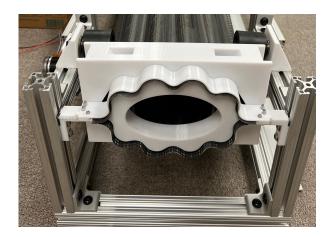
Structural Architectures for Self-Erecting Lunar Towers

Jacob G. Daye and Andrew J. Lee North Carolina State University, Raleigh, NC

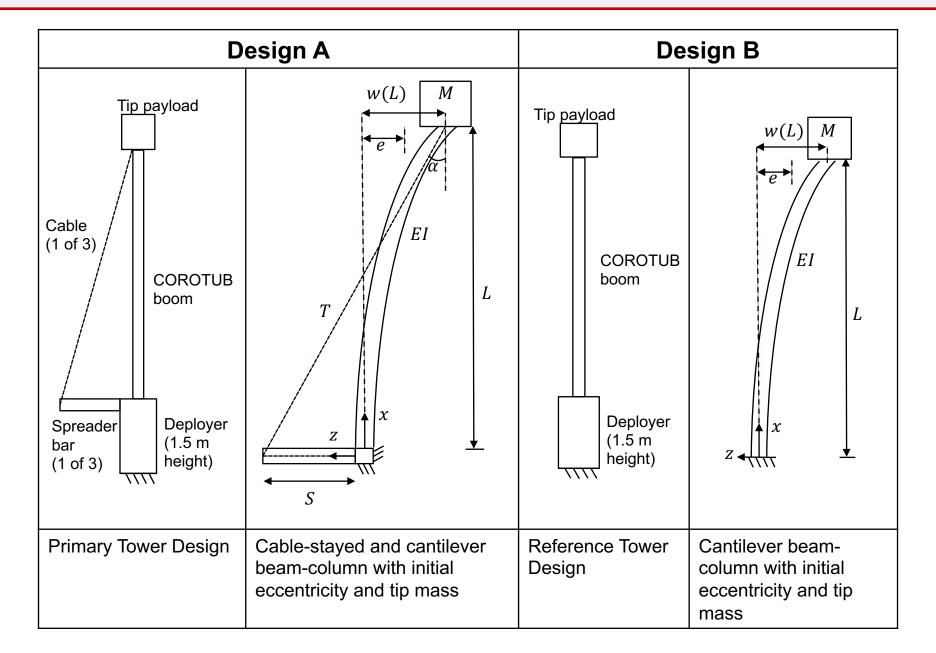

Juan M. "Johnny" Fernandez
NASA Langley Research Center, Hampton, VA


- Develop framework for determining allowable-mass support limit for extraterrestrial self-deploying towers
- Parametrically optimize structural performance (deflection and tip mass)
- Compare allowable tip mass between cable-stayed and reference designs with COROTUB and CTM booms

COROTUB deployment mechanism

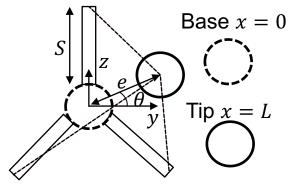
CTM cross-section


COROTUB plug shape


COROTUB cross-section developing from spool

Deployable rigging system [1] – primary tower design for this analysis.

SELTI Structural Designs

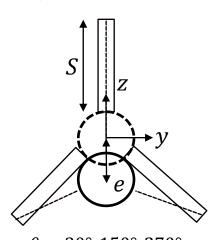


Lateral deflection described by polar coordinates:

$$r = w(L)$$

$$y = r * \sin \theta$$

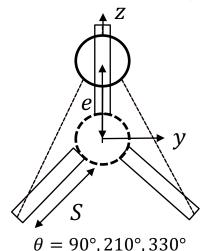
$$z = r * \cos \theta$$



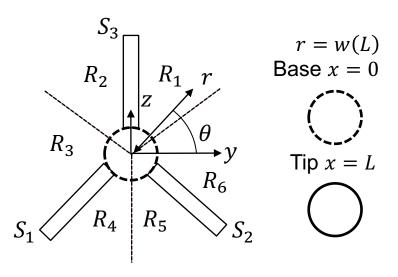
Top-down projection of tipmass deflection for design A

General Deflection Definition – Radial Symmetry

- For the general definition, two cable tensions T₁ and T₂ contribute towards both corrective and compressive forces
 - Third cable offers no corrective force, so not considered (zero tension).
 - T₁ refers to the 'long' cable and T₂ is the 'short' cable
- Six regions of radial symmetry arise from three-bar design
 - R_1 considered for analysis. Can be extended to general deflection by symmetry.


Region boundaries described by two limiting cases:

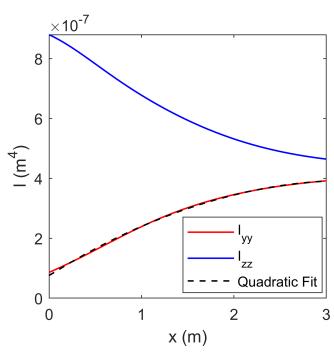
 $\theta = 30^{\circ}, 150^{\circ}, 270^{\circ}$


Case 1 – Deflection is directly **opposite** one spreader bar:

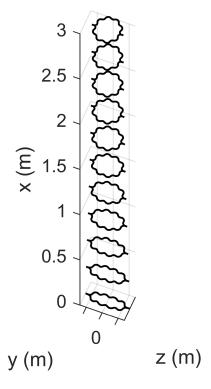
$$T_1 \neq 0, T_2 = 0$$

Case 2 – Deflection is directly **along** one spreader bar:

$$T_1 = T_2$$



Regions of radial symmetry and corresponding cable assignments


Region	Long cable, T ₁	Short Cable, T ₂	heta range
R ₁	S ₁	S_2	$30^{\circ} < \theta < 90^{\circ}$
R ₂	S_2	S ₁	$90^{\circ} < \theta < 150^{\circ}$
R ₃	S ₂	S_3	$150^{\circ} < \theta < 210^{\circ}$
R ₄	S ₃	S_2	$210^{\circ} < \theta < 270^{\circ}$
R ₅	S ₃	S ₁	$270^{\circ} < \theta < 330^{\circ}$
R ₆	S ₁	S ₁	$330^{\circ} < \theta < 30^{\circ}$

COROTUB Profile and Properties

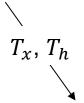
- Plug shape enforces smaller cross section than nominal shape; second moment of area, $I \to I(x)$
 - Cross-section assumed constant beyond transition length, $L_T \otimes x = 3 m$
- Quadratic fit of I_{yy} chosen as conservative analytical estimate for deflection and tip mass model

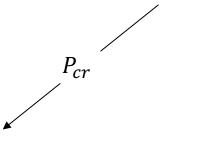
Second moment of area distribution for transition region of COROTUB

COROTUB cross-section shape from plug (x=0) to nominal shape (x=3)

Property	Symbol	Value(s)	Units
Boom Length	L	5 to 30	m
Boom Deflection Limit	w_{lim}	0.03	None
Boom Max Eccentricity	e_{max}	0.0275	None
Boom Linear Mass Density	ho	0.15	kg/m
Boom Elastic Modulus	E	80.7	GPa
Boom Deflection Direction	heta	30 to 90	0
Normalized Spreader Bar Length	Ŝ	0 to 0.2	None

 $I_{yy} < I_{zz}$; A conservative estimate of M_A uses a quadratic fit of I_{yy} , therefore:


$$I(x) = \begin{cases} -2.937 \times 10^{-8} x^2 + 1.932 \times 10^{-7} x + 7.572 \times 10^{-8} \text{m}^4 & 0 \le x \le 3 \text{ m} \\ 3.918 \times 10^{-7} \text{ m}^4 & x \ge 3 \text{ m} \end{cases}$$


Development of Analytical Model

Compute total compressive cable tension T_x and corrective cable tension T_h

Estimate critical buckling load with Rayleigh-Ritz method

Compute corrective deflection with beam equations

 $w_c(L,T_h)$

$$w(L) = \frac{\text{Total tip deflection:}}{1 - \frac{1}{P_{cr}} \left(T_x + Mg + \frac{3}{10} \rho L \right)} + w_c(L)$$

 $egin{picture}(1 - e \left(\frac{1}{1 - \frac{P}{P_{cr}}} \right)$

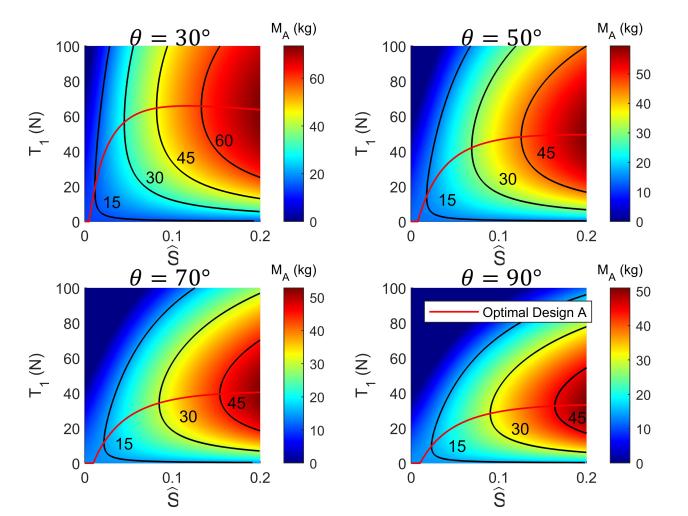
 $P = T_x + Mg + \frac{3}{10}\rho L$

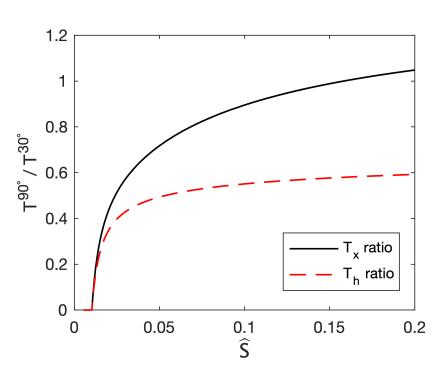
Total Compressive Load

Initial eccentricity amplified by load factor [2]

Solve for tip mass:

$$M_A = \frac{P_{cr}}{g} \left(\frac{e}{w(L) - w_c(L)} + 1 \right) - \frac{T_x}{g} - \frac{3}{10} \rho L$$

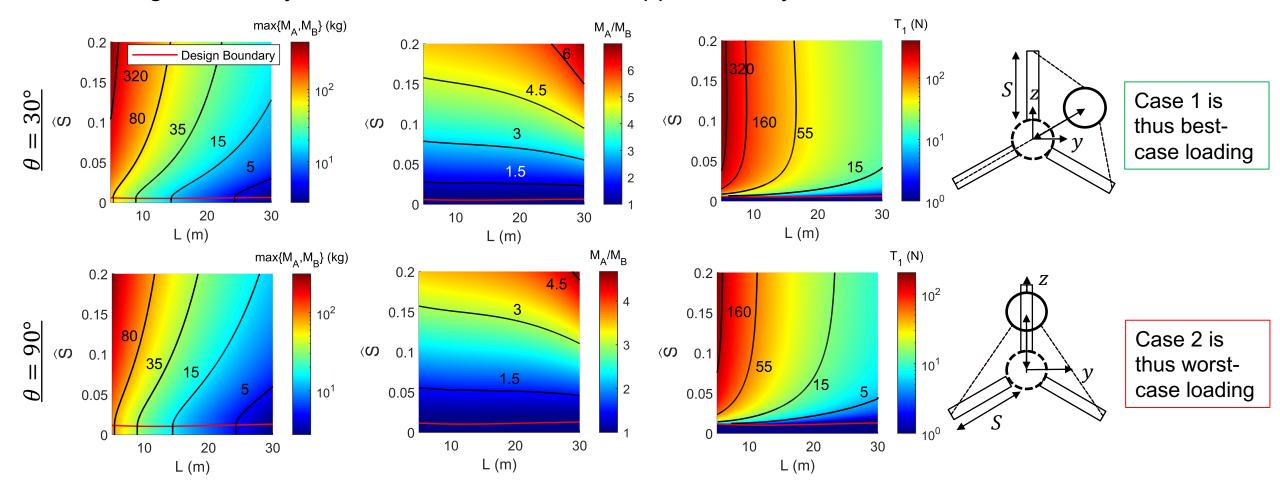



Taking $T_x = T_h = 0$ gives design B:

$$M_B = \frac{P_{cr}}{g} \left(\frac{e}{w(L)} + 1 \right) - \frac{3}{10} \rho L$$

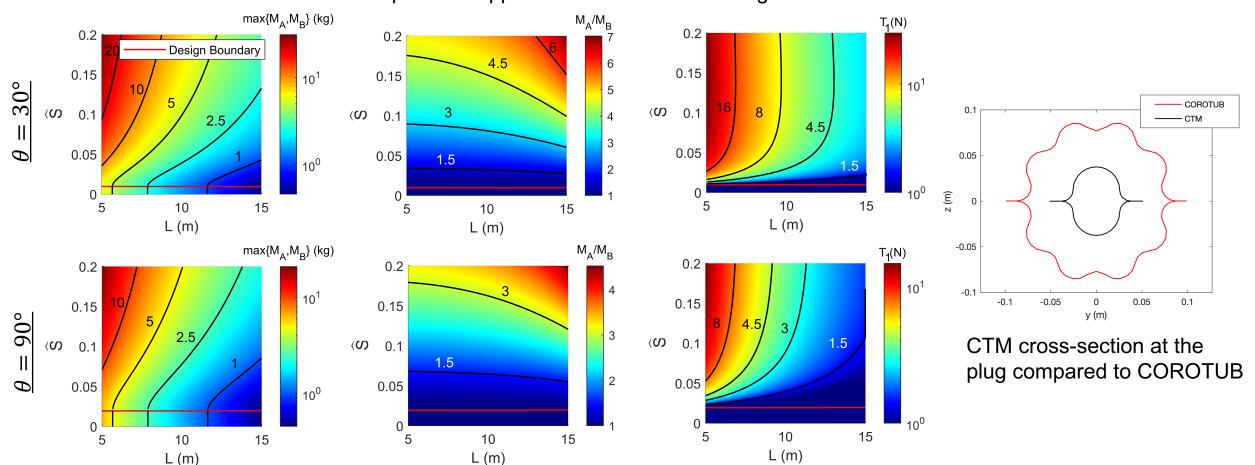
Optimization of Allowable Tip Mass -L = 15m

- Optimal allowable tip mass is found by maximizing $T_h(T_1)$ and minimizing $T_x(T_1)$
- A critical limit is identified where optimal $T_1 < 0$ for small values of $\hat{S} = S/L$
 - In this region, we set $T_1 = 0$ and by extension, $M_A = M_B$



 M_A is found to decrease with increasing θ (R_1). For all regions, M_A decreases as θ approaches case 2.

Full Comparison – COROTUB


- Design A outperforms design B for most of the design space: where optimal $T_1 \neq 0$
- Below design boundary, design B would be favorable due to excess mass of cable system.
- Design boundary is found to increase with θ ; approximately double from case 1 to 2.

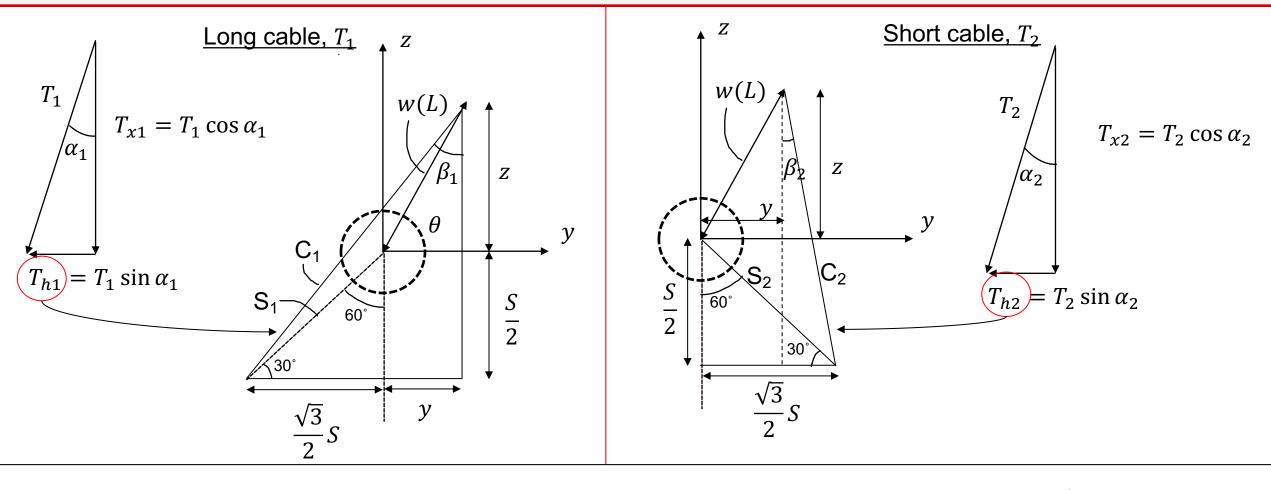
Full Comparison – CTM

Process for analysis is the same as for COROTUB, but certain properties are changed. Notably, $I \rightarrow$ constant

- Specific trends found to be identical to COROTUB analysis
- In general, reduced flexural stiffness results in lower allowable tip mass across entire design space
 - CTM tower found to have a practical upper limit on boom tower length due to reduced stiffness.

Conclusions

- Framework developed for quantifying the structural benefit of a cable-stayed support system for lunar towers.
 - Primary comparison metric is allowable tip mass
- Cable-stayed design outperforms unsupported tower for most tower heights and spreader bar lengths.
 - Optimizing cable tension reveals design boundary is low normalized spreader bar length.
- Deflection model is described by six regions of radial symmetry and bounding cases
 - Deflection directly opposite one spreader bar yields highest allowable tip mass
- Deflection limits imposed are considered conservative; results likely underestimate practical allowable tip mass.


Thank you!

Appendix

Decomposition of Tension forces

- Decomposing tension into vertical, x, and horizontal, h, components gives expressions for corrective T_h and compressive T_x loads for both cables T_1 and T_2 .
- Expressions for T_x , T_h , and T_2 , are found in terms of T_1 , w(L), and θ , simplifying inputs to the model.