Fluid-Structure Interaction Simulations of the ASPIRE SR03 Supersonic Parachute Flight Test

Francois Cadieux, Jordan B. Angel, Michael F. Barad, Cetin Kiris

Computational Aerosciences Branch NASA Ames Research Center

Entry Systems Modeling Special Session, AIAA SciTech Forum January 25, 2023

Context: Perseverance Rover's EDL Profile

Motivation

- Any changes to state-of-the-art require costly flight test campaigns in the upper earth atmosphere to certify parachute system
- The Advanced Supersonic Parachute Inflation Research Experiments (ASPIRE) is the most recent iteration of such a campaign and its third flight (SR03) served to certify the Mars 2020 (Perseverance) parachute system
- Once validated, fluid-structure interaction (FSI) simulations could help accelerate the certification process, cover more scenarios (altitude, dynamic pressure, angle of attack, Mars vs Earth atmosphere, etc) and thus reduce overall mission cost and risk

This high-definition image was taken on Sept. 7, 2018, during the third and final test flight of the ASPIRE payload. It was the fastest inflation of this size parachute in history and created a peak load of almost 70,000 pounds of force. *Credits: NASA/JPL-Caltech*

https://www.nasa.gov/feature/jpl/third-aspire-test-confirms-mars-2020parachute-a-go

Objectives

 Develop in-house FSI capability to simulate supersonic parachute inflation in the Launch, Ascent and Vehicle Aerodynamics framework (LAVA)

• Validate FSI predictions with ASPIRE flight test measurements

ASPIRE SR03 Problem Setup

Freestream conditions at line stretch event: $M_{\infty} = 1.88,$ $q_{\infty} = 1028.44 Pa,$ $ v_{\infty} = 584.67m/s,$ $\alpha = 0.9^{\circ}$	Band 80 suspension lines Band Disk Bo gap lines 80 radial stiffeners									
	Component	Element	Young's	Poisson	Density	Width/	Thickness			
	name	type	modulus (Pa)	ratio	(kg/m ³)	Radius (m)	(m)			
Triple bridle	Bridles	beam	1.6680×10^{10}	0.4	705.13	0.01954	-			
	Riser	beam	1.8600×10^{10}	0.4	751.99	0.02389	-			
	Suspension lines	beam	1.8202×10^{10}	0.4	484.66	0.00253	-			
Riser	Radial stiffeners	beam	1.8202×10^{10}	0.4	484.66	0.00253	-			
	Broadcloth	MITC3	9.4484×10 ⁸	0.4	533.95	-	7.6200×10 ⁻⁵			
	Disk leading edge	MITC3	1.3568×1010	0.4	454.07	0.0254	1.0583×10 ⁻³			
Slender payload	Band leading edge	MITC3	1.3568×10^{10}	0.4	454.07	0.0254	1.0583×10^{-3}			
x	Band trailing edge	MITC3	1.3568×10^{10}	0.4	454.07	0.0254	1.0583×10^{-3}			
	Disk trailing edge	MITC3	1.0979×10^{10}	0.4	525.54	0.0254	2.5400×10-3			
z Table 3 Material properties used in finite element model are consistent with Rabinovit (Da).							inovit (Da). 8			

5

Cases Studied

Name	α (°)	Pre-inflation	Radial stiffeners
Radials	0.0	Symmetric	Yes
Radials + AoA	0.9	Symmetric	Yes
Radials + AoA + Asym	0.9	Asymmetric	Yes
AoA + Asym	0.9	Asymmetric	No

Table 4 FSI simulation parameters.

Symmetric

Asymmetric with radials

Asymmetric without radials

Results: Effect of Angle of Attack

Dip down to almost zero pull force caused by quasi-2D wake bow shock interaction disappears with AoA which causes wake to break down to turbulence and bow shock to remain much flatter

Results: Effect of Asymmetric Pre-inflation

³

Results: Effect of Radials

Results: AoA + Asym

This high-definition image was taken on Sept. 7, 2018, during the third and final test flight of the ASPIRE payload. It was the fastest inflation of this size parachute in history and created a peak load of almost 70,000 pounds of force. *Credits: NASA/JPL-Caltech*

https://www.nasa.gov/feature/jpl/third-aspire-test-confirms-mars-2020parachute-a-go

LAVA ASPIRE SR03 FSI AoA + Asym

Conclusions

- Performed 4 FSI simulations of ASPIRE SR03 flight to investigate effect of angle of attack, initial parachute shape, and modeling radials as continuous suspension lines
- As expected, as we inch closer to matching flight initial conditions with angle of attack and an asymmetric parachute shape, we obtain improved agreement with flight data
- Similarly, as we relax our assumption about radial stiffeners, we obtain improved agreement

- Achievements:
 - Good match to ASPIRE qualitative trend
 - Drop from peak to trough of 55% matches ASPIRE at 52%
 - Trough and rebound peak values are within flight-to-flight variability

- To investigate in future:
 - Over-prediction of peak pull force by ~20%
 - More abrupt and earlier rebound peak at 0.55 s
 - Effect of deceleration with unrestrained payload

Acknowledgments

- Funded by NASA Entry Systems Modeling (ESM) project
- Computational resources provided by High-End Computing Capability (HECC) program at NASA Advanced Supercomputing (NAS) facilities, NASA Ames Research Center
- Thanks to:
 - Marcus A. Lobbia for providing details of the SR02/SR03 parachutes
 - Michael Barnhardt and Aaron Brandis for insightful discussions and helping us focus our development efforts
 - Jonathan Boustani for developing the CSD solver in LAVA
 - Gaetan Kenway for helping to improve parallel efficiency of the CSD solver

Density on the cut plane and parachute surface for AoA + Asym FSI simulation. Payload and suspension lines shown in white.

Var: Density - 0.02000 - 0.01510 - 0.01020 - 0.005300 - 0.0004000

Methodology: CFD Mesh

Methodology: CSD Mesh

- 43,346 triangles (rigid) on payload
- Mean edge length away from nose 0.025 m

- 267,668 triangles (MITC3) on canopy surface
- Mean edge length 0.05 m
- Min edge length at leading/trailing edge 0.025 m
- 76,954 beam elements for suspension lines, radials, gap and vent lines with fixed edge length of 0.05 m 14