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1. Abstract 
In 2016, a routine repair operation at the Willwood Dam released tons of built-up sediment into the 
Shoshone River, polluting the river and negatively impacting the ecosystem. This release greatly affected the 
communities that rely on the river for farming, recreation, and tourism. In partnership with the Wyoming 
Department of Environmental Quality (WYDEQ), Shoshone River Partners, and the United States 
Geological Survey (USGS) Wyoming–Montana Water Science Center, this project utilized satellite imagery 
and precipitation data to examine turbidity patterns in the Shoshone River between the Buffalo Bill Dam and 
the Willwood Dam. We used PlanetScope satellite images to assess changes in surface reflectance of the river 
in response to precipitation events and Global Precipitation Measurement (GPM) Integrated Multi-Spectral 
Retrieval (IMERG) precipitation data to estimate the lag time between rainfall events and increased turbidity. 
The National Land Cover Dataset (2019) was used to identify the main land cover types within each sub-
basin. The end products included a turbidity analysis, land cover analysis, and precipitation analysis that 
provided the partners with a better understanding of sediment dynamics in the river. The results 
demonstrated the feasibility of using PlanetScope data to examine turbidity spatially along small rivers. 
Sediment plumes from tributaries were visually identified for multiple high turbidity events, and we calibrated 
an equation that translated reflectance to turbidity, accurately representing plume extent. Inconsistent spectral 
quality of PlanetScope data, however, limited our ability to assess the relative sediment contribution of the 
tributaries.  
 
Key Terms 
suspended sediment, tributaries, turbidity, precipitation, remote sensing, PlanetScope, GPM IMERG 
 
2. Introduction 
2.1 Background Information  
Rivers provide a myriad of important ecological and societal functions, including habitat, recreation, and 
water supply for irrigation. Excess suspended sediment impairs water quality and diminishes these functions; 
therefore, it is critical to monitor sources of excess sediment. In the Shoshone Basin, releases from the 
Willwood Dam have caused elevated sediment levels. Dams provide important water supply, flood control, 
and/or power generation services, however, the alteration of river processes causes collateral effects including 
the trapping and accumulation of sediments behind the dam. During routine dam maintenance, these 
sediments can be released all at once, having adverse effects on downstream water quality. 
  
In 2016, a routine repair operation at the Willwood Dam released tons of built-up sediment into the 
Shoshone River, polluting the water downstream and causing a significant fish kill (Trosper, 2019). This 
release greatly concerned the communities that rely on the river for farming, recreation, and tourism. After 
the 2016 release, the Wyoming Department of Environmental Quality (WYDEQ) created the Willwood 
Working Groups to address community concerns over future sediment releases by improving aquatic habitat, 
working towards improved dam operation, and decreasing sediment loading through the implementation of 
Best Management Practices (BMPs).  
 
The Willwood Working Group looking to implement BMPs focused their efforts on the reach of the 
Shoshone between the Buffalo Bill Dam and the Willwood Dam. The Buffalo Bill Dam is located upstream 
of the Willwood Dam. Limited sediment is released from the Buffalo Bill reservoir as it is large enough that 
most sediments settle out far away from the release gate. Between the Buffalo Bill Dam and Willwood Dam, 
several tributaries, irrigation canals, and channels feed into the river. Sediment transported by these tributaries 
accumulates behind the Willwood Dam before eventually being released.  
 
This project assessed the feasibility of using PlanetScope satellite imagery to analyze turbidity patterns in a 
small river. The study area encompassed the Shoshone River watershed between the Buffalo Bill Dam and 
Willwood Dam (Figure 1). The Shoshone River area is situated in a valley surrounded by agricultural fields 
and small urban areas. Many creeks and ephemeral streams join the Shoshone River within the study area and 
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are known to transport high sediment loads, especially in response to storm events. One region of interest is 
the McCullough Peaks area, which contains highly erodible soil that may contribute to high sediment loading 
but is difficult to monitor due to the flashiness of its tributaries. To analyze turbidity patterns in the Shoshone 
River, we used PlanetScope imagery from January 2019 to October 2021 to remotely sense turbidity. The 
study period was selected to match the timeframe during which the United States Geological Survey (USGS) 
collected in-situ turbidity data within the study area so we would be able to calibrate the remote sensing data. 
 

 
Figure 1. Map of the study area. The study area is highlighted in orange, rivers, streams, and canals are in blue. 
Basemap Citation: NRGC, Esri, HERE, Garmin, FAO, NOAA, USGS, EPA, Here, SafeGraph, METI/NASA, Bureau of Land Management, EPA, 
NPS. USDA, NASA, NGA.  
 
2.2 Project Partners & Objectives  
We partnered with WYDEQ, the Shoshone River Partners (formerly known as Willwood Working Group 3), 
and the USGS Wyoming-Montana Water Science Center to investigate the sedimentary contributions of sub-
watersheds and tributaries to the Shoshone River. These partner organizations have been conducting ongoing 
work to alleviate the impacts of excess sediment in the Shoshone River basin. Watershed managers in the 
working groups currently rely on in-situ turbidity data from the USGS stations and time-lapse photography to 
identify tributaries contributing high volumes of sediment to the Shoshone River. They use these discrete 
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sources of information to inform their BMPs within the watershed such as stream restoration and riparian 
fencing.  
 
Based on the partner’s identified needs, the primary objective was to assess the feasibility of using 
PlanetScope data to examine turbidity spatially along the Shoshone River. We supplemented the turbidity 
analysis with a precipitation analysis to estimate the lag time between rainfall events and increased turbidity. A 
land cover analysis was also conducted to identify the main land cover types within each sub-basin.  
 
Remote sensing allows for the geospatial analysis of turbidity beyond what is possible with the partner’s 
current in-situ data collection. This analysis improved the partners understanding of sediment dynamics in the 
Shoshone River, increased their ability to allocate their limited resources to implement BMPs effectively, and 
built their capacity to incorporate remote sensing in their management decisions. 
    
3. Methodology 
Many studies have successfully used remote sensing to determine surface water turbidity in rivers (Shen et al., 
2021; Pereira et al., 2019; Hossain, 2021; Umar et al., 2018). Suspended sediment increases the reflection of 
certain wavelengths, allowing the surface reflectance recorded by multispectral satellite imagery to be used as 
a proxy for in-situ turbidity measurements. Red, green, and near infrared (NIR), or a combination of these are 
most commonly used to assess turbidity (Umar et al., 2018; Garg et al., 2020, Ayad et al., 2020). If adequate 
in-situ data are available, the reflectance-turbidity relationship can be calibrated, allowing for quantitative 
consideration of turbidity. In absence of in-situ data, the Normalized Difference Turbidity Index (NDTI) has 
been developed to look at relative turbidity within a study area and has been applied to multiple studies 
(Lacaux et al., 2007; Garg et al., 2020). Imagery for analyzing turbidity in rivers requires fine spatial resolution 
such that multiple pixels fit within a river cross section and fine temporal resolution to capture flood events 
before they dissipate. PlanetScope imagery has a 3m spatial resolution, daily temporal resolution, and has 
been shown to be effective at analyzing turbidity (Mansaray et al., 2021; Wirabumi et al., 2020). Past research 
has looked at spatial distribution of turbidity in large rivers, including sediment transport, mixing downstream 
of large river confluences, and sediment plumes from a single tributary (Hossain et al., 2021; Pereira et al, 
2019; Umar et al 2018; Hughes et al., 2021); however, no studies were found over the course of this project’s 
literature review that use remote sensing to identify tributaries contributing high sediment loading. 
 
3.1 Data Acquisition  
We downloaded PlanetScope surface reflectance satellite images using Planet Explorer. Images from 
PlanetScope’s first generation Dove Classic sensors were ignored as sensors do not provide as reliable 
imagery for spectral analyses (Frazier & Hemingway, 2021). We acquired turbidity data from a U.S. 
Geological Survey gage station on the Shoshone River above the Willwood Dam (USGS 06283995). GPM 
IMERG rainfall data were spatially averaged across the study area and downloaded as a daily time series 
through the Climate Engine application. For the land cover analysis, we downloaded USGS National Land 
Cover Database (NLCD) data from the National Geospatial Data Gateway. Project partners also provided us 
with a geodatabase containing watershed shapefiles and time-lapse imagery of select tributary confluences at 
15-minute intervals.  
 
3.2 Data Processing 
We first analyzed satellite rainfall data, gauge precipitation data, and turbidity data from January 2019 to 
October 2021 to identify dates of elevated turbidity and storm events. Turbidity and rainfall were plotted 
against time on a scatter plot to get a sense for the correlation between them. Turbidity and precipitation were 
also sorted by magnitude to find the dates of the largest precipitation and turbidity events. These dates were 
then used to search for images to be used as proof of concept for the rest of the project.  
 
After confirming the ability to identify sediment plumes in PlanetScope imagery, we downloaded all usable 
images taken during the study period. We initially tried using Planet’s surface normalized images; however, 
the normalization procedure caused the near infrared band to be higher in reflectance than the other bands 
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which interfered with NDWI masking. In order to apply our water masking method, we had to switch to 
using Top of Atmosphere (TOA) data and work with it un-normalized. We used the Python package gdal to 
merge the images taken during the same satellite pass. We then calculated the Normalized Difference Water 
Index (NDWI) (McFeeter, 1996): 
 

NDWI = 
Green - NIR
Green + NIR

(1) 

 
We used Otsu’s method to determine a threshold value and convert NDWI to a binary raster which was used 
to mask land pixels, leaving just the river. The Python package rasterio was then used to create a mask based 
on Python’s useable data mask image and apply it to the merged images, removing pixels where clearMap = 0, 
shadowMap = 1, lightHazeMap = 1, heavyHazeMap = 1, cloudMap = 1, or confidenceMap <80. Afterwards, 
the turbidity equation was applied to the raster image. Finally, a shapefile of the river was used to clip the 
resulting images to remove any land erroneously missed during NDWI masking. 
 
We then calibrated multiple equations (Equations A1-A4, Appendix A) in order to find the best relationship 
between reflectance and turbidity. Band data was spatially averaged within a rectangle located adjacent to the 
USGS gage station using the rasterstats.zonal_stats function (Figure A1, Appendix A). A Python script 
retrieved in-situ turbidity for the nearest time to when the PlanetScope image was taken. If no turbidity was 
available within one hour of the image’s timestamp, the image was not used for calibration and validation. 
The dataset was then sorted by the magnitude of turbidity. Entries with an even index were used for 
calibration while entries with an odd index were used for validation (where the first entry was indexed at 
zero). Parameters were calibrated using the basinhopping function from the SciPy.optimize package to 
minimize root mean squared error (RMSE) between remotely sensed and in-situ turbidity. The best fit was 
found using the Equation 2: 
 

T = 
GreenN

a - b * RedN
 (2) 

 
 

Where, 
a = 0.0451688  

 
b = 0.157234 

 

GreenN =
Green

Red + Green + Blue + NIR
 (2𝑎𝑎) 

 
 

RedN =
Red

Red + Green + Blue + NIR
 (2𝑏𝑏) 

 
 

T is turbidity, GreenN is green reflectance normalized to the sum all bands for the image pixel, and RedN is 
red reflectance normalized to the sum of all bands for each image pixel. 
 
Equation 2 produced an R2 of 0.83 for calibration, 0.22 for validation, and 0.70 for the full dataset. The Nash 
Sutcliffe Efficiency coefficient (NSE) for the full dataset was 0.70. A summary of parameters and R2 values 
for the other equations and band combinations we tested can be found in Table 1A, Appendix A. Figure 2 
shows that remotely sensed turbidity generally follows the same trends as in-situ turbidity; however, some 
peaks are missed. While this relationship generally does a good job of approximating turbidity, it tends to 
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overestimate low turbidity values and underestimate high turbidity values (Figure 3). The calibrated turbidity 
equation was then applied to the masked and trimmed PlanetScope images.  
 

 
Figure 2: Remotely sensed and in-situ turbidity plotted for each usable image during the study period. In-situ 
turbidity is plotted in blue and remotely sensed (RS) turbidity is plotted in orange. Remotely sensed turbidity 

effectively models the turbidity spike on Sept. 12, 2019 but underestimates or misses many other peaks. 

 
Figure 3: Remotely sensed vs in-situ turbidity for the validation dataset. (R2 = 0.22) In-situ turbidity is plotted 

on the x-axis and remotely sensed (RS) turbidity is plotted on the y-axis. Each dot represents a satellite 
imaging event. In-situ turbidity was measured at the USGS gage above Willwood Dam. For each image the 

turbidity measurement with the nearest timestamp to when the image was used (within one hour either side). 
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The dashed line has a slope of 1 and intercept of 0, representing a perfectly modeled relationship. The 
majority of low in-situ values falling above this line and high values falling above it indicates the remote 

sensing turbidity equation frequently overestimates low turbidity and underestimates high turbidity. 
 
 
 
3.3 Data Analysis 
We conducted a spatial analysis of turbidity by comparing remotely sensed turbidity at paired locations 
upstream and downstream of tributaries. Average remotely sensed turbidity was spatially extracted using 
zonal_stats function from the rasterstats package. We calculated percent land cover (NLCD) within each sub-
basin using ArcGIS Pro v. 3.0.2 in order to identify the dominant land cover type for each sub-basin. We also 
analyzed rainfall events in order to forecast the amount of time it takes for sediment to be transported into 
the river following a storm. 
 
Additionally, we conducted a precipitation trends analysis using GPM IMERG daily precipitation data and 
mean daily turbidity readings from the USGS streamflow station above Willwood Dam (06283995) from 
January 2019 to October 2021. After calculating a Pearson’s correlation coefficient matrix in the Python using 
pandas.DataFrame.corr, we then squared the results to generate R2 values among different time variables. 
 
4. Results & Discussion 
4.1 Analysis of Results 
To assess the feasibility of using PlanetScope data to map turbidity in the Shoshone River, we analyzed 
suspended sediment concentrations from 2019 to 2021. The analyses focused on remotely sensed turbidity, 
precipitation, and land cover. In-situ gage data from the USGS streamflow station provided a way to calibrate 
our remotely sensed turbidity findings. The land cover analysis provided additional context for turbidity 
patterns in the Shoshone River. 
 
4.1.1 Remotely Sensed Turbidity 
As a proof of concept that we could detect sediment plumes with PlanetScope data, we first visually identified 
sediment plumes in satellite images during the week following recent rainfall events. We observed visible 
sediment plumes from Sulphur Creek (upper watershed), Dry/Homesteader Creek (middle watershed), and 
Penney Gulch (lower watershed) on a clear PlanetScope image from September 12, 2019. These three 
confluences are known to contribute high volumes of sediment into the Shoshone River based on the 
Shoshone River Partner’s StoryMap (Willwood Work Group 3, n.d.). This demonstrated that PlanetScope 
had a sufficient spatial resolution for our project, and that equation 2 successfully represented plumes seen on 
September 12th, 2019 (Figure 4) and October 16th, 2021 (Figures A2 and A3, Appendix A). The visible 
sediment plumes were later used to qualitatively validate the turbidity index (Figure 4, Figures A1 and A2 in 
Appendix A). The remotely sensed turbidity plume matches extent of an area of high turbidity seen in the 
RGBn image. Despite calibration and a reasonable spatial representation of turbidity, we recommend 
interpreting the turbidity index values as a relative scale until the index can be further refined as the turbidity 
index validation suggests the turbidity equation overestimates low turbidity and underestimates high turbidity 
(Figure 3). 
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Figure 4: Comparison of remotely sensed turbidity and RGB imagery for a sediment plume at the confluence 
of Sulphur Creek and the Shoshone River on September 12th, 2019 (Both are overlaid on an Esri Satellite 

Basemap). Additional plume examples can be seen in Figures A1 and A2, Appendix A. 
 
After confirming the relationship between reflectance and turbidity was meaningful, we were then able to use 
remotely sensed turbidity to attempt spatial analysis. In order to look for tributaries that contributed a high 
sediment load, we compared turbidity at paired locations upstream versus downstream (as illustrated in Figure 
A4, Appendix A). In theory, an increase in turbidity between the upstream and downstream locations should 
indicate that the tributary between the two locations contributed high sediment loading between the 
locations. In practice, however, large jumps in the value were mostly due to image inconsistences caused by 
clouds, land pixels, or image artifacts. Cloud masking, which we accomplished using the usable data mask 
provided by PlanetScope, was effective at removing thick clouds, however thin wispy clouds along the edge 
of thick clouds were sometimes missed (Figure A5, Appendix A). Rerunning image processing with a higher 
confidence level (we used 80%) may help get rid of this issue; however, we were unable to test it due to time 
constraints. Similarly, land masking using NDWI and river polygon clipping was for the most part effective at 
isolating water; however, in some cases it did not remove all land pixels. Further refinement of the automatic 
thresholding process would likely be able to reduce issues caused by land pixel interference. 
 
We also attempted to look for a spatial pattern in turbidity by creating a box plot of turbidity at each of the 
downstream points to look at turbidity as the river flows through the study area. This faced the same issues as 
described in the last paragraph, so we were ultimately unable to reach a point where we had confidence in any 
quantitative spatial analysis results this term. Testing different shapes and locations to zonally extract along 
the river would also help ensure meaningful results. With these improvements, this analysis would be able to 
provide a different way to visualize turbidity along the river. 
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4.1.2 Land Cover Analysis 
We conducted a land cover analysis of each individual watershed using USGS National Land Cover Database 
(NLCD) from 2019 (Figure 5). We found that Shrub/Scrub made up the majority of most watersheds except 
for the Mainstream watershed and UnnamedTrib watershed that had less than 50% of their land cover 
comprised of Shrubs/Scrubs. Other landcover types that occupy significant portions in some watersheds are: 
Cultivated Lands, Hay/Pasture, Herbaceous, developed Low intensity, Evergreen Forest, and others 
occupying variable amounts (7% - 0%) of land cover in other watersheds include: Developed Open Space, 
Developed Medium Intensity, Barren Land, Deciduous Forest, Woody Wetlands, Emergent Herbaceous 
Wetlands, Open Water and Mixed Forest. 
 
One limitation of this analysis may be that the most recent land cover data is from 2019. Once more updated 
land cover data becomes available, future studies should use that dataset to perform a land cover analysis. 
 

 
Figure 5. Map of the land cover analysis of the watersheds within the study area. The pie charts show the 

percentage of each land cover type per watershed. 
Basemap Citation: Esri, HERE, Garmin, SafeGraph, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, USDA, Esri, 

NASA, NGA.  
  

 
4.1.3 Precipitation Trends Analysis 
Table 1 shows the GPM IMERG averaging time against mean daily turbidity from the USGS station. 
Averaging time was calculated by conducting a rolling average on the dataset in zero, two-day, or three-day 
intervals. The correlation between the variables was low, but we observed a higher correlation when 
comparing GPM IMERG precipitation data without snowmelt influence (only including the irrigation season 
between the months of April to October).  
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Table 1 
GPM IMERG Averaging Time Coefficient of Determination Matrix 

GPM IMERG Averaging Time 
R2, Without Snowmelt Influence 
(Apr to Oct) 

R2, Entire Study Period 

None 0.14 0.12 

Two-Day 0.37 0.32 

Three-Day 0.35 0.31 

 
We observed the highest correlation between mean two-day GPM IMERG data against mean daily turbidity 
(Figure 6). This finding is consistent with Alexander (2021) using mean two-day accumulated precipitation to 
compare precipitation against daily turbidity for the same precipitation above (Figure C2, Appendix C). 
 

 
Figure 6: Mean Two-Day GPM IMERG data against Mean Daily Turbidity (R2 = 0.37). Mean daily turbidity 

came from the USGS station above Willwood Dam. GPM IMERG data was a rolling two-day average. 
 
To further examine when sediment is recorded in the monitoring station following a precipitation event, we 
generated a Pearson’s correlation coefficient matrix examining GPM IMERG data at varying lag times against 
mean daily turbidity. Table 2 shows this relationship. Lag time was calculated by shifting the data values for 
precipitation back by one, two, or three days. The correlation between the variables was low, but we again 
observed a higher correlation when comparing GPM IMERG precipitation data without snowmelt influence.  
 
 
 
 
 
 



   
 

10 
 

Table 2 
GPM IMERG Lag Time Coefficient of Determination Matrix 

GPM IMERG Lag Time 
R2, Without Snowmelt Influence 
(Apr to Oct) 

R2, Entire Study Period 

One-Day 0.35 0.30 

Two-Day 0.05 0.05 

Three-Day 0.01 0.01 

 
We observed the highest correlation between One-Day GPM IMERG data against Mean Daily Turbidity 
(Figure 7). This finding also supports that turbidity is reflected in the monitoring station after at least a day 
after a storm event. 

 
Figure 7. One-Day Lag GPM IMERG data against Mean Daily Turbidity (R2 = 0.35) Mean daily turbidity 

came from the USGS station above Willwood Dam. GPM IMERG data was shifted by one day. 
 
Both correlation matrices support a higher correlation between precipitation and turbidity when eliminating 
seasons with a high likelihood of snowmelt triggered events. They both support the finding that sediment 
takes at least a day to show up in the turbidity gage readings after precipitation falls on the watershed. 
However, even the best correlations demonstrate a relatively weak correlation, and so more research would 
need to examine if these trends are found exploring different datasets, time differences, or other factors that 
might improve the correlation between these variables. 
 
We recommend that the second term explore other precipitation datasets with higher spatial resolution. We 
found that GPM IMERG and Parameter-elevation Regressions on Independent Slopes Mode (PRISM) data 
are somewhat comparable (Figure C1, Appendix C), but PRISM or Community Collaborative Rain, Hail & 
Snow Network (CoCoRaHS) data may be better alternatives to examine precipitation spatially and to explore 
the differences between the snowmelt season and off-season more in detail. Higher resolution spatial data 
could also allow the second term to investigate precipitation on the left and right banks of the river, or within 
each sub-basin, to further refine the relationship and to combine these findings with land cover types or soil 
moisture metrics to generate a better understanding of sediment dynamics within each sub-basin for the 
partners. 
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In addition, it might be worthwhile to create a threshold to exclude rainfall below a certain number, which 
might lead to a better correlation between the data. Alexander (2021) generated a higher correlation 
coefficient when examining rainfall depth above 0.01mm (Figure C2, Appendix C). In addition, Alexander 
(2021) used PRISM and CoCoRaHS data which may also explain the higher correlation between the datasets. 
It also might be worth exploring if a logistic regression or another type of regression fits the relationship 
better after these changes are made. Due to time constraints, we were not able to explore these relationships, 
but these could direct the second term’s course of action. 
 
4.2 Future Work 
The second term of this project will focus on a snow cover analysis. The future team will analyze the 
influence of large snowfall and melt events on sediment runoff. They will use the Soil Water & Assessment 
Tool (SWAT) to explore these trends in the Shoshone River. An additional objective is to quantify the 
amount of sediment from each tributary. The future team can reference the equation we derived and resolve 
the spectral quality issues with PlanetScope data in order to find a consistent relationship between turbidity 
and TOA radiance. Applying atmospheric normalization to the TOA radiance images may improve 
performance of NDWI masking and turbidity extraction. There is also plenty of room to expand on our 
attempts at spatial analysis. Our calibrated equation worked better on days with high turbidity, but we were 
unable to standardize our relationship among different days. The anticipated end products will include snow 
cover analysis maps as well as quantitative sediment contribution maps. 
 
Future work could also investigate additional research questions that the partners were interested in, such as 
examining the contribution from McCullough Peaks. Precipitation datasets with higher spatial resolution may 
help that team isolate the sediment contribution to the McCullough Peaks sub-basin. The second term can 
also investigate irrigation practices more in depth, such as examining if irrigation return flows from nearby 
canals influence sediment runoff. Although we considered the irrigation season and snowmelt influence as a 
potential factor for the precipitation trends analysis, the second term could explore this variable in relation to 
sediment loading.  
 
5. Conclusions 
This project demonstrated the potential for PlanetScope data to be used to examine turbidity spatially along 
small rivers. We were able to identify multiple sediment plumes caused by tributaries joining the Shoshone 
River. This is relevant to watershed managers looking to identify sources of sediment and to target their best 
management practices along the river. We successfully ran an equation that translated the TOA radiance from 
the PlanetScope satellite images to turbidity, but the spectral quality of the data prevented us from finding a 
consistent relationship between turbidity and TOA radiance across the entire study period. Furthermore, the 
land cover analysis map we created can be used by the partners to understand how the different land cover 
types influence sediment contribution into the Shoshone River. Based on this research, future studies can 
refer to the equations and methods we derived for our turbidity analysis along small rivers. We also 
recommend any future work to include using a precipitation dataset with a higher spatial resolution, such as 
PRISM or CoCoRaHS, to analyze precipitation patterns within each sub-basin in combination with the land 
cover analysis. 
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7. Glossary 
Confluence – The junction of two rivers 
CSS – Concentration of Suspended Sediment  
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time  
ESA – European Space Agency  
GPM IMERG – Global Precipitation Measurement (Integrated Multi-satellitE Retrievals). An algorithm that 
estimates the precipitation over Earth using the GPM satellite.  
gSSURGO – Gridded Soil Survey Geographic Database  
NDTI – Normalized Difference Turbidity Index. Identifies water turbidity using the ratio of green to red 
bands, as clear water has a higher electromagnetic reflectance in the green spectrum.  
NDWI – Normalized Difference Water Index. Identifies water bodies as water has a higher electromagnetic 
reflectance in the Green and Near Infrared bands.  
NIR – Near-infrared part of the electromagnetic spectrum between 215 to 400 THz.  
NLCD – National Land Cover Database  
PlanetScope – 3m resolution 8-band satellite imagery operated by Planet Labs  
Turbidity – The measure of light scatter due to suspended particles.  
USDA-NRCS – United States Department of Agriculture-National Resource Conservation Service  
USGS – United States Geological Survey  
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9. Appendix 
 

Appendix A:  Turbidity Equation Calibration and Validation 
 

T = a * Band1 + b * Band22 (𝐴𝐴1) 
 
Equation A1:  Double band equation, format equivalent to equation “DSB1” in Pereira et al. 2019. 
 

T = 
Band1

a + b * Band2
 (𝐴𝐴2) 

 
Equation A2: Double band equation, format equivalent to equation “DSB3” in Pereira et al. 2019. 
 

T = 
Band1

a + b * Band22  (𝐴𝐴3) 

 
Equation A3: Double band equation, format equivalent to equation “DSB3” in Pereira et al. 2019. 
 

T=a*
(Band1+Band2)

2
+ 𝑏𝑏 (𝐴𝐴4) 

Equation A4: Double band equation. 
 
Table A1: Summary of turbidity equation fitting results. The highlighted row represents the best fit equation 
which was used for spatial turbidity analysis. 

Equation 
Format 

Band 
Combinatio
n 

a b R2 
(calibratio
n) 

R2 

(validation
) 

R2 (all) NSE (all) 

Eqn1 red-green 634.4853 -1115.87 0.053162 0.030774 0.041898 0.035583 
Eqn2 red-green 0.007285 -0.00578 0.173637 0.157548 0.155382 0.018806 
Eqn3 red-green 0.006125 -0.00626 0.163368 0.144969 0.145441 0.018657 
Eqn4 red-green 33.05265 -12.185 0.254587 0.07459 0.201443 0.173938 
Eqn1 green-red -462.603 3750.363 0.129206 0.089121 0.107899 0.096597 
Eqn2 green-red 0.04705 -0.16382 0.830359 0.222667 0.700251 0.699771 
Eqn3 green-red 0.026758 -0.32475 0.829276 0.228016 0.697286 0.696755 
Eqn4 green-red -12.185 33.05265 0.254587 0.07459 0.201443 0.173938 
Eqn1 red-nir 382.2884 -1959.97 0.046855 0.06383 0.046265 0.034639 
Eqn2 red-nir 0.005456 0.000812 0.148141 0.128436 0.13116 0.018534 
Eqn3 red-nir 0.005282 0.013055 0.157692 0.147417 0.142641 0.018889 
Eqn4 red-nir 26.43944 -12.2684 0.280252 0.2123 0.255578 0.170158 
Eqn1 nir-red -1170.58 4514.287 0.156215 0.154387 0.143773 0.133682 
Eqn2 nir-red 0.024106 -0.0839 0.819182 0.079681 0.683151 0.682965 
Eqn3 nir-red 0.014386 -0.17457 0.819194 0.072261 0.68137 0.681367 
Eqn4 nir-red -12.2684 26.43944 0.280252 0.2123 0.255578 0.170158 
Eqn1 green-nir 95.02479 262.2209 0.000274 0.002418 0.000702 -0.00282 
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Eqn2 green-nir 0.011842 -0.02125 8.76E-05 0.000823 0.000259 -0.00265 
Eqn3 green-nir 0.009932 -0.0542 0.000281 0.00014 0.000226 -0.00261 
Eqn4 green-nir 8.348716 7.012771 0.000163 0.002447 0.000622 -0.00469 
Eqn1 nir-green 125.6434 175.8622 3.50E-05 0.005086 0.000698 -0.00338 
Eqn2 nir-green 0.010233 -0.01991 1.80E-06 0.004887 0.000441 -0.00492 
Eqn3 nir-green 0.007115 -0.0315 4.07E-08 0.005439 0.000533 -0.00515 
Eqn4 nir-green 7.01277 8.348717 0.000163 0.002447 0.000622 -0.00469 
Eqn1 blue-red -462.357 4162.696 0.169357 0.124933 0.143744 0.128732 
Eqn2 blue-red 0.057377 -0.20004 0.825047 0.173815 0.690685 0.690599 
Eqn3 blue-red 0.032117 -0.39068 0.824414 0.174409 0.688374 0.688257 
Eqn4 blue-red -25.6313 48.34161 0.809532 0.124264 0.68483 0.668621 
Eqn1 red-blue 990.4434 -1506.42 0.134765 0.104445 0.114567 0.101005 
Eqn2 red-blue -0.03173 0.122638 0.817884 0.024148 0.667712 0.667309 
Eqn3 red-blue -0.01427 0.213485 0.817068 0.02316 0.664813 0.664029 
Eqn4 red-blue 48.34161 -25.6313 0.809532 0.124264 0.68483 0.668621 
Eqn1 blue-nir 26.05916 1025.978 0.000776 0.009247 0.002208 -0.01419 
Eqn2 blue-nir 0.013715 -0.01879 0.20451 0.159322 0.170854 -0.0147 
Eqn3 blue-nir 0.012002 -0.04692 0.200262 0.149111 0.165623 -0.01463 
Eqn4 blue-nir 2.692731 15.53078 0.004055 0.013001 0.005605 -0.02906 
Eqn1 nir-blue 538.6 -406.388 0.013281 0.001637 0.007631 -0.00418 
Eqn2 nir-blue -0.02617 0.10094 0.809043 0.004327 0.64769 0.644442 
Eqn3 nir-blue -0.01196 0.178053 0.808667 0.004549 0.645192 0.640838 
Eqn4 nir-blue 15.53077 2.692732 0.004055 0.013001 0.005605 -0.02906 
Eqn1 blue-green -484.277 2217.506 0.024742 0.027584 0.022375 0.012669 
Eqn2 blue-green 0.002892 0.027169 0.144235 0.093182 0.109999 -0.01458 
Eqn3 blue-green 0.006316 0.052403 0.133385 0.086848 0.101513 -0.01457 
Eqn4 blue-green -76.9736 92.69536 0.813725 0.001715 0.061161 -7.0781 
Eqn1 green-blue 1403.738 -3256.18 0.137622 0.09968 0.109323 0.085007 
Eqn2 green-blue -0.04123 0.159141 0.817697 0.017618 0.66627 0.666079 
Eqn3 green-blue -0.01824 0.272111 0.817274 0.017467 0.663509 0.663141 
Eqn4 green-blue 92.69536 -76.9736 0.813725 0.001715 0.061161 -7.0781 
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Figure A1: Location of Turbidity Calibration Averaging Zone Relative to the USGS Gage Station. The 

averaging zone was used to extract the average value for the red, green, blue, and near-IR bands in each 
image. These values were then used to calibrate the turbidity index equation. 

 

 
Figure A2: The map on the left shows raw PlanetsScope satellite imagery of a sediment plume at the 
confluence of Dry Creek on October 16th, 2021 (overlaid on an Esri Satellite basemap), the map on the right 
shows the turbidity index. The turbidity index accurately represents the extent of both of these plumes. 
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Figure A3: The map on the left shows raw PlanetScope satellite imagery of a sediment plume at the 
confluence of Penney Gulch on October 16th, 2021 (overlaid on an ESRI Satellite basemap), and the map on 
the right shows the turbidity index. The turbidity index accurately represents the extent of both of these 
plumes. 
 



   
 

19 
 

 
Figure A4: This map illustrates how using boxes above and below a confluence to get a zonal average turbidity 
should be able to detect an increase in turbidity due to a sediment-laden tributary joining the main stem 
Shoshone. 
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Figure A5: An example of clouds interfering with sediment plume detection at the confluence of Sage Creek 
on September 24th, 2019. The image on the left shows the raw PlanetScope imagery overlaid on an Esri 
satellite basemap. There is a missing rectangle of PlanetScope image because it was removed during cloud 
masking, however there are still some thin wispy clouds that weren’t removed creating image inconsistencies. 
The Above-Below boxes are also shown to illustrate how this caused issues with comparing upstream vs 
downstream turbidity values. 
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Appendix B: Land Cover Classification Types 
Table B1: Summary of landcover types within each subwatershed. 

Sub-Basin Shrub/ 

Scrub  

(%) 

Cultivated 
Land  

(%) 

Hay/Pasture 
(%) 

Herbaceous  

(%) 

Developed 
Low 
intensity 
(%) 

Evergreen 
Forest 
(%) 

Trail-Creek- 

watershed 

59 <1 <1 6 <1 34.3 

BuckCreek- 

watershed 

72 17 4.4 2.2 <1 
 

3.3 

SageCreek-
watershed 

81.81 2.2 3.3 1.1 <1 
 

8.8 

Cottonwood-
watershed 

89 3 2.2 2.2 1.1 1.2 

DryCreek-
HomesteadCreek-
watershed 

92.9 4.7 <1 
 

1.0 <1 
 

<1 
 

DryCreek-
watershed 

91.7 1.6 <1 3.5 <1 1.3 

DryGulch-
watershed 

88.4 2.7 1.6 <1 <1 0 

IdahoCreek-
watershed 

84.5 10.3 2 1.3 <1 <1 

IronCreek- 
watershed 

74.4 17.7 2.6 2.2 <1 <1 

Mainstream-
watershed 

47.6 12 3.9 2 8.1 5.3 

Peakwatershed 92.9 0 0 5.2 0 0 
PennyGulch-
watershed 

95.7 2.0 0.5 0.5 0 0 

RoughGulch-
watershed 

93.4 0 0 5.5 0 0 

SageCreek-
watershed 

80.8 1.7 3.1 1.1 <1 7.5 

SulphurCreek-
watershed 

92.5 0.6 0.5 2.3 <1 1.5 
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Unnnamed-
Tribwatershed 

38.7 36.0 12.1 5.3 2.4 0 

Unnamed- 
Creekwatershed 

57.8 32.6 5.7 0.8 <1 <1 
 

Land Cover Classification types derived from NLCD (2019) 
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Appendix C: Additional Precipitation Figures 

 

 
Figure C1. GPM IMERG daily precipitation averages against PRISM daily precipitation averages from January 

2019 to October 2021 (R2 = 0.40). 
 

 
 

Figure C2. "Preliminary empirical relationship between mean two-day accumulated precipitation and mean 
daily turbidity measured at USGS Streamflow gaging station 06283995. Data were taken for the summer of 

2019 for days when total measured rainfall depth exceeded 0.01 mm” (Alexander 2021). 
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