No strong dependence on momentum flux 

ratio
• Peak detonation pressures relative to air 

inlet plenum is a key factor

Summary 

Non-
premixed 

Air/H2

Liquid 
Fuel

Detonation 
Channel

1 MHz Laser-Based Imaging of a 
Fuel Spray in an RDC
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Appendix
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• Presence of liquid fuel spray does not attenuate 
detonation wave propagation
• Azimuthally space measurements at 45° ahead 

and behind the liquid spray
• Obtain pressure measurements in the injection 

nearfield and far-field
• Axially at 10 mm and 68 mm from injection 

point
• Instrumentation
• PCB 113B21 (200 psi) 
• 2.5 MHz sampling (low pass filter at 200 kHz)
• Captures ~ 300 ms of data (~ 1000 limit cycles)
• Sampling area:  ~5.6 mm diameter

High Frequency Pressure Measurements
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Air Flow 
Direction

Liquid 
Injection 
Point

BFS

Example of broadband OH* chemiluminescence

(b)

(c)

Chemiluminescence Quenching
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Point of diesel 
injection

Final PLIF sheet 
forming optic

Diesel Injection During Hot Fire
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Typical Laser Sheet Intensity Profile

A typical laser sheet intensity profile for the large field of view cases.
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Liquid Fuel Refill Comparison

A comparison between apparent leading edge (axial
distance) of liquid fuel spray as it refills the channel and OH
PLIF signal as fresh reactants enter the channel.
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• Liquid fuel is completely consumed or displaced from the channel within a 
few microseconds, 

• No liquid fuel moves axially upstream after the detonation wave

Liquid Fuel Spray - Detonation Interaction 
Small FOV


