

A SIMULATION ARCHITECTURE FOR AIR TRAFFIC OVER URBAN ENVIRONMENTS SUPPORTING AUTONOMY RESEARCH IN ADVANCED AIR MOBILITY

Keerthana Kannan Joshua Baculi Thomas Lombaerts Evan Kawamura George Gorospe Wendy Holforty Corey Ippolito Vahram Stepanyan Chester Dolph Nelson Brown

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

NASA Ames Research Center (ARC): Intelligent Systems Autonomous Systems – Distributed Sensing 2023 AIAA Scitech Forum January 24, 2023

Outline

2

1. Introduction 2. Simulation Infrastructure 3. Simulation Goals 4. Simulation Scenarios & Results 5. Conclusion

Objective

- NASA investigates concepts, aircraft, and operations related to Advanced Air Mobility (AAM)
- Most challenging scenario for AAM enabling safe routine access in densely populated urban centers
- Requires a moderately high-fidelity simulation capability for development and evaluation of autonomy technologies in the urban environment while utilizing AAM concept vehicle dynamics
- Essential to simulate air and ground-based sensors, such as radar and LiDAR
- Enables the evaluation of NASA research concepts in autonomy for urban AAM operations on the path toward flight test evaluation

AAM Challenges

- Traditional surveillance and landing systems not practical for AAM operations
- AAM concepts require higher accuracy and performance compared to the current National Airspace System
- Cannot use GPS for self-reporting surveillance and navigation technologies in GNSS degraded environments as GPS can be highly unreliable in urban areas with high raised building and skyscrapers

Distributed Sensing Goals

- DS concepts enable continuous and real-time monitoring of the physical and environmental conditions from overlapping sensors through the entire length of the flight
- Develop a framework for incorporating geographically distributed (non-co-located) sensors and remote observations
- Address sensor drop-outs from degradation
- Provide persistent estimates across observations that meet minimum quality requirements and continuous evaluation of quality from each observation source (cross-validation and confidence)

- Not practical to flight test all the AAM operations without proof of concept
- Simulating the state-of-the-art sensors in a distributed framework
	- Provides a proof of concept
	- Saves time and money
- This simulation architecture
	- Helps test various normal to adverse flight situations
	- Fuses all the sensor modules for the RVLT aircraft model in an urban scenario
	- Follows the proposed guidelines of the Federal Aviation Administration

Outline

7

1. Introduction 2. Simulation Infrastructure 3. Simulation Goals 4. Simulation Scenarios & Results 5. Conclusion

Simulation Architecture (RVLT)

Simulation Architecture (Octocopter)

Simulation Software Toolchain

Outline

11

1. Introduction 2. Simulation Infrastructure 3. Simulation Goals 4. Simulation Scenarios & Results 5. Conclusion

Simulation Goals

- Create a DS simulated environment for experiments and real-world applications and include hardware for field tests
- Implement multiple autonomous vehicles operating at the same time without any collisions
- a solution for vertiport a
- sensors to ensure safe of
- all sensors and estimate

Outline

1. Introduction 2. Simulation Infrastructure 3. Simulation Goals 4. Simulation Scenarios & Results 5. Conclusion

Simulation Scenarios

- 1. AAM regional operations simulation in San Francisco bay area
	- Middle Harbor Park (MHP) to Fifth and Mission Garage (FMG) scenario
	- Fifth and Mission Garage (FMG) to Middle Harbor Park (MHP) scenario
- 2. AFRC Vertiport Mockup Precision Approach, Landing, and Terminal Area Operations
	- Parallel flight test activity at NASA AFRC supporting validation
- 3. Ames Smart Mobility Build 1 Flight Test Scenarios
	- 14 • Parallel flight test activity at NASA Ames supporting validation

15

AAM regional operations simulation in San Francisco bay area

-
- cruise AGL
- 50 knots for
-
-

Kaiser Permanente Parking Garage a 9-degree Fisherman's Wharf Middle Harbor Shoreline Park • Other vertiport Mason Center Ferry Building Pier 24

Fifth and Mission Garage Eifth & Mission Garage Vertiport

JCSF Medical Center at Mission Bay

Figure 1.1 Anding pades with Landing pades with landing pades with landing pades of the Colden Gale Fields (FMG) building in Section 1, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 199

16

MHP and FMG Vertiport Configurations

[1] Federal Aviation Administration, "AC 150/5390-2C - Heliport Design," U.S. Department of Transportation, 2012. URL https://www.faa.gov/documentLibrary/media/Advisory_Circular/150_5390_2c.pdf.

Full-scale Lights Configuration [1]

- 28 Final approach and takeoff area (FATO) Edge lights
- 16 Touchdown and liftoff area (TLOF) Edge lights
- 5 omnidirectional lights
- 7 helipad lights
- 24 wing and edge bars

[1] Federal Aviation Administration, "AC 150/5390-2C - Heliport Design," U.S. Department of Transportation, 2012. URL https://www.faa.gov/documentLibrary/media/Advisory_Circular/150_5390_2c.pdf.

https://www.faa.gov/documentLibrary/media/Advisory_Circular/150_5390_2c.pdf.

SCGECHE-ull-scale Lights Configuration in X-Plane

SCO ECHO MHP and FMG Ground Sensor Stations NASA

<u>The location of all the ground sensor stations in the simulation</u> Tabie z

Legend

Camera Location Route

Simulated Sensor Views

AFCHOLARE CONTROL CONTROLL CONTROLLER CONTROLLER Landing, and Terminal Area Operations

- The vertiport and the landing lights use the same configuration as that of MHP
- Since the physical installation of the lighting system could be time consuming and expensive, AFRC flight test uses cones to replace the landing lights, which provides fiducials for vision-based AAM PAL [2,3]
- Simulation descent begins at an altitude of 498 ft with a speed of 70 knots which

gradually reduces until touch down

[3] Kawamura, E., Dolph, C., Kannan, K., Lombaerts, T., and Ippolito, C. A., "Distributed Sensing and Computer Vision Methods for Advanced Arthur Methods for Advanced Andre and Londing " ALAA SeiTech 2022 Ferum 2022 [2] Kawamura, E., Kannan, K., Lombaerts, T., and Ippolito, C. A., "Vision-Based Precision Approach and Landing for Advanced Air Mobility," AIAA SCITECH 2022 Forum, 2022, p. 0497. Mobility Approach and Landing," AIAA SciTech 2023 Forum, 2023.

SCOFCHOLARE CONTROLL CONTROLLER VERTICE CONTROLLER CONTR

SCOECHOLAMES Smart Mobility Build 1 Flight Test Scenarios

- Takes place in a region referred as "DART site" inside the NASA Ames Research Center for corridor surveillance.
- The flight cruises at an altitude of 50 feet AGL
- 4 ground sensor stations each has a camera and a radar
- The post processing EKF in Matlab utilizes the outputs from these ground stations along with the onboard sensor suite [4, 5]

[5] Stepanyan, V., Kannan, K., Kawamura, E., Lombaerts, T., and Ippolito, C., "Target Tracking with Distributed Sensing and Optimal Data Migration,"
ALAA SeiTaeb 2022 Ferum, 2022 [4] Lombaerts, T., Kannan, K., Dolph, C., Stepanyan, V., George, G., and Ippolito, C., "Distributed Ground Sensor Fusion Based Object Tracking for Autonomous Advanced Air Mobility Operations," AIAA SciTech 2023 Forum, 2023. AIAA SciTech 2023 Forum, 2023.

Ames Smart Mobility Build 1 X-Plane View

Current work involves updating the scenery of the DART site in X-Plane

Outline

1. Introduction 2. Simulation Infrastructure 3. Simulation Goals 4. Simulation Scenarios & Results 5. Conclusion

Conclusion

- The DS simulation framework enables testing of different scenarios under AAM concepts and operations while utilizing AAM/UAM vehicles
- Adequate simulations reduce the costs associated with flight testing in difficult urban areas
- Serves as a baseline for scientists and engineers to experiment multiple ideas and algorithms
- Future work
	- Expanding the simulated environment
	- Simulating multiple vehicles flying simultaneously
	- Integrating hardware testing platforms for flight tests

References

- 1. Federal Aviation Administration, "AC 150/5390-2C Heliport Desig https://www.faa.gov/documentLibrary/media/Advisory Circular/1
- 2. Kawamura, E., Kannan, K., Lombaerts, T., and Ippolito, C. A., "Visio Landing for Advanced Air Mobility," AIAA SCITECH 2022 Forum, 20
- 3. Kawamura, E., Dolph, C., Kannan, K., Lombaerts, T., and Ippolito, C. Computer Vision Methods for Advanced Air Mobility Approach and Forum, 2023.
- 4. Lombaerts, T., Kannan, K., Dolph, C., Stepanyan, V., George, G., and Sensor Fusion Based Object Tracking for Autonomous Advanced A SciTech 2023 Forum, 2023.
- 5. Stepanyan, V., Kannan, K., Kawamura, E., Lombaerts, T., and Ippoli Distributed Sensing and Optimal Data Migration," AIAA SciTech 20

The authors would like to thank the NASA Data and Reasoning Fabric (DRF) team for their collaboration and support.

Thank you for listening! Questions?

