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Runway configuration management (RCM) deals with the optimal selection of runways to

operate on (for arrivals and departures) based on traffic, surface wind speed, wind direction

and other environmental variables. RCM is one of the most challenging tasks in air traffic

management, as it relies on operational and environmental variables (e.g., weather forecast) that

are highly uncertain and complex to model. In this paper, an innovative and automated approach

is deployed using offline model-free reinforcement learning to provide decision-support for RCM.

The proposed technology processes historical data about variables of interest, decisions made

regarding RCM, and their subsequent outcome, to identify a policy that would encourage

good decisions and avoid the poor ones. The policy search is guided by an appropriately

chosen weighted utility function (e.g., based on minimizing delays and go-arounds). Finally, the

performance of the proposed tool is validated using Charlotte Douglas International Airport

as the case study, which shows that the proposed method is superior to other conventional

rule-based approaches.

I. Introduction and Related Work

Runway configuration management (RCM) is a challenging task, and it affects the efficiency of the National

Airspace System (NAS) and airport surface operations significantly. Every airport, depending on the surface

geometry, capacity, local weather patterns, and noise abatement procedures has multiple configurations for the runway

usage for arriving and departing flights. Many factors, including the incoming/outgoing traffic load, wind direction and

speed, convective weather, cloud ceiling and other environmental factors, affect the choice of runway configuration

at any point in time. In addition, other factors such as safety measures and regulations, noise abatement procedures,

capacity of each configuration, and preference of the air traffic controllers (ATCs) can also play a role in determining

the optimal configuration. A sub-optimal selection of the runway configuration, or poor timing of configuration changes,

can result in significant increase in taxi times for aircraft on the surface of the airport. In some circumstances, it can
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also lead to safety concerns, such as an aircraft performing multiple go-arounds before being able to land (e.g., due to

excessive tail winds). All these factors make RCM an extremely important yet challenging decision-making process for

the ATCs and Front-Line Managers (FLMs).

The ATCs/FLMs set the runway configuration based on relevant information and forecasting available at the time,

including weather, traffic, noise abatement procedures, safety bounds, etc. This makes the decision-making process

subjective based on the accuracy of the available information, weather forecast models and any potential bias in human

decision-making. This manual process can sometimes yield sub-optimal results (e.g., significant delays) if the predicted

outcomes are not realized and/or their relative impact is not well understood. This is especially evident when model

uncertainty is high, leading to an explosion in the size of possible predicted outcomes, all of which cannot be evaluated

by human reasoning alone. On the other hand, an automated approach based on machine intelligence can make use of

the abundance of available historical data/decisions and search through many more possible scenarios under uncertainty

and make better-informed decisions. Such an automated decision-making process is expected to facilitate better RCM

decisions by controllers.

Recently, Artificial Intelligence (AI) and Machine Learning (ML) methods have gained traction as an alternative

to enhance the RCM decision-making. One popular approach uses different variants of model-based Reinforcement

Learning (RL), such as discrete choice modeling [1], dynamic programming [2], and its combination with queuing

theory [3, 4] to model the dynamics of the surface operations at an airport and use simulation to learn a near-optimal

policy for the runway configuration selection. This approach is interpretable (due to learning of the dynamics model

for both traffic and weather) and is guaranteed to provide a near-optimal solution (provided the model is accurate).

However, its performance is dependent on characterizing and building an accurate simulation (i.e., dynamics model and

utility function) that is used for learning the policy. Any modeling errors in the simulation that are caused by noise

in the system or over-simplification (such as assuming simplified weather dynamics models [1]) can result in a poor

performance in the operational setting and create safety concerns. Furthermore, since the dynamics model varies from

airport to airport, generalization of this framework to different airports across the nation is challenging.

A potential remedy to address the shortcoming of model-based approaches is to use model-free RL. Online

model-free RL approaches such as Monte Carlo Tree Search (MCTS) [5] have been widely used in different domains

(e.g., sequential games) for learning a good policy without relying on the availability of the underlying dynamics.

However, such online approaches still require an accurate simulation environment to interact with and receive feedback.

This interaction is impractical in safety-critical systems such as Air Traffic Management (ATM) because data collection

is expensive and accurate simulation environments are either not available or too costly to build. For example, a bad

decision in the RCM prediction can result in a safety incident involving landing or take-off of a commercial aircraft.

As a result, online model-free RL is not usually applied to safety critical systems (e.g., autonomous driving), and the

majority of the literature is focused on other applications such as gaming [6].
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Due to the shortcomings mentioned above, recent literature is focused on data-driven approaches to tackle the RCM

prediction. One area of work uses supervised machine learning to predict the best choice of runway configuration given

all the factors such as weather and future traffic [7, 8]. Such supervised learning methods use a vast amount of historical

data to imitate the decision-making made by the ATCs/FLMs in the past with least amount of error. However, they

cannot identify and correct mistakes or inefficiencies in the historical decisions since there is no mechanism for the

model to receive feedback and correct its policy. Moreover, although these approaches are accurate in predicting the

runway configuration, the prediction is not supported by any evidence of better outcomes such as decreased transit times

or alleviation of safety concerns. The reason is that in supervised learning, the policy is not based on a utility function

and therefore does not predict the runway configuration that optimizes some operational utility metric. Instead, it learns

a mapping from the available traffic/weather information to the decisions made by the ATCs with the least amount of

error.

In this paper, we propose an offline model-free RL methodology to address the RCM prediction. Offline RL

combines reinforcement learning (a key framework for any sequential decision-making problem) with data-driven

machine learning. More importantly, it removes the need for an online interaction with the system for data collection,

which limits the applicability of online RL methods to safety-critical problems [9]. Although offline RL has been the

focus of study in many fields (e.g., autonomous driving, healthcare, robotics), there are fundamental challenges to their

deployment that classical RL methods [10] fail to address. One such challenge is the offline nature of the algorithm,

which means that there is no exploration involved in learning the policy. Exploration alongside with exploitation are the

two pillars of learning a good policy in reinforcement learning, and a vast amount of research is focused on how to

properly balance the two. However, in the offline RL framework, there is no room for exploration since the AI agent

does not have access to a simulation (or operational) environment to interact with and receive feedback. Another major

challenge is distributional shift. This happens when the behavioral policy (an unknown policy that is manifest in the

historical data) is different from the policy that is learned by the algorithm using that data. For example, if a state (a

specific scenario involving traffic and weather) is not well represented in the historical data, then the policy learned for

that state is overly optimistic and most probably wrong. In online RL, it is easy to correct such errors by interacting

with the system and receiving feedback. However, in offline RL, there is no such mechanism for error correction. As a

result, a majority of the state-of-the-art offline RL algorithms address this issue by either constraining the optimization

problem (learning the policy) [11], deploying an ensemble approach [12], or performing conservative updates in the

learning scheme to avoid excessive distribution shift from the behavioral policy [13].

To evaluate the effectiveness of offline RL in addressing the RCM prediction challenges, we adopt two recently

developed offline RL methods, Conservative Q-Learning (CQL) [13] and Deep Q-Network (DQN) [6], in an offline

setting. To comprehensively validate these two approaches, we have developed a “simulated RCM scenario” based on

historical data from Charlotte Douglas International Airport (CLT). For this simulated system, we have the complete
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state-space model encompassing all the variables of interest and can therefore compute the optimal policy. We compare

the performance of our offline RL methods to several policies including the optimal policy, a rule-based policy based on

wind direction alone (wind direction is known to be the most dominant factor in determining runway selection), and

other simple policies such as sticking to a specific (e.g., preferred or dominant) configuration.

II. Method
The RCM prediction can be viewed as a sequential decision-making problem, where the runway selection choice is

the control/decision variable and decisions are made at discrete epochs as the system evolves in a Markovian fashion from

one decision epoch to the next subject to the control and other external variables/factors (e.g., traffic, wind conditions).

So, it is natural to pose the problem as a Markov Decision Process (MDP) [10].

MDP is defined by a tuple (𝑆, 𝐴,T,U). 𝑠 ∈ 𝑆 is the state of the problem, which contains all the necessary information

for the decision-maker (or agent). 𝑎 ∈ 𝐴 are the actions available to the agent. T : 𝑆 × 𝐴 → 𝑆 is a transition function,

which defines the dynamics of the state as a result of actions taken by the agent. Lastly, U : 𝑆 × 𝐴 → R is the utility

function that provides feedback to the agent based on the action that she takes in a specific state. Once different

components of the MDP are defined, the goal is to find a policy, 𝜋 : 𝑆 → 𝐴, that maximizes the long-term expected

utility, 𝑉 𝜋 (sometimes also called the value function), for the agent managing the system. The value function under a

specific policy 𝜋 is then defined as [14],

𝑉 𝜋 (𝑠) = 𝑢(𝑠, 𝜋(𝑠)) + 𝛾
∑︁
𝑠′∈𝑆

𝑝(𝑠′ | 𝑠, 𝜋(𝑠))𝑉 𝜋 (𝑠′) (1)

Where, 𝛾 ∈ [0, 1) is a discount factor, discounting future utilities to their net present value, and 𝑝(𝑠′ | 𝑠, 𝜋(𝑠)) is the

probability of starting from state 𝑠, taking action 𝜋(𝑠), and ending up in the state 𝑠′ according to the transition function

T. As mentioned above, the goal for the agent is to find a policy that maximizes the value function noted in Eq. (1), i.e.,

the optimal policy 𝜋∗. If an AI agent has a full knowledge of all the components of the MDP including the transition

and utility functions, then it can use dynamic programming [10] to find the optimal policy. However, in many real-world

problems, such as Air Traffic Management (ATM), this is not the case. As mentioned in the previous section, in the

RCM prediction, it is challenging to characterize the dynamics model and utility functions accurately. This is due to

the fact that the RCM prediction relies on air traffic load and weather conditions in the airport region, and accurately

forecasting these variables and characterizing their uncertain dynamics is hard. As a result, most of the literature that

have relied on model-based approaches use simplified models to approximate the dynamics of the traffic and weather,

which limits their applicability to the operational setting.

Reinforcement learning (RL) is an approach for sequential decision making when the models describing the

dynamics (T) and the utilities (U) are either uncertain (model-based RL) or unknown (model-free RL). Q-learning
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[15] is an example of a popular and widely adopted model-free RL that uses a temporal difference control algorithm

to learn the state-action value functions (also known as Q-values) directly from the interactions of the agent with the

environment. In such a setting, the agent usually interacts with the operational/simulation environment by taking

actions, without the knowledge of the underlying dynamics, and learns a policy from the feedback that she receives as a

consequence of her actions. Finding a good policy with Q-learning requires a significant number of interactions with the

operational/simulation environment, which limits its applicability for safety-critical systems such as ATM. As mentioned

before, in the RCM prediction, building an accurate simulation environment is costly and impractical. On the other

hand, the AI agent won’t be allowed in an operational environment to learn a good policy simply due to the fact that the

process of learning a policy involves making mistakes that are not tolerable in safety-critical systems. For example, a

bad decision in the RCM prediction can result in a safety incident involving landing or take-off of a commercial aircraft.

To address this challenge, in this paper, we propose an offline model-free RL methodology to address the RCM

prediction. Offline RL is an active area of research that focuses on learning a good policy based only on previously

collected data, without the need for additional interactions of the agent with the environment [9]. In many real-world

scenarios involving safety-critical systems such as air traffic management, there are years of historical operational data

available that can be leveraged to build a powerful decision-making or decision-support engine. However, due to a

fundamental challenge in offline RL, its application to real-world problems has been limited, especially in the era of

classic RL. This fundamental challenge is known as distributional shift, i.e., where an agent’s policy learned from

historical data may significantly differ from the policy that was used to collect the data (also referred to as the behavior

policy). Moreover, the policy might be overly optimistic about Out-Of-Distribution (OOD) transitions (scenarios

that were not present in the historical data) and result in an unsafe policy in those cases. Most successful offline RL

algorithms address this challenge with some type of constraints on the learned policy, or they perform conservative

updates to the Q-values to avoid excessive distribution shift [11–13, 16].

In this paper, we deploy a state-of-the-art offline RL algorithm, called Conservative Q-Learning (CQL) [13], to

provide a solution to the RCM prediction. CQL uses a simple mechanism to regularize the Q-value estimates for the

OOD actions and assigns a lower value to them. This prevents the policy from being optimistic and taking those actions

in the areas of the state space that are not well represented in the historical data. We compare the performance of CQL

to a few baselines such as (1) the optimal policy (assuming the AI agent has full knowledge of the underlying dynamics

and utility functions), (2) the offline version of the popular DQN algorithm [6], and (3) a few rule-based policies. In the

next section, we will first discuss the RCM case study and data, and then discuss validation of the algorithms.

III. Results and Discussion
To validate the performance of the offline RL algorithms for the RCM prediction, we first design a simulated RCM

scenario specifically tailored for CLT. The reason for development of this scenario is to comprehensively validate the
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performance of the proposed methodology compared to the optimal performance. In an ideal setting, we can validate

these models in an operational/simulation environment, however, as mentioned before, this is not practical. Let us

discuss how we designed this simulated problem based on the actual data.

A. Simulated RCM prediction for CLT

Charlotte Douglas International Airport (CLT) has only two major configurations for the arrival and departure

traffic, namely “North flow” and “South flow”. This simplifying characteristic makes it a good candidate for this

initial test of the performance of our proposed RCM method. For this work, we use hourly data from 2019. We

obtained and fused the data from three main sources: NASA’s Sherlock Data Warehouse (https://sherlock.

opendata.arc.nasa.gov/), FAA’s System Wide Information Management (SWIM) database (https://www.faa.

gov/air_traffic/technology/swim/), and METeorological Aerodrome Reports (METAR) database (https:

//www.aviationweather.gov/metar). Table 1 shows the features in the RCM data product. The two configurations

for CLT and their strong correlation with wind direction and speed is illustrated in the wind rose diagrams in Figure 1.

Each data point represents a specific observed wind direction and speed, where the wind speed is illustrated as the

distance from the center of the circle in knots. As can be seen, when the wind intensity is greater from the North, “North

flow" configuration is preferred (almost always), so that the aircraft would take-off and land into a headwind.

Table 1 Features in the fused RCM data product.

Feature Type Source

Scheduled/Actual traffic Continuous SWIM
Traffic weight class Categorical Distribution Sherlock
Throughput capacity Continuous SWIM
Runway configuration Categorical SWIM

Transit times Continuous SWIM
Meteorological conditions Categorical SWIM

Temperature Continuous SWIM/METAR
Wind direction & speed Continuous SWIM/METAR

Cloud ceiling Continuous SWIM/METAR
Visibility Continuous SWIM/METAR

Weather conditions Categorical SWIM/METAR
Go-arounds Continuous Sherlock
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Fig. 1 This figure shows: (top) correlation of selected configuration with wind direction and wind speed at CLT
for 2019; and (bottom) the runway configurations for the North and South setting, where the arrows indicate the
direction of flight for landing and take-off for that configuration. The runway diagram on the bottom is taken
from [17].

Based on discussions with Subject Matter Experts (SMEs) and preliminary data analysis, we define the different

components of the MDP model for the simulated RCM prediction. We discretize the state space aligned with the

literature in discrete state-action RL problems. The state space is characterized by three variables: wind direction (8

possible states partitioning the total 360◦ equally, with 0◦, 45◦, 90◦, ..., 315◦ being the center of each partition), wind

speed (4 possible states by binning the wind speed into [0 − 5), [5 − 10), [10 − 15), [15,∞) intervals), and hour of

the day (24 possible states). This defines a 768-dimensional state space. The actions available to the agent are the

two possible configurations, i.e., “North” and “South” flow. We have used historical data to estimate the transition

probabilities that would define the dynamics of the environment. We have used empirical estimates based on the 2019

data for CLT to estimate the transition probabilities. Finally, the utilities are defined as follows,
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𝑢𝑡 = 𝜆𝑣𝑡 − 𝜇𝜏𝑡 − 𝛽𝑐𝑡 ,ga − 𝜂𝑐𝑡 ,mga − 𝜁I[𝑎𝑡 ≠ 𝑎𝑡−1] (2)

where, 𝑣𝑡 is the traffic throughput, 𝜏𝑡 is the average transit time on the surface, 𝑐𝑡 ,ga is the number of aircraft

performing a go-around at time interval [𝑡 − 1, 𝑡], 𝑐𝑡 ,mga is the number of aircraft performing multiple go-arounds, and

I[𝑎𝑡 ≠ 𝑎𝑡−1] is the indicator function, which is 1 if the configuration changes from time 𝑡 − 1 to 𝑡, or 0 otherwise. This

last term is designed to mimic the resistance of controllers to switching the configuration too often and avoids the

high variance of configuration selection by the AI agent. 𝜆, 𝜇, 𝛽, 𝜂, and 𝜁 are all hyper-parameters that characterize the

weight of each term in the overall utility function. They can be fixed based on the SMEs domain knowledge or can be

tuned using a proper cross validation and hyper-parameter tuning. In the simulated example in this paper, we have

fixed the weights to the following based on our preliminary analysis: 𝜆 = 𝜇 = 5, 𝛽 = 𝜁 = 10, and 𝜂 = 100. It should be

noted that, depending on the airport or the tolerance/preference of the ATCs/FLMs, different hyper-parameters might be

preferred to the ones presented here. For example, a higher value of 𝜆 would encourage a higher traffic throughput,

while a higher value of 𝜇 would emphasize the importance of decreasing the transit times.

B. Results and validation

We compare the performance of the proposed offline model-free RL algorithm, CQL, to five other policies: (1)

the optimal policy: assuming that the estimated transition and utility functions based on the historical data are the

true underlying dynamics of the environment, we can find this policy by maximizing the value function in Eq. (1).

This policy would represent the upper bound for all other algorithms here as the best theoretical performance; (2) the

offline version of the popular DQN algorithm: this would represent a baseline for CQL, as the offline version of DQN

does not explicitly have a mechanism to cope with OOD data; (3) a rule-based policy based on wind direction. This is

a simplified policy that uses South configuration if wind is blowing from South, Southeast, or Southwest and North

otherwise, due to the fact that the North configuration is a preferred configuration by the ATCs at CLT (visualized in

Figure 2); (4) a policy that always selects North configuration; and (5) a policy that always selects South configuration.

The training times for both DQN and CQL algorithms are negligible for a year-worth of training data and one airport,

and both algorithms can train in near-real time and provide inference in real time.

Figure 2 visualizes the policies obtained by each of these approaches as a function of wind direction and speed.

Some scenarios have multiple actions associated with them that capture the variability of the policy as a function of the

hour of the day. As it can be seen, the rule-based policy only changes as a function of the wind direction; however, the

optimal, DQN, and CQL policies depend on all components of the state space. The DQN and CQL policies are based

on training them with 50,000 episodes, each containing a 100 mini-batch of transitions sampled randomly from the

replay buffer. Visually, the figure illustrates that the CQL’s policy is much closer to the optimal policy compared to the
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DQN, however, we will compare their performance in a quantified manner in the next paragraphs.

Fig. 2 This figure visualizes policies obtained by each algorithm as a function of wind direction/speed. The
variations in the policy for a specific wind direction/speed capture the effect of the hour of the day on the policy.

In order to quantify the performance of the different policies compared to the optimal policy, we simulate each policy

in a stochastic forward simulation. Figure 3 shows, on the left, the discounted long-term expected utility (i.e., value

function) of managing with each policy calculated according to Eq. (1), and on the right, the cumulative immediate

utilities for each policy. We performed 100 independent forward simulations, and the figure shows mean +/- standard

deviation of the performance according to these simulations. As it can be seen, CQL, DQN, and rule-based policies

perform well and close to the optimal policy, with CQL being the best among them. As expected, overly simplified

policies of always picking the South or North configuration performed poorly, with North being the better one due to

controllers’ preference for this configuration over South at CLT, historically.
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Fig. 3 This figure compares the performance of different policies compared to the optimal policy in terms of
(left) discounted long-term expected utility and (right) cumulative immediate utility.

Fig. 4 This figure illustrates the robustness of the policy learned by the DQN and CQL approaches to the size of
training data.

In the next step, we intend to test the robustness of the policies learned by these algorithms to the number of training

episodes (number of training data needed to reach a good policy). The DQN and CQL results in Figure 3 were obtained

by training the policy with 50,000 episodes (each containing 100 random mini-batch samples of transitions). In Figure

4, we compare the performance of DQN and CQL algorithms when we decrease the number of episodes of training

from 50,000 to 500. As you can see, performance of CQL stays close to the original CQL policy and the optimal policy,

while the performance of the DQN algorithm drops significantly. The reason for this significant drop in the performance

of DQN is the fundamental challenge we mentioned about offline RL: the distributional shift. When the size of training

data is limited, the chance of significant deviation between the behavior policy and the learned policy by the offline RL
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algorithm is higher, and there is a higher chance of the AI agent being exposed to the Out-Of-Distribution (OOD) data

in the inference. Since DQN has no built-in mechanism to alleviate the effect of OOD data, it performs poorly in those

cases. On the other hand, the CQL algorithm, which makes conservative updates to the Q-values and hence has an

underlying mechanism to alleviate the effect of OOD data, exhibits greater robustness to the size of training data. As a

result, its performance stays close to the optimal policy despite the availability of limited training data.

Lastly, we compare performance of these approaches in two scenarios of inference in the operational setting. In

both of these scenarios, we assume that the model has access to an uncertain forecast of the state variables (i.e., wind

direction and speed) and a trained policy. Then, we use a forward simulation to estimate the probability that the model

will suggest a configuration change at the airport in the next 12 hours. This could be used by air traffic controllers as a

decision-support tool to make more informed and timely decisions regarding the runway configuration changes at CLT.

Fig. 5 Two scenarios of deploying the learned policies in an inference mode of operational setting to forecast the
next 12 hours.

Figure 5 illustrates two operational scenarios. In scenario 1 (left column), the current time is 6am and the wind is

blowing from the North with a high intensity level (≥ 15 knots). The optimal policy dictates that we should use North

configuration. Different rows on the figure shows the mean +/- standard deviation of forecast for the next 12 hours for

probability of runway configuration switch (top panel), wind direction (middle panel) and wind speed (bottom panel),
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respectively, based on 1000 independent simulations. As illustrated, the wind direction is expected to change in the next

few hours with considerable uncertainty, and its intensity is expected to decrease. As a result, the probability of the

configuration switching to the South increases, accordingly to our model. It should be noted that in the top panel, the

closer a policy is to the optimal policy (blue line), the better it has performed. Both the CQL and DQN approaches

estimate this probability with a good accuracy and stay close to the optimal policy, however, the rule-based method

underestimates this probability significantly.

Scenario 2 represents a more complex setting, where the current time is 2pm in the afternoon and the wind is

blowing from the southeast with a low intensity ([0 − 5) knots). Despite the wind direction being somewhat from

the south, we can see that the optimal policy is to still use North configuration. This is not a surprise, as the North

configuration is preferred by controllers at CLT. However, as the intensity of the wind grows in the ensuing hours,

the probability of switching to the South configuration grows. In this scenario, only the CQL algorithm is able to

mimic the optimal policy well. As can be seen, both the DQN and rule-based policies prescribe changing to the South

configuration, which we know is not optimal.

These two example scenarios illustrate the superiority of the proposed offline RL approach, i.e., CQL, to the other

alternative policies. As can be seen from Figure 5 and previous ones, CQL has the best performance, as it most closely

mimics the optimal policy.

IV. Conclusion
In this paper, a state-of-the-art offline model-free reinforcement learning methodology, called conservative Q-

learning (CQL), was deployed to address the runway configuration management decision-making. Offline RL combines

reinforcement learning (a key framework for any sequential decision-making problem) with data-driven machine

learning. More importantly, it removes the need for an online interaction with the operational/simulation environment

for data collection, which limits the applicability of online RL methods to safety-critical systems. To comprehensively

validate this approach against other AI-based or rule-based methodologies, a simulated RCM scenario was developed

based on data obtained from Charlotte Douglas International Airport for the year 2019.

The experiments specifically showed that the CQL approach performed better than a more traditional offline RL

approach such as the DQN, as well as simplified rule-based policies, and performed close to the optimal policy (Figure

3). Furthermore, the validation process quantified the robustness of learned policy by each method as a function of

available training data and showed that the state-of-the-art CQL algorithm still performed close to the optimal policy

when the amount of training data was limited (Figure 4). However, DQN’s performance suffered as the amount of

training data was decreased. This is due to the fact that DQN does not employ any underlying mechanism to deal with

Out-Of-Distribution data.

Lastly, performance of these approaches were compared in two operational settings where the quality of policies
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produced were tested, subject to uncertain forecasts (Figure 5). These operational examples illustrated that CQL

performed better than the other approaches in mimicking the optimal policy for up to 12 hours in the future, while DQN

and rule-based policies performed worse.

Future work: In this paper, performance of the offline model-free RL was validated in a simulated setup where the

optimal policy can be calculated. However, in the real-world scenario, the underlying dynamics and utilities are not

available and/or characterized fully. As a result, there is a need to develop quantifiable metrics with feedback from

subject matter experts to validate performance of the deployed algorithm in an operational setting. A direction of future

work is to validate the CQL algorithm for RCM at CLT with the help of SMEs. Another future research direction is

to generalize the developed technology to other airports with more complex configuration options involving multiple

runways operated in various combinations for arrivals and departures.
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