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1. Abstract 
Wichita, Kansas is experiencing a host of climate threats, particularly extreme heat manifested through Urban 
Heat Islands (UHI). Heat is unevenly distributed within cities due to factors such as income inequality, 
historical discriminatory practices like redlining, and divestment in neighborhoods of color. This leads to less 
vegetation and more heat-absorbing infrastructure in specific communities. Moreover, adverse effects of heat, 
including heat-related morbidity and mortality, disproportionately impact populations that experience 
vulnerability through social inequities and structural discrimination. Heat vulnerability is a combination of the 
factors of heat exposure, sensitivity, and adaptive capacity, and can be harnessed to guide urban heat 
interventions. This DEVELOP project partnered with the City of Wichita to understand the spatial 
distribution and drivers of UHIs and heat vulnerability indicators. The team modeled outcomes of tree cover 
interventions using Landsat 8’s Thermal Infrared Sensor (TIRS) and Operational Land Imager (OLI), Landsat 
9 TIRS-2 and OLI-2, and the International Space Station’s Ecosystem Spaceborne Thermal Radiometer 
Experiment on the International Space Station (ECOSTRESS) sensor, along with the Integrated Valuation of 
Ecosystem Services and Tradeoffs (InVEST) Urban Cooling model. The team also leveraged statistical 
analysis by implementing principal component analysis to develop a heat vulnerability index (HVI) specific to 
Wichita. Ultimately, the project’s outputs will inform the City of Wichita’s Climate Adaptation and Mitigation 
Plan, identify priority areas for heat mitigation initiatives, and be used in public-facing communications to 
educate communities on the impacts of urban heat. 
 
Key Terms  
Environmental Justice, urban heat island, Landsat, ECOSTRESS, InVEST, tree canopy, climate mitigation, 
heat vulnerability 

2. Introduction 
2.1 Background Information 
2.1.1 Study Area   
Wichita, Kansas was founded in 1864 by white settlers on the land of the native Wichita people, initially as a 
trading post and then rapidly growing with agricultural settlements (Wichita | Kansas, United States | 
Britannica, n.d., Wichita Tree Canopy Assessment, 2018). Today, Wichita is the largest city in Kansas with a 
population of approximately 395,699 people (U.S. Census Bureau QuickFacts: Wichita City, Kansas, 2021). 
The city has a predominately white population, with large Black/African American, Asian, and 
Latino/Hispanic populations as well (U.S. Census Bureau QuickFacts: Wichita City, Kansas, 2021). Wichita 
has a median household income of $53,466 with 15.5% of the total population in poverty (U.S. Census 
Bureau QuickFacts: Wichita City, Kansas, 2021).  
 
Wichita is located in south-central Kansas on the Arkansas River and is a gently rolling plain with an elevation 
of 1,300 feet and about 101,534 land acres (Wichita | Kansas, United States | Britannica, n.d.). In 2017, 
Wichita had 23% existing urban tree canopy and 45% possible planting area (Wichita Tree Canopy 
Assessment, 2018). 
 
Daily weather in Wichita varies, but summers are hot, humid, and mostly clear, while winters are cold, snowy, 
and usually partly cloudy (Wichita Climate - Weather Spark, n.d.). However, the average summer temperature 
in Wichita has increased 1.3 degrees (F) since 1970. The number of days over 100 degrees (F) has historically 
increased, from 40 days in 1934 to 53 days in 2011 (US Department of Commerce, n.d., Wichita Eagle). It is 
projected that by 2100, the average temperatures could rise 2 degrees (F) above the historical average under a 
low-emissions scenario and 11 degrees (F) under a high-emissions scenario (Frankson et al., 2022). 
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Figure 1. Study area map with Wichita City boundary; red dot indicates location on inset map 

 
2.1.2 Heat Inequity  
Extreme heat is the deadliest weather-related event in the United States, as well as one of the least discussed, 
and climate change has raised the frequency, intensity, and duration of severe heat events (Marx & Morales-
Burnett, 2022). The built, urban environment is often hotter than neighboring rural areas due to a denser 
concentration of pavement, building, and other materials absorbing and retaining heat and a low amount of 
vegetation, creating the urban heat island (UHI) effect (Hsu et al., 2021; Marx & Morales-Burnett, 2022). This 
effect contributes to a wide range of public health issues, associated with heat strokes, dehydration, loss of 
work productivity, decreased learning, respiratory difficulties, and heat-related mortality (Hsu et al., 2021; 
Hondula et al., 2015). Extreme heat can also have severe impacts on mental health and increase city-wide 
rates of violence (Marx & Morales-Burnett, 2022).  
 
Heat risk (high exposure + high vulnerability) varies widely from city to city and is not experienced equally 
within communities (Marx & Morales-Burnett, 2022). Structural racism, income inequality, and historical 
discriminatory practices such as segregation and redlining can lead to underinvestment in neighborhoods of 
color and low income, leading to fewer green spaces and a higher concentration of heat-absorbing 
infrastructure in these areas (Marx & Morales-Burnett, 2022). Such practices lead to higher temperatures and 
less access to cooling for these marginalized populations (Marx & Morales-Burnett, 2022). Populations of 
low-income are also more likely to live in lower-quality housing with less access to affordable air conditioning 
(Chen, Ban-Weiss, and Sanders 2020; Farbotko and Waitt 2011). Certain populations are more vulnerable to 
the health impact of heat as well, such as children, the elderly, unsheltered individuals, outdoor workers, and 
people with pre-existing medical conditions, illuminating the need to focus on equity when addressing 
extreme heat in cities, such as Wichita (Marx & Morales-Burnett, 2022).  
 
In 2021, a survey of 69 large U.S. cities found that most reported not specifically addressing heat in 
sustainability, resilience, or climate action plans (Meerow and Keith 2021). However, changes are recently 
occurring with local governments dedicating efforts to address extreme heat (Marx & Morales-Burnett, 2022). 
Building climate resiliency is complex, and there is a need to be mindful of the cascading, unintended 
consequences of intervention on vulnerable populations as well as incorporate community voices in planning 
and implementation (Marx & Morales-Burnett, 2022).  
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2.1.3 Remote Sensing Approach 
Earth observations are a powerful tool in investigating the potential of increased canopy to reduce land 
surface temperatures (LST), which can be used as a proxy for air temperature to understand how extreme 
heat affects humans (Mutiibwa et al., 2015). LST has significant impact on human thermal comfort in both 
outdoor and indoor spaces during heatwaves and the summer months, and it can be used to understand how 
extreme heat disproportionately affects certain communities (Mashhoodi, 2021). Urban greening, through 
increased tree planting efforts, is a common response to mitigating heat risk as the potential of canopy cover 
to regulate temperatures is widely acknowledged (Ziter et al., 2019) Additionally, the spatial continuity and 
temporal repeatability of remotely sensed data acts as an advantage when investigating extreme heat and its 
impacts in urban areas over long duration of time (Stathopoulou and Cartalis, 2007).   
 
2.1.4 Findings from Term I 
The summer 2022 DEVELOP Wichita Climate Team collected LST, along with social vulnerability index 
(SVI) data, to visualize heat exposure through daytime and nighttime LST maps and analyze the heat risk on 
both a census block group and census tract level. The team used age, race, and income as proxies for heat 
vulnerability and identified three high-risk census blocks and 17 high-risk census tracts. The high-risk tracts 
were concentrated near the city center, while the city’s southwest area was found to have high-exposure yet 
medium vulnerability. The team also acquired tree canopy cover data to produce a tree canopy cover map, 
highlighting high coverage on the eastern side of Wichita and sparse coverage in and around the city center, 
which coincided with areas of high LST. 
 
2.2 Project Partners & Objectives  
The Fall 2022 DEVELOP Wichita Climate II Team continued the partnership with City of Wichita, who are 
interested in identifying the distribution of UHIs, areas of heat vulnerability and priority locations for heat 
mitigation initiatives. The City of Wichita is in the early stages of drafting their Climate Adaptation and 
Mitigation Plan, along with formulating tree canopy policies to mitigate the effects of extreme heat. To assist 
their decision-making process, the partners requested maps displaying the urban heat and tree canopy cover 
correlation, heat vulnerability, and priority areas for heat mitigation, which will ultimately help them better 
allocate resources to build climate resiliency across communities. Furthermore, the heat vulnerability maps 
and flyer, produced will be used to facilitate information to the residents of Wichita about the impacts of heat 
as well as to apply for future grants that benefit communities at risk from extreme heat and other 
environmental issues.  
 
3. Methodology 
3.1 Data Acquisition (Appendix Tables B1 & B2) 
Both remotely-sensed and geospatial data were collected for each of our analysis. They are listed in Table B1 
and B2. Table B1 lists the NASA Earth observations and data sets used, while Table B2 lists the ancillary 
datasets.  
 
Landsat 8 OLI/TIRS analysis-ready daytime LST product data were collected through Google Earth Engine 
(GEE) while nighttime LST data were collected through the Application for Extracting and Exploring 
Analysis Ready Samples (AppEEARS) API. These data were used to understand the spatial distribution of 
urban heat and as inputs into heat vulnerability analysis. For the creation of evapotranspiration maps, we 
obtained daily Evapotranspiration data from the ECOsystem Spaceborne Thermal Radiometer Experiment 
on Space Station (ECOSTRESS). Data were obtained from AppEEARS for the study period and filtered by 
peak evapotranspiration times, which are generally between 10:00 am and 3:00 pm, using Python. Census 
tract level sociodemographic data for Wichita was retrieved from five-year datasets in the 2020 American 
Community Survey (ACS) using the Census API in Python. 
 
The team acquired remotely sensed NASA Earth observation data within the study period (2017-2021, 
months of May through September); their acquisition methods and use are listed in Appendix B.   
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3.2 Data Processing 
As our project is a continuation of Summer 2022 Wichita Climate, we received data that were previously 
acquired and analyzed from the Centers for Disease Control (CDC), Climate and Economic Justice Screening 
Tool (CJEST), and the United States American Community Survey (ACS). Our team processed and 
compared our data to the previous terms to ensure continuity.  
 
3.2.1 Land Surface Temperature (LST)  
Data queried within the GEE platform were further filtered by year alongside months to provide images 
falling within the summer season for the summer period. Then, scenes were filtered by a cloud cover 
threshold for the entirety of the scene. The Quality Assessment (QA) band was applied and only images with 
less than 20 percent cloud cover were selected to ensure a higher quality output. To remediate the different 
Landsat missions, 8 and 9, that we drew from, the image collections were merged and sorted by time.  
 
In Python, we filtered ECOSTRESS nighttime land surface temperature images as those falling between 
01:00:00 and 05:00:00 Central Time. These images were cloud masked in order to ensure routine quality 
control. We reviewed each of the 74 images acquired by plotting histogram values, removing if they contained 
erroneous values. Null values were replaced by linear interpolation. Lastly, a composite, mean raster was 
created and imported into ArcGIS Pro, in order to calculate the mean zonal statistic per census block group 
and census tract.  
 
3.2.2 Tree Canopy Cover  
Tree canopy data were collected by Summer 2022 Wichita Climate Team during the previous term. For their 
process to assess tree canopy cover, the Term I team used a Random Forest (RF) supervised classifier and a 
Classification and Regression Trees (CART) on Planet imagery, which was acquired from NASA’s 
Commercial Smallsat Data Acquisition (CSDA) program. This supervised classification processes resulted in a 
binary raster, where values reflected the absolute presence or absence of tree canopy.  
 
3.2.3 Landcover (Appendix Figure A1) 
The InVEST model uses a landcover raster to format the spatial resolution of all output files. In ArcGIS Pro, 
we acquired and clipped the NLCD 2019 layer to our study area. The model requires all raster files to be in 
meters and in the same projection, so we chose the NAD 1983 HARN StatePlane Kansas South FIPS 1502 
(Meters) projection. InVEST calculates the cooling capacity and heat mitigation indices based off biophysical 
characteristics of each landcover type across the study area. To increase the spatial resolution of our outputs, 
we combined the landcover layer with Wichita’s census block groups. By splitting the land cover by census 
block groups, the team was able to modify the biophysical attributes of specific geographies within the study 
area, allowing us to simulate targeted canopy interventions for our project partners.  
 
In ArcGIS Pro, we rasterized our census block group layer to create a composite rater with the land cover, 
with pixel values reflecting both land cover and block group identifier. To allow us to merge the unique 
identifiers we multiplied the land cover raster by 1,000,000 to create space to add unique field ID values from 
our census block group layer. To create a new field of unique values we concatenated the string values of 
each pixel landcover typing and census block group field ID. This calculation results in values like 2200278, 
with22 as the land cover code for developed low-intensity land and 00278 as the census block group field ID 
created in ArcGIS Pro. This methodology output approximately 1,800 unique fusions of land cover and 
census block groups as most census block groups contain multiple land cover types. The result is a raster and 
table in which each area that is defined by a two-character land cover class, and a 5-code census block group 
identifier. This ensured that our InVEST model could output results at a finer resolution, and simulations 
could be carried out in focus areas.  
 
3.2.4 Shade (Appendix Figure A2) 
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Shade is an important input into the InVEST model’s biophysical attribute table. For our project we are using 
canopy cover percentage as an analog for shade. To calculate shade, we snapped the Term I binary tree cover 
raster to our concatenated landcover and census block group layer. Then, we used the Zonal Statistics tool to 
yield a mean value for canopy cover percentage for each landcover type per census block group. This allowed 
the team to change shade metrics in the biophysical attribute table for each landcover type in each census 
block group instead and enabled the team to increase or decrease shade percentage manner that is aligned 
with out project partners urban forestry capacity.   

 
3.2.5 Evapotranspiration (ET- Appendix Figure A3)  
The InVEST model uses ET as an input as the process involves absorption of heat to convert water to vapor, 
thereby creating a cooling effect. After filtering acquired daily ET data by time, the images were further 
filtered by manually inspecting each file for maximum coverage, reasonable values, and accuracy in alignment 
of linear features. A mean composite from the remaining images was created using the Cell Statistics tool in 
ArcGIS and clipped to the Wichita city limits. This provided value as latent heat flux in W/m2, which was 
converted to mm/day per the requirements of InVEST Urban Cooling model, using a modified format of the 
Penman-Monteith equation stated below.  
 

ET [mm day-1] = ET [W m-2] * 0.0864 J-1m2s * 0.408 mm day-1 
        (1) 

 
3.2.6 Albedo (Appendix Figure A4) 
To calculate albedo, the Landsat 8 OLI-2 TOA product was processed with Liang’s (2001) for narrowband to 
broadband conversions of land surface albedo, below.  
 

𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  = 0.356𝑏𝑏2+ 0.130b4 + 0.373b5 + 0.085b6 + 0.072b7 - 0.0018   
        (2) 

 
The mean aggregate of these images was calculated in Google Earth Engine, and then imported into ArcGIS 
Pro, where it was projected and clipped to the Wichita city limits. To calculate albedo for our concatenated 
landcover and census block group layer, we utilized the Zonal Statistics tool to quantify a mean value for each 
landcover type per census block group. This method allows for a more nuanced analysis of the spatial 
distribution of albedo across landcover types and census block groups instead of for each landcover type 
across the entire city. 
 
3.2.7 Heat Risk and Vulnerability (Appendix Figure A5 & Table B3) 
The sociodemographic variables used for calculating an HVI were collected using the Census API in Python. 
These variables are formed as a percent of, or estimates of, the population based on the total number of 
respondents for each Census question per tract. Air quality variables were acquired through EJ Screen. Health 
variables of asthma, coronary heart disease, and stroke prevalence were collected from the CDC PLACES 
dataset by Wichita Census tract. Remaining variables were extracted from the American Community Survey 
(ACS) from the year 2020. These variables are detailed in Table 3. Chosen variables fell within three broad 
categories: adaptive capacity, exposure, and sensitivity. Adaptive capacity refers to a person’s ability to adjust 
to environmental change, exposure is a measure of direct or indirect environmental characteristics a person is 
subject to, and sensitivity implies the susceptibility of people to the impacts of heat. To create an HVI that 
encompassed different factors of vulnerability, we incorporated sociodemographic data with physical 
characteristics of Wichita at the tract level. These physical characteristics were captured through the 
calculation of spectral indices, visualized in Figure A5: 
 

• NDBI to measure the built-environment, which typically exacerbates heat 
• NDWI to measure the presence of water, which provides temperature cooling effects 
• NDVI to measure vegetation, which counteracts heat 
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Table B3, found in Appendix B, lists all variables used for quantifying heat risk, representing each of the three 
categories defined above. 

3.3 Data Analysis  
3.3.1 Heat Exposure (Appendix Figures A6 & A7) 
Image composites obtained post-processing of the daytime LST data from GEE were analyzed on the 
ArcGIS platform. A mean daytime LST per census block group and tract was obtained by using the Zonal 
Statistics by Table tool in ArcGIS Pro. Nighttime LST images obtained from ECOSTRESS ECO2LSTE.001 
and processed in Python also underwent similar analysis. The resulting images were aggregated by their mean, 
and exported in the TIFF file format. Zonal statistics were implemented to retrieve mean land surface 
temperature per census block group and tract in Wichita. Visualizations for daytime LST and nighttime LST 
can be found in Appendix Figures A6 and A7. 
 
3.3.2 InVEST Urban Cooling Model  
To understand the spatial distribution of heat burden in Wichita our team utilized the Natural Capital Project 
from Stanford University’s InVEST 3.11 urban cooling model. The model uses inputs of evapotranspiration, 
landcover, shade, albedo, and distance from cooling islands (green areas larger than two hectares) to create a 
relative cooling capacity and heat mitigation index. To run the model, our team acquired raster files of land 
cover and evapotranspiration and created a biophysical attribute table to link environmental attributes to land 
cover classes within Wichita.  
 
Our team ran multiple canopy adaptation scenarios within InVEST to demonstrate how canopy cover is 
directly associated with heat burden. For our first model, we ran a business-as-usual scenario where all 
biophysical attributes reflected the current canopy conditions in Wichita. These baseline values were used as 
comparison to other adaptation scenarios that the team ran. The three additional scenarios we ran are a 
canopy decrease of 10%, an increase of 10%, and an increase of 30%. Because the City of Wichita has 
jurisdiction over certain land cover types, our team only increased shade in developed land cover types 21, 22, 
23, 24.  
 
The model calculates the cooling capacity index based on evapotranspiration, albedo, and shade. This is 
demonstrated in the equation below. Here, ETI is the evapotranspiration index of each pixel, calculated by 
multiplying the crop coefficient (always a value of 1 for actual evapotranspiration data) and the reference 
evapotranspiration values.  
 

𝐶𝐶𝐶𝐶 − 𝑑𝑑𝛼𝛼𝑦𝑦 = (0.6 ⋅ 𝑠𝑠ℎ𝛼𝛼𝑑𝑑𝑎𝑎) + (0.2 ⋅ 𝛼𝛼𝑎𝑎𝑏𝑏𝑎𝑎𝑑𝑑𝑎𝑎) + (0.2 ⋅ 𝐸𝐸𝐸𝐸𝐸𝐸) 
 
Further, if the pixel is located within 500m of a cooling island, the model calculates the effect on cooling 
capacity to output a heat mitigation index (HMI). All pixel values that are not within 500m of a cooling island 
receive a value equal to the pixels associated cooling capacity index value. Utilizing the Zonal Statistics tool 
enabled the team to extract mean HMI values for every canopy adaptation scenario at both the city-wide and 
focus area resolution. This allowed the team to quantify the impacts of urban canopy on the urban thermal 
landscape.  
 
3.3.3 Heat Risk and Vulnerability Analysis (Appendix Tables B4 & B5) 
To assess heat risk and vulnerability holistically, we implemented statistical analyses guided by qualitative 
understanding. We integrated our chosen variables and created a composite score of overall 
sociodemographic vulnerability per census tract through principal component analysis (PCA). PCA is a 
quantitative method through which we can input a set of highly correlated variables and output principal 
components, or groupings of variables which explain the maximal variation found within the dataset overall. 
The variables in the first principal component can best describe the variation found within the dataset, and 
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this ability declines with each succeeding principal component. The team performed PCA on the input 
variables listed using the R programming language.  
 
After conducting PCA, we interpreted each principal component by scores given to each variable within. 
Variables which had the highest scores above a threshold, 0.35, within each principal component were used as 
defining the overall category represented by the principal component. Using this tactic, our principal 
components explained variance and contributed towards heat vulnerability through the groupings illustrated 
in Appendix Table B5. They are labeled as: sensitivity by population makeup and pre-existing health 
conditions, sensitivity and adaptive capacity by population makeup, compromised exposure to heat, sensitivity 
to air quality and adaptive capacity, adaptive capacity, and finally, urban development. These principal 
components allowed us to understand vulnerability through the vantage point of variable interactions. 
 
Additionally, to measure the association of the calculated HVI with historic influences of discrimination, the 
composite HVI score was aggregated by historic redlining grade boundaries, where neighborhood grades as 
defined by the HOLC are as described in Appendix Table B4. This allowed us to leverage the systematized 
influence of vulnerability into our analyses. 
 
4. Results & Discussion 
4.1 Analysis of Results 
4.1.1 InVEST  
The spatial distribution of heat burden in Wichita varies greatly. Due to the large concentration of impervious 
surfaces in areas like central and southwestern Wichita, these areas have a lower capacity to mitigate urban 
heat and a higher prevalence of UHIs. Although the Arkansas river bisects the southwestern region, it does 
not alleviate the effect of impervious surfaces absorbing and emitting thermal radiation as well as it does in 
other parts of the city. In the area north of US-400, the Wichita Art Museum is flanked to the East and West 
by the Little Arkansas River and Arkansas River respectively. Here, the presence of two water bodies and 
relatively high tree canopy contributes to high cooling capacity and heat mitigation values, demonstrating the 
effect of water and shade on the urban thermal landscape.   
 
Overall, the InVEST model’s outputs displayed that north-east Wichita had a greater capacity for cooling as 
indicated by the blue and green pixel values. Localized areas with less capacity to cool included central and 
south-west Wichita as well as the historically redlined zip code, 67214. Utilizing the EPA’s EJ Screen Tool, 
we found that the sociodemographic snapshot of this zip code has lower-income, less educational attainment, 
and a greater population of people of color when compared to other areas that were not historically redlined.  
The implications of the results informed the assumption that sociodemographic indicators can be used to 
estimate the location of heat burden within Wichita.  
 
To create different outputs of the model with regards to tree canopy, an initiative of priority to the City of 
Wichita, shade values were modified to reflect best-case, business-as-usual, and decreasing trend scenarios in 
tree canopy. Our business-as-usual canopy adaptation scenario demonstrates that currently, Wichita’s mean 
heat mitigation index (HMI) value is .360. Index values closer to zero indicate that pixel cannot mitigate 
urban heat well. Conversely, scores closer to 1 mean that pixel is doing a better job of mitigating urban heat. 
Our focus area, zip code 67214 has a mean HMI score of 0.331, below the City’s average HMI score. The 
decreasing canopy scenario reflects Wichita’s declining canopy demonstrates how with less urban canopy, 
Wichita’s mean HMI score drops to 0.351, with the focus zip code yielding a value of 0.319. Our final 
adaptation, best-case scenario, is an ambitious target of increasing canopy by 30%. Here, Wichita’s mean 
HMI increases to 0.389 with our focus zip code leaping to 0.365, a value higher than Wichita’s current HMI 
mean.  
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Figure 2. Output for Cooling Capacity. Cooler blues and purples indicate higher cooling capacity; warmer 

yellows and reds indicate low cooling capacity 
 

 
 

Figure. 3 Output for Heat Mitigation Index from the InVEST Urban Cooling Model for the City of Wichita. 
Blues indicate higher capacity to mitigate heat; warmer yellows indicate low capacity to mitigate heat. 

 
4.1.2 Heat Vulnerability and Environmental Justice 
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Our composite HVI score largely reflects trends in daytime urban heat, with observable clustering in South-
Central Wichita and extending to some western tracts. Notably, a large portion of Southwest Wichita and a 
comparatively smaller portion of north-east Wichita show low HVI clustering. While portions of these areas 
do have a population makeup we defined as “vulnerable” - such as low income and low educational 
attainment—these areas more notably have a lack of racial and ethnic diversity. This sociodemographic 
characteristic is a major indicator of heat burden and susceptibility, and can be found in tandem with 
comparatively higher counts of unemployed populations, those over 65 with a disability, and who may not 
speak English proficiently.  

 
Figure. 4 Heat Vulnerability Index by census tract map created using HVI values obtained from PCA. Darker 

reds indicate higher vulnerability to heat; lighter yellows indicate low vulnerability to heat. 
 

In order to quantitively measure the relationship between the HVI, non-white, over 65 with a disability, non-
English proficient populations, built-up area, and daytime LST, we implemented Geographic Weighted 
Regression (GWR). GWR is a form of spatial linear regression which inputs a dependent variable and 
measures the linear relationship between it and one or more explanatory variables. It furthermore calculates 
the statistical significance of the explanatory variables’ ability to predict the dependent variable, and quantifies 
how much of the variation found within the explanatory variable can be explained by the dependent variables. 
Using HVI as the dependent variable and non-white population counts, non-English proficient population 
counts, over 65 with a disability population counts, built-up area, and daytime LST as explanatory variables, 
our analysis indicated these three variables, combined, explained approximately 78% of the variance found 
within the HVI score. Without daytime LST, non-proficient English, over 65 with a disability, and racial 
minority populations were attributed as explaining approximately 55% of the variation found within the HVI. 
These results indicate that, above all, a census tract with a large non-white population has a high probability 
of having high urban heat, and older populations impaired and especially sensitive to subsequent heat impacts 
are especially susceptible.  

 
To further explore this relationship, we turned towards historic influences of discrimination on present-day 
urban heat by aggregating our composite HVI scores by historic redlining grade boundaries. While we 
expected to see a growth in HVI with successive HOLC grades, results indicated that that grade A areas 
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encompass the second-highest mean of HVI, grade B has the lowest mean HVI, and grade C has the third 
highest. From these results, it can be inferred that the population makeup of these areas has changed over 
time. We can assume that marginalized populations that were concentrated largely in downtown and Central 
Wichita in the time of redlining has dispersed throughout the city. By visualizing the spatial distribution of 
sociodemographic indicators of vulnerability, we can confirm that many of these populations are no longer 
confined to Central Wichita, and often their spatial distributions do not have a clear trend.  
 

 
Figure. 5 Distribution of HVI Within Historic Redlining Grades 

 
Historic influence of discrimination on present-day vulnerability, however, can be seen in the mean HVI for 
grade D areas, where the index is the highest and approximately double the second-highest HVI mean by 
HOLC grade. This indicates that while geographic mobility and population growth may have affected areas 
less vulnerable through the perspective of redlining, the crucial and most vulnerable populations in present 
day still fall within the influence and reach of the most severe historic discriminatory practices.  
 

 
5. Conclusions 
Through our analyses, our team identified areas of Wichita that face a disproportionate heat burden. Areas 
that were historically redlined, like the 67214 zip code, exhibit how redlining and discriminatory practices 
align with present day communities that experience heat vulnerability. We found that areas in downtown 
Wichita near this zip-code, on an average, were exposed to higher land surface temperatures (~101 degrees F) 
during the summer days. Higher average daytime temperatures were also observed in southwest Wichita near 
the airport and residential areas around southeast Wichita. The high daytime temperature can exacerbate the 
heat burden for the vulnerable population in these areas. Average nighttime temperatures were relatively 
much lower throughout the city. Utilizing the InVEST model, we demonstrate how cooling capacity can be 
increased through canopy adaptation efforts leading to a reduction of heat burden on populations that 
experience vulnerability. Our analysis determined that through focused urban forestry initiatives, Wichita can 
act to mitigate heat on developed land cover types. The heat mitigation outputs visualize the how biophysical 
variables determine the spatial distribution of heat and can be used as a tool for identifying priority areas for 
mitigation efforts. This output is also useful in illustrating how canopy directly impacts heat burden and can 
be leveraged in the hands of policy makers into informed decision making.  

In order to further quantify the relationship between vulnerability and urban heat, we conducted heat risk and 
heat vulnerability analysis. This analysis delineated areas within the city particularly vulnerable and susceptible 
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to unjustly distributed high heat burden. We were furthermore able to classify groupings of our variables 
through PCA to explore determinants of social vulnerability categorically. Results indicated that, while high 
heat vulnerability indices were dispersed throughout Wichita, observable clustering could be seen in South-
Central and Southwest Wichita. Additionally, many of these areas fell within discriminatory redlining areas 
that received the lowest grade. Through qualitative assessment, areas with high racial minority, with those 
over 65 with a disability, and those with low English proficiency were isolated as those absent from areas of 
low HVI. Quantitatively assessing the relationship of these variables with areas of high heat revealed a strong 
statistical correlation with their ability to influence HVI scores. These results can be used for Wichita to 
identify priority areas for focused heat intervention initiatives, to understand the sociodemographic inner-
functioning of heat distribution, and finally how these variables can act as determinants or drivers of 
environmental characteristics which make them especially at risk.  

We created a flyer, poster and presentation to relay our findings to a public facing audience, understanding 
that for Environmental Justice to be effective and interactive, community engagement is necessary. 
Furthermore, we recognize that the creation of a robust Climate Action and Mitigation Plan can benefit from 
community mapping campaigns, surveying, focus groups and interviews to grasp the needs of the residents it 
serves, and ensuring accessible science communication is a crucial step forward.  

Urban heat places a disproportionate burden on communities that experience vulnerability. However, 
through exploring the relationship between sociodemographic indicators of vulnerability and the spatial 
distribution of heat, the City of Wichita is taking the first steps to remediate these environmental injustices. 
By providing the City of Wichita with different forms of nuanced urban heat analysis, we hope they are 
empowered to tackle the complex and institutionalized issues associated with Environmental Justice and 
urban heat, incorporate data-driven solutions into Wichita’s community needs, and take concrete steps 
towards heat equity and climate resiliency. 

6. Acknowledgments 
6.1 Land Acknowledgement 
Our team acknowledges that the geographic boundaries utilized for our maps were constructed as part of 
colonial policies, which disregarded the existence of indigenous communities to whom the land belonged. 
Furthermore, as participants in the NASA DEVELOP National Program, we acknowledge that many of the 
inequities that exist within a city are a result of discriminatory government policies that disenfranchise 
minority and low-income communities. While the results reported by this paper are limited to the study 
period, the disproportionate effects of heat observed during this study period is a manifestation of 
governmental choices and federally affiliated programs stemming from the colonial divisions of land.  

Honing into Environmental Justice in Wichita, we acknowledge the significance of the history of the unceded 
indigenous land that Wichita is on prior to be stolen by colonists. The word ‘Wichita’ originates from the 
Choctaw word ‘Wia chitch’ means “big arbor” or “big platform”, to signify the long grass that grows in this 
region. This Osage, Kiowa, Wichita and Sioux people congenially lived on this indigenous land before it was 
stolen by colonists. We acknowledge the complex and violent history of the stealing of indigenous land and 
resources, and the consequent discriminatory treatment against the Native American people who lived on it. 
Additionally, we would like to acknowledge the four federally recognized tribes in Kansas: The Prairie Band 
Potawatomie, the Kickapoo Tribe in Kansas, the Iowa Tribe of Kansas and Nebraska, and Sac and Fox 
Nation of Missouri in Kansas and Nebraska. Native American philosophies of unity, holistic living and 
interconnectedness has helped them persevere despite having dealt with contradictory colonial practices of 
demarcation and isolation. 
 
We would also like to acknowledge the unceded indigenous land where our team members worked. The land 
of Mahomet, Illinois is situated on the land of the Sioux, Cherokee and Iroquois people. Washington, D.C. is 
the traditional territory of the Nacotchtank, Anacostan and Piscataway people. Lawrence, Kansas occupies 
the ancestral territories of the Kaw/Kansa, Shawnee, and Osage people and had been the place of migration 
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and forced relocation of many Native American people. Ithaca, New York is located on traditional 
homelands of the Gayogo̱hó:nǫ (the Cayuga Nation), part of the Haudenosaunee Confederacy.  
 
6.2 Limitations of Our Study 
As researchers that are geographically removed from the study area of Wichita, Kansas, we acknowledge that 
this study has limitations. Our partners played a significant role in remediating this issue by sharing their lived 
experience residing in Wichita. However, our team was not able to delve into much detail about community-
level impacts due to heat, lived experiences of residents or gain significant amount of input from the affected 
community.  
 
Beyond our restricted ability to engage with the community, limitations can be grouped by spatial and remote 
sensing analysis, heat risk and vulnerability analysis, and modeling heat mitigation and cooling capacity 
indices. While we remained vigilant throughout the implementation of our analysis, we concede that there 
may have been undetected and unmitigated processing errors in acquired data for all categories. In our spatial 
and remote sensing analysis, we suggest that there was likely a loss of natural trends in aggregating input data 
such as land surface temperature and spectral indices, by administrative boundaries.  
 
In our calculation of a heat vulnerability index, other forms of analysis—such as a Geographic Weighted 
PCA—may have output comparatively more robust results by harnessing spatial distribution. We would also 
like to emphasize that our exhaustive list of variables may have been insufficient, and that the exclusion of 
these unidentified variables may have influenced output. Inferring a variable by proxy through the 
relationship of others may have also incurred error into our statistical analyses. Lastly, we would like to 
emphasize the inherent discrimination and underrepresentation of underserved communities in data 
collection, whether authoritative or otherwise. In modeling heat mitigation and cooling capacity indices, while 
we dedicated time and effort to ensure accuracy, reference areas used may not have been an ideal 
representation of Wichita's natural lands.  
 
Lastly, we acknowledge that our analyses may be reductive to human experience and therefore limits the 
analysis of extreme heat as an Environmental Justice issue.  
 
6.3 Thank You 
Our sincere gratitude and heartfelt thanks to Dr. Kenton Ross (NASA Langley Research Center), Lauren 
Childs-Gleason (NASA Langley Research Center), Julianne Liu (DEVELOP VEJ Node Fellow), Lance 
Watkins (Arizona State University Urban Climate Research Center), Akshay Agarwal (UCSB Data Science), and 
Christina Dennis (Former DEVELOPer) for their guidance, scientific advice and recommendations, feedback 
and support throughout the duration of our project. A special thank you to our partner Nina Rasmussen from 
the City of Wichita for her valuable time, irreplaceable insights, and dedication to weave Environmental Justice 
and climate resilience into the City of Wichita.  
 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. 
 
This work utilized data made available through the NASA Commercial Smallsat Data Acquisition (CSDA) 
program. 
 
This material is based upon work supported by NASA through contract NNL16AA05C. 
 
7. Glossary 
Albedo – The fraction of light that is reflected by a surface. A measure of a surface's capacity to absorb or 
reflect sunlight 
Earth Observations – Satellites and sensors that collect information about the Earth’s physical, chemical, 
and biological systems over space and time 
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Environmental Justice – The right for all people—regardless of race, color, age, disability, income, national 
origin or other demographic identifiers—to experience the impact of environmental phenomena, 
development, policy and laws in a fair and just manner.  
Evapotranspiration – The sum of evaporation of water from land, other surfaces, and through transpiration 
by plants. 
Heat Exposure – A measure of how much heat an area or individual is exposed to during heat events. 
Heat Mitigation Index – The index output by the InVEST Urban Cooling model which reflects the cooling 
effect of green spaces (>2 hectares) on surrounding areas  
Heat Risk – The likelihood of experiencing adverse effects from heat events based on individual heat 
exposure and vulnerability 
Heat Vulnerability – The likelihood of an individual/ population to experience negative impacts from heat 
events due to their exposure, sensitivity, and adaptive capacity to heat 
Heat Vulnerability Index – Indices created to reflect the disproportionate impact of urban heat on 
vulnerable and at-risk populations 
InVEST – The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) designed by Stanford 
University is a suite of models used to map and value the goods and suerfces from nature that benefit human 
life 
ISS ECOSTRESS – The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station, an on-
going experiment through a radiometer aboard the International Space Station, that provides products such 
as water availability, water stress, and land surface temperature 
Urban Greening – The addition of more green spaces by installing trees, parks, and other landscaped green 
areas to urban environments 
Urban Heat – The phenomenon of high heat in metropolitan areas due to low vegetation, urban 
development and other environmental factors 
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9. Appendices  
Appendix A - Maps 

  
Figure A1. Different Land cover types indicated by different colors. Major land cover types in Wichita include 

low, medium, and high intensity urban and forested cover.  
 

 
 Figure A2. Shade as a proxy for tree canopy. Lighter areas indicate low shade values, while the darker/greener 

areas indicate higher shade values.  
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Figure A3. Mean ET during the summer months across the city; higher values indicated by darker blues; lower 
values by lighter blues. InVEST resampled this 70 m resolution composite image to the 30 m resolution 
landcover raster. 

  
Figure A4. Albedo 

 



   
 

18 
 

 
Figure A5. (Left) NDVI, (Center) NDBI, (Right) NDWI  
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Figure A6. Mean Daytime Land Surface Temperature by Census Block Group 

 
 Figure A7. Mean Nighttime Land Surface Temperature by Census Block Group 
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Appendix B – Tables 
Table B1  
NASA Earth Observation used, acquisition methods, and purpose 

Platform/    
Program Sensor Product ID Purpose Dates  Acquisition 

Method 
Spatial 

Resolution 

Landsat 8 OLI/TIRS 
LANDSAT/
TIRS/L 
T08/C02/Le
vel-2 

Retrieve mean 
daytime LST 
and calculate 
albedo for 
input into 
InVEST. 
Calculate 
Normalized 
Difference 
Vegetation 
Index (NDVI), 
Normalized 
Difference 
Built-up Index 
(NDBI), 
Normalized 
Difference 
Water Index 
(NDWI) for 
heat 
vulnerability 
analysis. 

May 1st – 
September 
30th of 
2017-2022 
(LST 
calculation 
limited to 
year range 
2017-2021) 

Google 
Earth Engine 100-meter 

Landsat 9 
OLI-2/TIRS-
2 

LANDSAT/L
C09/C02/T2_
L2 

Calculate 
daytime LST 
for input into 
InVEST 

May 1st – 
September 
30th of 
2021-2022 

Google 
Earth Engine 

100-meter 

ISS ECOSTRESS 
ECO2LSTE.
001 
  
 

Calculate 
nighttime LST 
for heat 
vulnerability 
analysis. 
Retrieve mean 
evapotranspira
tion for input 
into InVEST. 

May 1st – 
September 
30th of 
2018-2022  

AppEEARS 
API for 
Python 

70-meter 

 
Table B2  
Ancillary data acquired, acquisition methods and use  

Parameter Provider Purpose Date Acquisition 
Method/Source Spatial 

Resolution 
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Land Cover 

United States 
Geological 
Survey 

Used as input 
for InVEST 
model 

2019 United States 
Geological Survey 
National Land 
Cover Database 

30-meter 

PlanetLab Imagery  

Planet Used to 
create fine-
scale tree 
canopy raster, 
created by 
Wichita Term 
I 

2011-2021 PlanetLab 50-centimeter 

2020 United States 
American 
Community Survey 

United States 
Census Bureau 

Calculate 
social 
vulnerability 
to generate 
heat 
vulnerability 
index 

2020 United Status 
Census Bureau 
American 
Community Survey 
through Python 
Census API 

Census Tract 

Environmental 
Justice Screening 
and Mapping Tool 
(EJ Screen) 

United States 
Environmental 
Protection 
Agency (US 
EPA) 

Used for 
determining 
social 
vulnerability, 
and acquiring 
air quality 
data to be 
used for heat 
vulnerability 
index 

 

2021 US EPA Website Census Tract 

Centers for Disease 
Control (CDC) 
Population-Level 
Analysis and 
Community 
Estimates 
(PLACES) 

Centers for 
Disease Control 

Integrate 
health 
indicators 
into heat 
vulnerability 
index 

2021 PLACES Data 
Portal 

Census Tract 

 
Table B3  
Variables and their categories in constructing an HVI 

Adaptive Capacity Sensitivity Exposure 
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• Daytime LST 
• Nighttime LST 
• NDVI 
• NDWI 
• NDBI 

• Asthma prevalence 
• Coronary heart disease 

prevalence 
• Stroke prevalence 
• Children Under 5 
• Ozone 
• Adults over 65 
• Below poverty level 
• PM 2.5 

• Less than a high school 
education 

• Unemployment 
• Bilingual with 

compromised English 
proficiency 

• Disability prevalence 
• Adults over 65 without 

health insurance 
• Racial minority 

 
Table B4  
Historic redlining grades and their descriptions 

Grade Label Description 
A Best Characterized as upper- or upper-

middle class white 
neighborhoods, with a perceived 
low risk to mortgage lenders 
 

B Still Desirable Dominant white, U.S.-born 
populations perceived as sound 
investments by mortgage lenders 
 

C Declining Neighborhoods with working-
class, immigrant residents often 
lacking utilities, residing in older 
homes, and generally advised by 
the HOLC to refrain from 
lending mortgages to 
 

D Hazardous Neighborhoods that were non-
ethnically homogeneous with 
diverse populations, including 
Jewish, Asian, Mexican and Black 
residents, comprised primarily of 
older structures and often located 
near industrial areas 
 

 
 
Table B5  
Heat vulnerability analysis principal components and interpretations 

Principal Component 
Interpretation 

Key Observations Spatial Distribution 
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Sensitivity by 
population makeup 
and pre-existing health 
conditions: 

• Adults 65+ 
without health 
insurance 

• Stroke prevalence 
• Asthma 

prevalence 
• Coronary heart 

disease  
• Racial minority 
• Less than a high 

school education 

High vulnerability 
through this principal 
component is 
concentrated in Central 
Wichita, stretching into 
South Wichita.  Far 
eastern and western 
portions of the city 
generally have a low 
vulnerability. In this 
principal components, 
all 3 health indicators 
are present.  

 

Sensitivity and 
adaptive capacity by 
population makeup 
(age, employment, 
disability and 
education status):  
 

• Children under 5  
• Adults over 65 
• Adults over 65 

without health 
insurance 

• Unemployed  
• Less than a high 

school education 
 

This principal 
component shows a 
high vulnerability 
dispersion along the 
western half of 
Wichita. Areas of low 
vulnerability are seen 
stretching from directly 
east of the downtown 
area to the northeast.  
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Compromised 
exposure to heat: 

• Urban 
development  

• Daytime land 
surface 
temperature  

Results shown for this 
principal component 
very clearly follow 
daytime land surface 
temperature trends, 
with a hot spot located 
in Downtown Wichita.  

 

Sensitivity to air 
quality and adaptive 
capacity: 

 

• PM 2.5 
• Bilingual with 

compromised 
English 
proficiency 

• Racial minority 
 

 

Air quality in this 
principal component 
directly influences its 
western-lean. This 
portion of Wichita is 
also comprised of 
residents with low 
English proficiency at 
the western-most tips, 
and non-white 
populations dispersed 
throughout.  
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Adaptive capacity: 

• Racial minority 
• 65+ without 

health insurance 
• Bilingual with 

compromised 
English 
proficiency 

This principal 
component is 
composed primarily of 
variables used within 
the “adaptive capacity” 
category. The spatial 
distribution of 
vulnerability does not 
show a clear trend, in 
accordance with 
dispersed 
concentrations of racial 
minority and residents 
who do not speak 
English proficiently.  

 

Urban development: 

 

• Built area 
• Lack of nearby 

waterbodies and 
streams 

 

 

With tracts more 
sporadically located 
near sources of water 
in the Western half of 
Wichita, and built-
up/developed area 
concentrated in the 
center of Wichita, this 
principal component 
shows a spatial 
distribution that begins 
in South-Central 
Wichita, and diverges 
to the northeast and 
northwest.  
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