
Big-data Efficient and Automated Science Transfer (BEAST): an
open-source software architecture for arc jet data management,

modeling, and automation

Magnus A. Haw∗,
NASA, Moffett Field CA, 94035

Megan E. MacDonald†

Flying Squirrel, Brussels, 1150, Belgium

Sebastian V. Colom‡,
Analytical Mechanics Associates, Moffett Field CA, 94035

Big-data Efficient and Automated Science Transfer (BEAST) is a facility data management
application developed for the NASA Ames arc jet facilities. The current decentralized data
management practices limit statistical tracking, synchronization between video/time series,
search capability, data throughput, and data processing speed/efficiency. Consequently, BEAST
was developed to provide a new data infrastructure with streamlined data collection, processing,
transfer, and analysis. This new framework also seeks to implement the FAIR principles of data
stewardship: Findable, Accessible, Interoperable, and Reusable.

The BEAST framework is based on a combination of the Python Django web framework
and the Python data stack to provide a monolithic, open-source platform for data management,
automation, and machine learning. This architecture was chosen for maintainability and
scalability for a small, in-house development team. This paper will describe the application
framework, deployment, and discuss the benefits and future plans for the system.

Contents

I Introduction 2
I.A Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.B Current data archival practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.C BEAST data archival infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II User interfaces 3
II.A Data browsing interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
II.B File Upload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
II.C Search interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
II.D Application programming interface (API) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
II.E Admin interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

III Data pipelines 6
III.A Engineering Unit (eu) file parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
III.B PDF parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
III.C Condition statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
III.D Measurement pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
∗Plasma physicist, Thermophysics Materials Branch, NASA Ames Research Center, MS 234-4, Member AIAA, magnus.haw@nasa.gov
†Aerospace Engineer, Thermophysics Facilities Branch, NASA Ames Research Center, Member AIAA, megan.e.macdonald@nasa.gov
‡Aerospace Engineer, Thermophysics Materials Branch, NASA Ames Research Center, MS 234-4, Member AIAA, sebastian.v.colom@nasa.gov

1



IV Machine Learning Models 8
IV.A N-dim Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
IV.B 1-dim Convolutional Neural Net (CNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

V Automated Report Generation 10
V.A Run sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
V.B Run summary PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
V.C Excel output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

VI Additional Features 11
VI.A Lessons learned wiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
VI.B Calculation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

VIISoftware Architecture 12
VII.ADjango application structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
VII.BPython environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
VII.CDatabase Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
VII.DDeployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

VIIIDiscussion 16

I. Introduction
The following summarizes the principal objectives for the BEAST project,
• Centralized and searchable data archive for future reference and study
• Automated data processing, transfer, storage, statistics, and search/retrieval
• Faster data delivery to customers/modeling efforts
• Automated facility modeling via machine learning

More broadly, the data infrastructure seeks to automate all manual tasks related to data processing, transfer, storage,
and search/retrieval. This system is designed to manage the data products from arc jet facilities and could be adapted
with minimal effort for other similar facilities. The principal motivation is to provide a digital archival capability
implementing the FAIR principles of data stewardship: Findable, Accessible, Interoperable, and Reusable. This
capability will save various stakeholders (e.g., arc jet principal investigators, facility test engineers, customers) significant
time in test planning, debugging, data visualization, modeling, and data processing and more broadly improve the
quality of the facility data analysis and data products.
At the same time, the Ames arc jet facilities are undergoing a significant upgrade over the next decade through the

Arc Jet Modernization project (AJM). This effort will modernize many aspects of the data systems and is supporting
BEAST as a pilot project for a future knowledge management system. Consequently, the BEAST system is being
developed to maximize compatibility with the new hardware and data formats.

A. Terminology
The following list describes Ames arc jet data terms which are not self-explanatory:
• test: a test series of one or more runs for a given customer or objective
• run: a single experimental run where the arc is turned on and off once
• model: a calorimeter or material sample which is mounted on a sting arm for insertion into the high enthalpy flow
• sting arm: a motorized arm for inserting models into the arc jet flow
• eu file: engineering unit file with calibrated data

B. Current data archival practices
Historically, comprehensive arc jet facility data has not been internally archived to ensure that proprietary customer

data was not being inadvertently saved. Certain important facility measurement data are tabulated over time (e.g.,
calorimeter measurements) to track facility performance but other configuration data (e.g., number of cathodes, number
of constrictor disks, humidity, air temperature) are not. Additionally, auxiliary diagnostic systems (video, laser
diagnostics, and vacuum diagnostics) are collected and stored separately. Data processing for these auxiliary systems is

2



Fig. 1 Current data archival architecture

done separately and often manually (e.g., video editing) which is typically the time limiting step in data delivery to the
customer. Lastly, there is no digital search capability for historical data, settings, or errors. Consequently, the current
data infrastructure makes it inconvenient to search historical data, cross-reference certain diagnostics, collect statistics,
automate data processing, or quantify uncertainties across multiple tests and/or diagnostic systems.

C. BEAST data archival infrastructure
BEAST seeks to provide a new paradigm for archiving facility data 2. Instead of transferring large excel files on

flash drives, BEAST has a central server with automated data upload and processing features (see Sec. II.B). The
database then stores facility data and associated metadata in a large set of interlinked tables (see Sec. VII.C for detailed
table diagrams). These interlinked tables (also called the database schema) ensure that all uploaded data is saved in a
structured, consistent format. Other auxiliary files (video, images, documents) are saved to disk with a unique location
and identifier that is saved in a database table.
During or after file uploads, data processing pipelines (see Sec. III) will parse formats, apply calibrations, infer

measurements, flag errors, generate automated summary reports/forms, and tabulate statistics. These pipelines use
several machine learning (ML) models (see Sec. IV) which enable robust and consistent post-processing. After the data
is uploaded and processed, it will be visualized in the browsing interface (Sec. II.A), can be modified via the admin
interface (Sec. II.E), and will show up in search results (Sec. II.C).
This infrastructure also implements the FAIR principles of data stewardship:
• Findable: all data can be located and retrieved using the search, API, admin, and browsing interfaces
• Accessible: web interface with SAML authentication (NASA LaunchPad)
• Interoperable: standard input/output formats (CSV, PDF, Excel, JSON)
• Reusable: object-oriented data models with highly cross-linked metadata (sufficient metadata retained for arbitrary
future analyses)

The following sections describe each of these features in greater detail.

II. User interfaces
The application contains several interfaces to the database: a data browsing interface, an application programming

interface (API), and an admin interface.

A. Data browsing interface
The data browsing interface provides a tree of hyperlinks to browse the application data. It is accessed via the

’Browse’ link on the left-side menu bar. This interface allows the user to browse to the appropriate run data via the
following tree [Facility→ Test→ Run]. Once the user reaches the appropriate run page, the interface displays the
metadata and graphs of all relevant data as well as links to all related objects/components/configurations (Fig. 3). The
automatic data visualization can also be configured to show only the desired diagnostics. This is an important feature as

3



Fig. 2 BEAST data archival architecture

it is significantly more convenient than browsing a static set of graph files or creating many charts in Excel.
Several convenience buttons are also available at the top of the interface,
• Edit- link to edit run data via admin interface
• Process- reruns all relevant data pipelines for current experimental run
• Display Mode- page with large font for runtime display of run settings on overhead monitors
• PDF RunSheet- auto-generates a pre-run checklist pdf
• Export to Excel- exports run data and metadata to an Excel spreadsheet
• PDF Summary- generates a post-run summary report

These convenience functions provide access to the typical tools needed for a particular run. Dropdown menus from the
various display sections provide additional features for adding/deleting/editing data and copying metadata from the
previous run.
There are also a number of other cross-links to component pages (e.g., nozzle, cathode, constrictor disks), heater

conditions pages (e.g., sets of measurements and statistics for specific heater configurations), model description
pages, and download links for any attached files including video, images, or spectral data. These cross-links appear
automatically when data is uploaded to the database and greatly speed up the process of finding relevant data compared
to searching large spreadsheets.

B. File Upload
The file upload interface provides a single interface for uploading various data types. The upload requires the

following inputs: facility, test number, run number, file, and format type. The currently implemented formats are the
internal Ames formats (eu file, hookup file), standard CSV (single header line with column labels), and several metadata
formats (PDF III.B, JSON, and plain text). After upload, the interface will return a banner message describing the
success or failure to upload. Each file format requires its own data pipeline to parse the file and allocate it into the
database.

C. Search interface
The search interface currently has two options (Fig. 5): searching for facility conditions within a certain parameter

range and searching for diagnostic time series to compare traces across various runs. These were the two most requested
features: (1) being able to find which historical settings/runs had a desired heat flux/stagnation pressure and (2) being
able to quickly compare/visualize traces from different runs. Additional search options will likely be added with more
user input.

Condition search
The condition search allows filtering using a range of condition parameters and condition measurements (date,

stagnation heat flux, stagnation enthalpy, stagnation pressure, apparatus, nozzle, etc.). These fields were suggested by

4



Fig. 3 Frontend interface showing a detail page for a mARC II experimental run with only calorimeter insertions.
Several cards display metadata for run setup, model configuration, heater settings, run stats, hookup definitions,
and run measurements. All diagnostic time series graphs can be browsed directly below the metadata information
(only one of many plots is visible in this screenshot). These plotting windows are also interactive with various
capabilities (e.g., zoom, pan, export png, reset).

various arc jet principal investigators based on the typical searches they do when preparing for testing. The results are
returned below the form similar to the format of google search results with a list of links to relevant condition pages
coupled with a short metadata summary.

Diagnostic search/compare
The diagnostic search/compare interface allows the user to select a set of runs and diagnostics and plot the resulting

time series. If multiple diagnostics are selected, then each diagnostic is plotted on a different graph. The right side of
Figure 5 shows a search for the arc current diagnostic over a set of 5 runs on the mARC facility. This interface enables
quick comparisons across many different sets of runs.

D. Application programming interface (API)
The API is created using the Django REST Framework (DRF) library. It contains URL access points for data

retrieval of the important models defined in the data schema and provides large scale data upload capability (Fig. 6).
The API endpoints use the typical JSON serialization of database objects. Due to security concerns, the API access is
restricted to admin users in the existing deployments of the BEAST framework and is mainly used for large scale data
uploads.

E. Admin interface
The admin interface provides user view and edit access to the database objects including users, permissions, and

permission groups. The admin interface is not designed for public use and is only available to admin users. However, it
provides an important capability to access and control the application without requiring direct server access or changes
to the source code.

5



Fig. 4 Screenshot of upload interface: image shows the necessary inputs for file upload. This image also shows
how the HTML interface (Bootstrap4) dynamically adapts to a smaller screen/window)

III. Data pipelines
The BEAST application contains a large number of data pipelines for various processing tasks: calibration, file

parsing, report generation, measurement extraction, metadata extraction, etc. The following sections provide an overview
of a few of the most important pipelines.

A. Engineering Unit (eu) file parsing
Engineering unit (eu) files are the standard output file format from the arc jet facilities. The database has a simple

pipeline to parse these files and input the relevant data into the database. The files are in tab-delimited format making
parsing simple. The data ingestion of the files consists of parsing the header information (names, dates, times, models,
diagnostics, units), cleaning the data (casting names to lower case, fuzzy matching of cleaned column headers to
database equivalents), and then inputting the cleaned/matched data into the database schema.

B. PDF parsing
A large percentage of metadata (condition settings, personnel, measurements, objectives, notes, etc.) for historical

arc jet tests is only available in PDF summary files. Many of these files are scanned images embedded as PDF pages so
no digital text is available. Consequently, to recover and collate this data, two capabilities are needed: (1) extraction of
digital text in PDF pages and (2) extraction of text from images embedded in PDF pages.
Several python libraries were leveraged to provide this capability (pytesseract, pyPDF4). The resulting parsing

capability allows for PDF text extraction from documents with basic text and/or mixed images. This simplifies metadata
extraction greatly since only one tool is needed to digitize a mixed PDF document with both scans and text pages.
The extraction operates by first separating scanned image pages and regular text pages in the PDF. Then, the image

pages are parsed using the pytesseract library (Google’s optical character recognition package) and text is extracted
from the regular PDF pages using the pyPDF4 library. The total text from all pages is then combined and parsed into a
Python dictionary object using a set of regular expressions which identify relevant metadata. The dictionary is then
directly ingested into the database.
This PDF parsing capability coupled with the API is significantly more efficient than manual data entry and is

broadly compatible with a wide variety of current and legacy PDF records. To date, this pipeline has been used to
automate mining of historical metadata from old arc jet tests without comprehensive digital text records.

6



Fig. 5 (Left) Condition search interface form. None of the fields are required, allowing for flexible filtering of
facility conditions. (Right) Diagnostic search form with resulting plot of a single diagnostic (arc current) across
several runs.

Fig. 6 Visualization of BEAST API URL endpoints

C. Condition statistics
Arc jet steady state conditions are typically defined by an arc current, nozzle diameter, and mass flows (main gas, add

gas, shield gas). Determining the start and stop times of these conditions requires parsing the steady-state intervals of
each input setting, finding the intersections of those intervals to determine the set of unique settings, and then matching
those settings to a particular database condition entry. For runs with more than two conditions, this can be manually
onerous. Consequently, it is of interest to automate this process.
This pipeline automates acquisition of these statistics by segmenting steady-state intervals for each input setting using

the 1D convolutional neural net (CNN) model described in Section IV.B. Then the intersections of these steady-state
intervals are taken to get the unique condition intervals (Figure 8). Once these intervals are determined, it is simple
to calculate simple statistics for all diagnostics during an individual condition instance (e.g., mean, max, min, stdev).
Tabulating these statistics is important as it quantifies the variation present in a given steady-state condition.
Historically, this profusion of unique conditions (> 300 per facility) made manual statistical tracking too arduous.

However, this condition parsing pipeline makes it possible to record every instance of every condition and calculate
associated metrics. This provides the first statistical uncertainty quantification for each condition.
Currently this pipeline provides automated statistics for system level diagnostics (arc current, arc voltage, arc

pressure, box pressure etc.) and omits any insertion diagnostics (model TCs, calorimeters, etc.).

7



Fig. 7 Typical scanned runsheet from historical arc jet test series. The quality of the scans can be quite poor
but the optical text recognition software (pytesseract) will still recover enough text to extract a large fraction of
the metadata of interest.

Fig. 8 Automated condition segmentation of normalized input time series. Black dotted traces indicate
segmented steady-state condition intervals. This trace was chosen to demonstrate the large variation in noise
even between conditions within a single run.

D. Measurement pipelines
A number of pipelines are devoted to processing diagnostic time series data to extract measurements. Currently, the

following measurement pipelines have been implemented:
• Bulk enthalpy measurement from water cooling (EB2)
• Sonic enthalpy pipeline
• Slug Calorimeter pipeline
• Gardon gauge pipeline
• Coax TC Calorimeter pipeline

Running these pipelines will generate typed measurement objects which are attached to the relevant arc jet condition as
well as plots of the raw diagnostic data during the measurement time interval. These measurement values and plots then
become available via the search interface, any associated object pages (e.g., run page, condition page, insertion model
page), and will be included in the report outputs. These measurement pipelines have been ported from existing Igor
scripts used by the arc jet facilities to process their data.

IV. Machine Learning Models

A. N-dim Linear Models
The database has an automated capacity to fit N-dimensional linear models to facility metrics. This provides a

simple, interpretable, and data-driven model for all output parameters from an arbitrary number of input variables. The

8



Fig. 9 Frontend interface displaying a mARC facility condition. Shows condition statistics for primary
diagnostics and all associated runs at this condition.

current set of input variables contains six numerical variables (arc current, main gas flow, add gas flow, shield gas flow,
model stagnation distance, nozzle diameter) and three categorical variables (main gas, add gas, model shape). The
categorical variables are one-hot encoded (e.g., a dimension is added for each category option) so the total number of
input dimensions is quite large (N-dim = 6 + 24 = 30). However, this large number of dimensions provides a potentially
better fit than a simple 1-2 dimension fit by considering all input variables simultaneously.
Figure 10 shows the N-dim model residuals for the bulk enthalpy from water cooling (EB2, R2 = 0.77) for the IHF

(Integrated Heating Facility). For comparison, the best analytic correlations for IHF bulk enthalpy from water cooling
(EB2) currently have R2 <= 0.61 [1]. These N-dim models are also more comprehensive than typical engineering
correlations since they can predict values across the entire input parameter space.
The N-dim models are automatically updated when new data is added and are used to flag outlier measurements.

Currently, these models are only created for a subset of output variables (e.g., arc pressure, arc voltage, stagnation heat
flux, stagnation enthalpy, stagnation pressure, sonic enthalpy, and bulk enthalpy from water cooling).

Fig. 10 Plots of N-dim model residuals for the bulk enthalpy from water cooling (EB2, R2 = 0.77) for the IHF
(Integrated Heating Facility).

9



Fig. 11 Plot of normalized current trace (blue) and classifications by 1D CNN model (red: on-condition, green:
transition, orange: off-condition

B. 1-dim Convolutional Neural Net (CNN)
Manual time segmentation is complex for arc jet data as there are at least four input variables (current, primary gas

flow, add gas flow, shield gas flow, etc.) which change over the course of a run. A facility condition is only reached
when all input settings are held constant for a period of time. Consequently, time segmentation for facility conditions
must identify all time intervals where all input conditions are constant. This is a time-consuming and subjective process
if completed manually.
A new machine learning (ML) model was developed to automate this time-segmentation process. A ML model

was chosen since a variety of simple thresholding algorithms (value-based, derivative-based, and integral-based) were
insufficiently robust. Since the arcjet data is a different length every run, the model had to be able to process arbitrary
length sequences and tolerate a wide variety of noise levels. With these constraints, a new 1D convolution neural net
(CNN) architecture was developed for semantic segmentation of time series. Existing ML time series segmentation
methods typically classify sub-sequences of a fixed length with a single label. This network instead provides semantic
classification (e.g., classifies each point in a series rather than giving a single label to the full sequence) and, due to its
fully convolutional character, can be applied to arbitrary length sequences. The precise architecture will be omitted here
since this work is currently unpublished and a draft paper is currently being written.
The resulting classifier model performs much better than previous thresholding algorithms on difficult cases. Figure

11 shows a typical example of a multi-condition time series trace and the resulting classification by the CNN. The
CNN is trained to identify 3 classes: off-condition, on-condition, and transitions. This new robust classifier makes the
condition statistics data pipeline described in Sec. III.C possible.

V. Automated Report Generation
One of the advantages of a centralized digital database is the ability to quickly synthesize data summaries as all the

measurements, images, plots, and metadata are cross-linked and accessible. The following sections describe several
automated report generation pipelines that are currently implemented in BEAST.

A. Run sheets
Preparing for an arc jet run typically requires a run sheet describing the specific run, target conditions, and planned

model insertions. This is currently filled in by hand or keyboard by the test engineer. However, if the appropriate
metadata has been previously uploaded to the BEAST system, the run sheet can be automatically generated by BEAST
and exported to PDF. This save a great deal of personnel time in filling out/scanning forms, especially for test series
with a large number of runs.

B. Run summary PDF
Generation of quick-look summary reports is a critical feature to ensure quick data delivery to customers after a

experimental run. The current implementation of this in BEAST produces a PDF file with several text sections (run
objectives, notes, associated personnel, heater configurations, model configurations, heater conditions, and calorimeter

10



Fig. 12 Screenshot of auto-generated runsheet for mARC facility

Fig. 13 First two pages of auto-generated run summary for mARC run mARC004R002. The run objectives,
associated personnel, configurations, conditions, and calorimeter measurements are all output in human readable
format into a PDF document. The following pages contain annotated plots of relevant system diagnostics and
calorimeter measurements.

measurements, see Fig. 13), several pages of plots showing system diagnostics with labeled condition intervals, and
lastly a set of annotated plots of model insertion diagnostics.

C. Excel output
The data and summary text for a given run can also be exported to an Excel file. The first tab will contain the same

summary text as the PDF summary. Time series data from a given data acquisition system is output into its own separate
tab in standard columnar format (header row with column names, first column is time, etc.). Given the complexity of
many arc jet runs, an Excel file was simpler to export than a set of CSV files.

VI. Additional Features

A. Lessons learned wiki
A simple lessons learned wiki has been implemented. This system is organized into three primary tiers (Category

→ Topic→ Subtopic) and each tier can have attached articles and files. Each article is similar to a blog post and can
contain text, images, and LaTeX equations (Figure 14). Two navigation options are visualized: an expandable outline
on the left hand side, and linked breadcrumb navigation at the top (e.g., Home / MyCategory / MyTopic / Myarticle).
Providing an internal wiki is convenient for cross-referencing and linking data to the articles while writing them.

11



Fig. 14 Wiki sample article showing image, table, text, link, file attachment, and equation capabilities.

Fig. 15 Heat flux calculator tool: calculates equivalent heat flux for iso-q and hemi insertion model geometries.

B. Calculation tools
Arc jet PIs requested that various calculation tools be integrated into the BEAST interface. This makes the tools

accessible, consistent, and organized whereas previously they only existed as scripts or spreadsheets on an individual’s
computer. The first such tool implemented is a simple calculator for heat flux equivalence between the iso-q and hemi
model geometries (Fig. 15).

VII. Software Architecture
The software architecture uses the Django web-application framework [2] and the Python [3] data stack coupled to

an enterprise database. This architecture was chosen to minimize complexity and ensure long-term maintainability
(single language, object-relational model, built-in security, monolithic application, database agnostic, internal data
science packages). Python will continue to be the language of choice for data science and the Django framework will
likely be supported for decades to come. In-house Python programmers will also be easy to obtain as compared with
any other language. Other key packages include the Django REST Framework for creating the API, numpy/pandas/sci-
kit-learn/Tensorflow for data processing and Bokeh for plotting/data visualization.
The Django web-framework is chosen instead of a desktop application because the database needs to securely ingest

and export data to various sources. This does not require the application to be connected to the internet but provides a
simple way to standardize the interface on all devices and provide encrypted data transfer (i.e., all users will have access
to and be familiar with a browser application).
The visual interface is implemented using Bootstrap4 templates in combination with the Django template engine.

This allows for minimal coding and a uniform styling across the whole application. The inclusion of Bootstrap4 also

12



makes the layout dynamic and suitable for desktop, tablet, and mobile use.
The application is also designed to be database agnostic and can be deployed using any common enterprise database

(MySQL, SQLite, Postgres, MongoDB, etc.).

Fig. 16 Software architecture makes use of the Python language and the Django web-application framework

A. Django application structure
The application follows the Django convention of organizing different tasks into ’apps’ each with their own folder.

These apps are modular and can be reused in other Django projects. Each app folder has a set of python files which
define the app’s data schema (models.py), interface (views.py, templates/*.html), admin interface (admin.py), and url
paths (urls.py). conforming to the Model-Template-View paradigm .The BEAST application has the following folder
structure:

• data/: primary app which contains run, test, apparatus, diagnostic and calibration related models.
• system/: app for tracking component configurations and histories (i.e., disks, nozzles, cathodes, etc.)
• stats/: app for tracking statistics, measurements, and ML models.
• units/: app defining unit schema and conversion methods
• pdfs/: app defining pdf parsing and conversion to text methods
• wiki/: app for wiki pages
• myapi/: app for application programming interface (API)
• static/: directory housing static file resources (css, js, logos)
• media/: directory organizing file uploads (images, videos, pdfs, etc.)
• project_settings/: app containing global application settings.

B. Python environment
The primary dependencies are Django, Bokeh, Numpy, Scikit-learn, and Keras/Tensorflow. Since the application is

pure python, all the packages/dependencies are cross-platform and can be freely downloaded. A full list of packages
(∼230) can be found in the top directory (environment.yml). However, the latest versions of all packages are not
necessarily available on all operating systems (Tensorflow does not yet work with Apple M1 chips). Consequently,
specific python environments are recommended/supplied for each operating system.

C. Database Schema
The database is defined using the Django object relational model (ORM) system where data tables and relationships

are defined by Python classes and the Django framework translates all interactions to and from SQL. This has the
advantage of only needing to know/use Python and being able to easily modify the database schema using the Django
migration tool. The data is partitioned into three top-level categories: data, system, and stats. Although these categories
have significant overlap, it provides a useful division to encapsulate different types of information. These categories are
implemented as separate Django app folders in the software.

13



Data
The data schema includes the configuration tables for experimental test series, experimental runs, diagnostics,

diagnostic calibrations, and diagnostic time series. The schema is graphed in Figure 17.

Fig. 17 Data model database schema: each rectangle represents a different database table and the lines
represent relationships/references between tables. The central tables are the Diagnostic (center-left) and Run
(center-right) tables which each connect to several sub-tables.

System
The system schema comprises all of the system components including nozzles, disks, sting arms, insertion models,

and various configuration aggregation tables (e.g., heater config, condition config, subsystem config, camera config,
etc.).

Stats
The stats schema covers all the measured or calculated values associated with the data. This was intentionally

separated from the raw data schema to ensure that the original data would remain unchanged and that calculated values
would not be misinterpreted as a primary source. These schema includes tables for averages, standard deviations, flags,
and machine learning models. The schema is graphed in Figure 18.

Fig. 18 Stats database schema: each rectangle represents a different database table and the lines represent
relationships/references between tables.

14



Units
The application also contains a unit conversion system which is contained within its own app folder. This stores

units as a combinations of the seven fundamental quantities (mass, time, length, temperature, luminosity, mole, and
current). This is necessary given the mixed use of metric and English units in the arc jet facilities. The unit schema
is shown in Figure 17. Unit checking and global conversion methods are built into each object class to simplify data
aggregations and comparisons.

Fig. 19 Database schema for units: the primary class "ComboUnit" is constructed from a combination of
multiple "BaseUnits" and "BaseUnitPower" objects and can be associated with a "UnitSystem" such as metric
or English.

Wiki
The wiki schema consists of four models: Categories, Topics, Subtopics, and HtmlBlocks. The first three models

implement a tiered organization (topics belong to a category, subtopics belong to a topic) of blog posts. HtmlBlocks
contain static html code blocks for easy editing of the wiki home page.

D. Deployment
The application can be deployed as a standalone system on a single machine or on a shared server. Both are currently

in use: a standalone instance is operating as the data system for the mARC facility and another instance is deployed to a
shared server. Deployment of the application requires several steps:
1) Setup the Python environment: install all required packages and ensure sufficient permissions are available for
the media folder. Ensure no access credentials are present in code or in web accessible folders.

2) Configure webserver (Apache+WSGI/NGINX+Gunicorn/etc.): configure webserver to point appropriate requests
to the Django application and direct webserver to directly serve media and static folders with appropriate urls.
Ensure maximum file-upload/download sizes are set appropriately.

3) Setup database (Postgres/MySQL/SQLite etc.): setup a database with appropriate password, location, and users.
Modify the settings.py file to reflect database credentials. SQLite is the default and requires no setup.

4) Run database migrations: run ’python manage.py migrate’ to create the database tables.
5) Memory requirements: ensure your hardware has sufficient storage capacity to store the entire database.
6) Performance requirements: test speed of pipelines/upload/download to ensure sufficiently fast performance.
7) Setup desired authentication: The Django application can use a variety of authentication methods (password,
token, SAML, OAuth) depending on the security requirements. The deployment for NASA arc jets will use the
NASA SAML authentication provider (NASA Launchpad) which requires the user to have a NASA badge and be
granted access to the database via NAMS requests.

15



VIII. Discussion
The BEAST application provides a tailored data management system for arc jet facilities. The architecture provides

four critical new capabilities (1) a central repository for all data types with global search capability, (2) integrated
statistical tracking for uncertainty quantification, (3) integration with advanced tools and ML models, and (4) a
single-language, open-source application suitable for continuous development by a small team. This will enable more
comprehensive arc jet data stewardship, better quantify existing facility uncertainties, and save significant personnel
time via automation.
Future work will focus on releasing the software as an open-source project and further developing the user interface

based on feedback from stakeholders.

References
[1] Thompson, C., Prabhu, D., Terrazas-Salinas, I., and Mach, J., Bulk Enthalpy Calculations in the Arc Jet Facility at NASA ARC,
???? https://doi.org/10.2514/6.2011-3475, URL https://arc.aiaa.org/doi/abs/10.2514/6.2011-3475.

[2] Django Software Foundation, “Django,” , ???? URL https://djangoproject.com.

[3] Python Software Foundation, “Python3,” , ???? URL https://www.python.org.

16

https://doi.org/10.2514/6.2011-3475
https://arc.aiaa.org/doi/abs/10.2514/6.2011-3475
https://djangoproject.com
https://www.python.org

	Introduction
	Terminology
	Current data archival practices
	BEAST data archival infrastructure

	User interfaces
	Data browsing interface
	File Upload
	Search interface
	Application programming interface (API)
	Admin interface

	Data pipelines
	Engineering Unit (eu) file parsing
	PDF parsing
	Condition statistics
	Measurement pipelines

	Machine Learning Models
	N-dim Linear Models
	1-dim Convolutional Neural Net (CNN)

	Automated Report Generation
	Run sheets
	Run summary PDF
	Excel output

	Additional Features
	Lessons learned wiki
	Calculation tools

	Software Architecture
	Django application structure
	Python environment
	Database Schema
	Deployment

	Discussion

