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Numerical sensitivity to 3 different Voronoi seeding methods is investigated for Large Eddy
Simulations (LES). A second order accurate, non-dissipative finite volume discretization is
used to systematically investigate the effects of different polyhedral Voronoi mesh types using
a sequence of three canonical problems with increasing complexity. First, inviscid isentropic
vortex propagation is studied to demonstrate the substantial reduction of errors for rhombic
dodecahedron and truncated octahedral cell types over Cartesian hexagonal cells of identical
spacing. Furthermore, the reduction of errors induced at cell-size transitions (grid-coarsening
interfaces) due to Lloyd smoothing iterations is quantified. It is shown that by utilizing an
appropriate viscous flux discretization, a constant coefficient subgrid scale model is sufficient
for non-linear stability at the 2:1 cell-size transitions on polyhedral grids, although some
further error reduction does occur when smoothing is utilized. Next, forced homogeneous
isotropic turbulence at an asymptotically large Reynolds number is studied to demonstrate
the non-dissipative character of the inviscid flux discretization, and the non-linear robustness
and accuracy offered by the viscous flux discretization using a subgrid scale model for all three
Voronoi grid types. Finally, Wall-Modeled Large Eddy Simulations (WMLES) are performed to
study the high-lift aerodynamics on the McDonnell Douglas 30P30N multi-element airfoil at two
distinct grid levels and for two distinct Voronoi cell types. The formulation is shown to predict
the aerodynamic loading with high accuracy at all angles of attack when sufficient resolution is
reached, and the hexagonal prism grid topology, while computationally more expensive, has
higher effective resolution compared to the Cartesian grid topology with the same spacing"

I. Introduction
Powered by the remarkable growth in High-Performance Computing (HPC) over the past 5-10 years, Large Eddy

Simulations (LES) are increasingly becoming mainstream in academia as well as in industry. In aeronautics, this move
towards LES is primarily due to its success in addressing major challenges faced by more traditional methods such
as Reynolds Averaged Navier-Stokes (RANS) in predicting flows with strongly shear-dominant phenomena (such as
jets), and non-equilibrium boundary layer flows (such as separated wall-bounded flows). Recent work has demonstrated
superiority of LES in terms of accuracy over RANS in a wide range of flows of relevance to aircraft aerodynamics:
a) High-lift flow-conditions near take-off and landing (referred to as CL,max prediction)[1–6], b) Shock-induced flow-
separation leading to buffet at transonic conditions when perturbed about the cruise state[7], and c) Wing-body juncture
flows that experience a corner-flow separation phenomenon that is particularly challenging for RANS closures[8–10].
This trend is consistent with the widespread interest in Wall-Modelled Large Eddy Simulations (WMLES) at the recent
AIAA 4th High Lift Prediction Workshop (2022)[11] - a total of nine participants contributed WMLES submissions
to HLPW4 while none of the participants at HLPW3 had performed WMLES. Of the 9 participants at HLPW4, 6
participants used unstructured grid topologies with either finite volume or finite element discretizations[12]. This is
in stark contrast with the most academic research on WMLES technology which focuses on canonical benchmark
problems, primarily relying on either finite difference discretizations on structured grids, or finite volume discretizations
on hex-dominant unstructured grids (see reviews by Larsson et al.[13] and Park & Bose[14]).

Unstructured grids offer some advantages over structured curvilinear and Cartesian octree (using immersed boundary
treatment) topologies: a) Highly automated and scalable body-conforming grid generation, b) Lack of coarse-fine cell
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volume jumps (or numerical impedence) in the grid due to utilization of smoothing methods, and c) Body-conforming
off-body coarsening outside regions of resolvable vorticity. While finite difference methods can be extended to high
orders of accuracy for a very low computational overhead compared to finite element or finite volume methods, the
importance of reducing dissipation errors over dispersion errors in high Reynolds number LES is increasingly accepted
across the community[15]. As such, second order non-dissipative finite volume discretizations are highly suitable for
most LES for computational aerodynamics. Utilization of arbitrary polyhedral cell types has added advantages over
hexahedral cells in terms of improved rotational invariance, which is particularly advantageous when predicting isotropic
wave phenomena such as acoustics[15–18]. Furthermore, work done at the Center for Turbulence Research (CTR) at
Stanford University has made a strong case for utilization of a specific form of Voronoi polyhedral grid type[19, 20].
Voronoi grids have several distinct advantages for LES: 1) Inherent high-quality of the cells generated by seeding the
domain with regular point distributions allows utilization of robust and accurate, non-dissipative flux discretizations, 2)
Isotropy of the resulting cells for arbitrarily complex geometries, along with the ability to tightly control the minimum
cell size, allow use of efficient explicit time-differencing schemes, and 3) Grid-generation algorithms are highly scalable.
As outlined in subsequent sections of this paper, the Voronoi meshing approach offers the choice of various possible cell
types that can satisfy the aforementioned properties. The primary goals of this work are:

1) Comparative assessment of 3 distinct Voronoi grid types in terms of accuracy. This is done by studying the
isentropic vortex propagation problem to observe the differences in dispersion errors seen on the three grid types.
Furthermore, we also study the forced homogeneous isotropic turbulence test case to verify the non-dissipative
character of the inviscid flux formulation and the dissipation enforced by a constant coefficient subgrid scale
model.

2) Numerical treatment and implications of mesh smoothing across coarse-fine level changes. Aggressive grid
coarsening can cause numerical instabilities as well as spurious numerical reflections[21–24]. One way to
circumvent this issue is to use smoothing techniques (such as Lloyd smoothing [25]) in order to regularize
the impedance jump. However, excessive smoothing also leads to a growth in the number of cells that lack
the centroidality property. As such, there is a trade-off that needs to be investigated along with the role of the
subgrid scale closure in dissipating any spurious modes that result at coarsening interfaces. The isentropic vortex
propagation problem is used to study these complex interactions in detail.

3) Accuracy for CL,max prediction. Ultimately, the purpose of this paper is to investigate the accuracy of the
unstructured grid WMLES formulation for computational aerodynamics. We study the McDonnell Douglas
30P30N multi-element airfoil geometry using two grid levels and two distinct Voronoi grid types.

The Launch, Ascent and Vehicle Aerodynamics (LAVA) computational framework[26] is used throughout this work,
including for mesh generation. The remainder of this paper is outlined as follows. We begin by describing the numerical
scheme proposed for the LES studies in Section II, followed by a discussion of different Voronoi mesh types and
inherent properties of Voronoi meshes in Section III. In Section IV, the results for the three test problems investigated
are presented and summarizing remarks are made in Section V.

II. Numerical Scheme
Navier-Stokes equations are solved using a 2nd order finite volume formulation which can be discretely expressed

per control volume (computational cell) as:

𝐽
Δ𝑄

Δ𝑡
=

1
𝑉

𝑁 𝑓∑︁
𝑓 =1

(
−𝐹𝑐 (𝑄𝐿 , 𝑄𝑅) + 𝐹𝐷 (𝑄 𝑓 ,∇𝑄 𝑓 )

)
𝐴 𝑓 (1)

where 𝑄 = (𝑝, 𝑢, 𝑣, 𝑤, 𝑇) is the primitive variable vector, 𝐽 = 𝜕𝑊/𝜕𝑄 is the conservative to primitive transformation
Jacobian with 𝑊 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝐸) as the conservative variable vector, 𝑉 is the volume of the cell, 𝑁 𝑓 is the number
of faces. The summation is carried out over the cell faces which are denoted by 𝑓 , while 𝐿 and 𝑅 denote the states to the
left and right of the face, respectively, as shown in Figure 1.
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Fig. 1 Cell interface stencil notation.

A. Convective Flux
Convective fluxes at each face are evaluated via MUSCL [27] reconstructed primitive variable vectors from either

side of the face as:

𝑄𝐿 = 𝑄𝐿,𝑐 + 𝜙𝐿∇𝑄𝐿,𝑐 · ®𝑟𝐿
𝑄𝑅 = 𝑄𝑅,𝑐 + 𝜙𝑅∇𝑄𝑅,𝑐 · ®𝑟𝑅

(2)

where

®𝑟𝐿 = ®𝑥 𝑓 − ®𝑥𝐿,𝑐
®𝑟𝑅 = ®𝑥 𝑓 − ®𝑥𝑅,𝑐

(3)

and ∇𝑄𝐿,𝑐 and ∇𝑄𝑅,𝑐 are, respectively, gradients at the left and right cell centroids calculated via the Green-Gauss
method as described in Sozer et al. [28]. 𝜙𝐿 and 𝜙𝑅 are slope limiters evaluated for left and right reconstructions,
with 𝜙 = 1 representing no limiting and 𝜙 = 0 representing first order evaluation. Limiting is typically not needed for
subsonic flows and only becomes necessary in regions with flow discontinuities or with exceptionally bad cell quality
affecting the gradient stencil. When a limiter is needed, a minmod [29] type function is used.

In the case of pure upwinding, 𝑄𝐿 and 𝑄𝑅 obtained via Eq. 2 are directly used to evaluate the convective flux
through the face using AUSMPW+ [30] flux function.

For LES, however, the dissipative errors due to upwinding are known to be particularly unsuitable (compared to
dispersion errors)[31] and we employ primitive variable blending at the face to obtain a central scheme as:

𝑄𝐶 =
1
2
(𝑄𝐿 +𝑄𝑅)

𝛼 = max (Z, 1 − min(𝜙𝐿 , 𝜙𝑅))
𝑄𝐿 = (1 − 𝛼)𝑄𝐶 + 𝛼𝑄𝐿

𝑄𝑅 = (1 − 𝛼)𝑄𝐶 + 𝛼𝑄𝑅

(4)

where Z is the upwind sensor that is computed locally as a function of the velocity gradients and restricts the usage of
upwinding scheme in dilatationally dominant regions of the domain. Using the minimum of limiter functions 𝜙𝐿 and
𝜙𝑅 reduces central blending in regions where slope limiter is active. 𝛼 = 0 corresponds to pure central formulation
whereas 𝛼 = 1 recovers pure upwind.

The central blending can optionally be applied to all components of the primitive state variables, e.g. (𝑝, 𝑢, 𝑣, 𝑤, 𝑇),
or it can be applied to only the velocity components (𝑢, 𝑣, 𝑤). We denote the former choice as CentralQ and the latter as
CentralV. Unless otherwise noted, the rest of the paper utilizes the CentralQ scheme with no upwind sensor (Z = 0) or
limiter (𝜙𝐿 = 1, 𝜙𝑅 = 1).
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B. Diffusive Flux
In order to evaluate the diffusive fluxes, primitive variable gradients at face centers are needed. The naive approach

to get the face center gradients would be to simply take the average of left and right cell center gradients as:

∇𝑄 𝑓 =
1
2
(
∇𝑄𝐿,𝑐 + ∇𝑄𝑅,𝑐

)
(5)

However, this approach is not stable and leads to the well-known even-odd decoupling issue which can be remedied
via various approaches as summarized by Jalali et al. [32]. Here, we correct the face-averaged gradient in the face
normal direction as:

∇𝑄′
𝑓 = ∇𝑄 𝑓

−
(
∇𝑄 𝑓 · �̂�

)
�̂�

+
(
𝑄𝑅,𝑐 −𝑄𝐿,𝑐

𝑑⊥

)
�̂�

(6)

where 𝑑⊥ is the distance between the left and right centroids in the face normal direction:

𝑑⊥ = (®𝑥𝑅 − ®𝑥𝐿) · �̂� (7)

This treatment essentially replaces the face normal component of the face-averaged gradient ∇𝑄 𝑓 with a directional
derivative calculated using the two neighbor cells. The corrected face gradient ∇𝑄′

𝑓 is then used to evaluate the stress
tensor at the face and calculate the diffusive flux.

Subgrid scale turbulence is modeled via the Vreman model[33] with a constant coefficient of 0.08. Under-resolved
boundary layers are modeled using an explicit wall function [34]. Wall function inputs are sampled at the first cell
centroid off the wall.

C. Time Integration
Time integration is carried out using an explicit, 3 stage, 3rd order strong stability preserving Runge-Kutta scheme [35].

For a Cartesian grid, the CFL number can be defined as [36]:

CFL = Δ𝑡

(
|𝑢 | + 𝑎

ℎ𝑥
+ |𝑣 | + 𝑎

ℎ𝑦
+ |𝑤 | + 𝑎

ℎ𝑧

)
(8)

where 𝑢, 𝑣,𝑤 are the velocity components and ℎ𝑥 , ℎ𝑦 , ℎ𝑧 are the edge lengths in the 3 directions, while 𝑎 is the local
speed of sound and Δ𝑡 is the time step size.

Instead of 3 distinct directions as in the Cartesian case, for a general polyhedral cell we define CFL analogously for
each cell face as:

CFL𝐿 = 3Δ𝑡

��� ®𝑉𝐿 · 𝑟𝐿
��� + 𝑎𝐿

ℎ𝐿

CFL𝑅 = 3Δ𝑡

��� ®𝑉𝑅 · 𝑟𝑅
��� + 𝑎𝑅

ℎ𝑅

CFL 𝑓 = max (CFL𝐿 ,CFL𝑅)

(9)

where ®𝑉 is the velocity vector, ®𝑟 is the vector from cell center to face center as defined in Eq. 3, and 𝑟 is ®𝑟 normalized by
its magnitude. We define the unstructured cell length scale as ℎ = 2∥®𝑟 ∥, i.e. twice the magnitude of the vector from cell
center to face. The global CFLmax is then taken as the maximum of all face CFL 𝑓 values. The viscous contribution is
omitted in computation of the CFL number. The global CFLmax value is calculated at each time step and the step size
Δ𝑡 is adjusted to match the user specified CFL limit.
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III. Voronoi Mesh Generation
Voronoi meshes have numerous inherent properties that are ideally suited to CFD applications requiring high

resolution and low dissipation on unstructured meshes while requiring minimum human effort in the mesh generation
process.

A Voronoi diagram is a collection of planar faces dividing the space between points distributed in 3D space. The
points are often referred to as seed points or generating locations. The faces enclosing each seed point contain the space
that is closer to the seed than any other point. The faces form arbitrary polyhedral shaped cells with three key properties:

• The faces forming the cells are planar. This property is significant for cell-centered finite volume schemes which
numerically treat the cell faces as flat planes with an effective normal vector, face area and centroid location.
Other arbitrary polyhedral unstructured meshing approaches commonly used in CFD today do not, in general,
guarantee this planarity property.

• Faces are orthogonal to the vector connecting the two generating seeds on either side of the face. This property is
distinctly beneficial for the stability of the of the diffusive flux scheme as described in Section II.B.

• Faces are halfway between the seeds points on either side. This property offers multiple advantages. Face-averaging
that is used in gradient calculations and diffusive flux discretization can be conducted via simple arithmetic
average of cell center values on either side of the face. This results in an accurate and robust cell-center gradient
method [28]. With regular seeding patterns, this property gets translated into truncation error cancellation,
resulting in a non-dissipative central scheme as will be demonstrated in Section IV.A.

• Cells are guaranteed to be convex, which is among the common assumptions finite-volume solvers make, often
requiring numerical treatment for non-convex cells in order to ensure stability.

All of these properties are major factors for improving the accuracy and robustness of cell-centered finite volume
solvers. A caveat here is that for a randomly distributed point cloud, the resulting Voronoi mesh is not centroidal,
meaning that the seed location and the resulting cell’s volumetric centroid do not necessarily coincide. This in turn
means that the benefits of the second and third items listed above would not be fully realized. Luckily, the point cloud
can be generated in regular patterns that form centroidal Voronoi cells. This is typically done via seeding the points in a
regular lattice via various arrangements. In this paper, we will focus on:

• Cartesian seeding, generating cubic cells
• Body centered cubic (BCC) seeding, generating truncated octahedron cells
• Face centered cubic (FCC) seeding, generating rhombic dodecahedron cells
The resulting cell types are illustrated in Figure 2.

Fig. 2 Single cell view of various types: hexahedron (left), truncated octahedron (middle), rhombic dodecahedron
(right)

In practical cases where there are regions of different cell sizes in the domain, the cells in the interface between
the regions are not necessarily centroidal. Commonly used Lloyd’s smoothing procedure [25] can be used to improve
the centroidal property of the cells in this limited transition zone as well as providing a smoother gradation of cell
sizes across the interface. Lloyd’s smoothing procedure simply computes the centroid of the current cell shape and
updates the generating seed position to coincide with the current centroid. In an iterative loop, cells approach uniformity
and a centroidal shape. An illustration of the Lloyd smoothing procedure is provided in Figure 3. The initial random
distibution of points yields Voronoi cells whose centroids are not coincident with the seed locations. After 20 iterations,
the cells become almost perfectly centroidal with a much more even spacing.

For explicit time integration schemes, such as the one utilized here, it is important to control the minimum cell
size in order to avoid excessively small time step restrictions due to the CFL constraint. Commonly used commercial
unstructured grid generators typically offer little to no control over the smallest allowed cell size. In contrast, this can be
tightly controlled with Voronoi meshes.

Yet another critical benefit of Voronoi meshes is that the generation algorithm can be implemented in a highly
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Fig. 3 Illustration of the Lloyd smoothing procedure. (left) initial, (right) after 20 iterations.

scalable manner for distributed memory parallel architectures. This enables application of Voronoi meshes for highly
resolved large eddy simulations requiring on the order of hundreds of millions to billions of computational cells.

Throughout this work, we utilize fully isotropic mesh generation. Although anisotropy can be implemented with
Voronoi meshing approaches, isotropy is preferable for LES.

The final step in the Voronoi mesh generation is to clip the cells that are intersected by the geometry, provided to
the mesher in the form of a surface triangulation. In order to avoid irregular clipped near-body cells, we align the
seeds along iso-contours of wall distance for a user specified number of seed layers. Please note that for the clipped
cells adjoining the geometry, many of the properties listed above (e.g centroidality, face planarity and orthogonality)
necessarily break down. However, for wall-modeled LES simulations, diffusive fluxes at the body faces are directly
imposed by the wall function and hence they are less susceptible to the imperfections in cell geometry.

Analyses in the following sections utilize Voronoi meshes created using LAVA Voronoi mesher developed in-house
at NASA Ames Research Center.

IV. Results

A. Isentropic Vortex Propagation
The isentropic vortex propagation test case consists of an inviscid vortex being advected by a constant velocity

mean flow, −→𝑈 = [𝑢0, 𝑣0], in a given direction. The setup is described by Hu et al. [37]. Here, however, the problem is
slightly modified to use a vortex tube traveling through a 3D periodic domain with both uniform meshes and coarse-fine
interfaces. This change allows studying the effects of different three-dimensional Voronoi seeding strategies and the
corresponding cell-types in a canonical test case.

1. Uniform meshes
The computational domain used to analyze the isentropic vortex propagation through uniform grids extends from

[−2,−2,−2ℎ] to [2, 2, 2ℎ], where ℎ is the cell spacing. The computational setup is illustrated in Figure 4. Various mesh
types and resolutions considered in the current study are listed in Table 1. Please note that for the same domain and the
same spacing size, Voronoi BCC meshes have 2 times as many cells and 4.67 times as many faces as the Cartesian
mesh. For the Voronoi FCC type mesh, these factors increase further to 4 times as many cells, and 8 times as many
faces. Considering that the computational cost for our scheme closely scale with the number of faces (and hence the
number of flux evaluations), Voronoi BCC, and to an even greater extent, Voronoi FCC meshes are significantly more
expensive to compute compared to a Cartesian mesh of same spacing.

Unless otherwise specified, the CentralQ convective flux formulation is used with no limiter or upwind sensor (see
Section II.A). In order to isolate the effects of spatial discretization, time step size is selected conservatively small at
Δ𝑡 = 1.25 × 10−4𝑇 where 𝑇 = 𝐿/𝑢0 is the period of one vortex pass-through the domain.

The vortex travels in the 𝑥 direction with a background flow velocity of −→𝑈 = [0.5, 0.0]. Figure 5 shows the pressure
contours for initial conditions (shown in blue) and after 5 vortex pass-through periods (shown in red) for the different
mesh types considered. The vortex drift is immediately noticeable, especially on coarser resolutions, while the vortex
strength and shape remain intact. This is an expected result since the central second order scheme has a kinetic energy
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Fig. 4 Initial vortex pressure iso-contours in the domain cutout shown for the Voronoi BCC mesh with 𝑁 = 64
cells in the 𝑥 and 𝑦 directions, i.e. ℎ = 1/16.

Table 1 Meshes used for the isentropic vortex propagation test.

Name Cell Type Spacing (h) # Cells (𝑁𝑐) # Faces (𝑁 𝑓 )

Cartesian
1/16 16,384 49,152

Hexahedron 1/32 65,536 196,608
1/64 262,144 786,432

Voronoi BCC
1/16 32,768 229,376

Truncated octahedron 1/32 131,072 917,504
1/64 524,288 3,670,016

Voronoi FCC
1/16 65,536 393,216

Rhombic dodecahedron 1/32 262,144 1,572,864
1/64 1,048,576 6,291,456

preserving property which leaves dispersion as the dominant source of error. When different mesh types with the
same spacing (ℎ) are considered, it can be observed that the Cartesian mesh results exhibit the largest drift followed by
Voronoi BCC and Voronoi FCC. Although the same spacing is used to generate these grids, the different sphere packing
configurations allow for denser tessellations of the computational domain with BCC and FCC (when compared against
the Cartesian seeding) at the expense of an increased number of cells and faces (as listed in Table 1). The overall effect
is a smaller discretization error at the same spacing (ℎ) but with an increased computational cost. Moreover, it can be
observed in Figure 5, that all the simulated results qualitatively approach the analytical solution as the grids are refined.

In all simulations performed with the CentralQ scheme, the vortex strength has been preserved through the 5 periods
tested. This is better observed in Figure 6 (left) which shows the time history of the integrated kinetic energy, where the
initial kinetic energy remains constant, regardless of the mesh type. In contrast, the upwind scheme result shown for the
Cartesian mesh with ℎ = 1/16 shows decay of the kinetic energy as expected. Figure 6 (right) contains results for the
𝐿∞ norm of the pressure error with respect to analytical solution. For cases which relied upon the CentralQ scheme
and its kinetic energy preservation characteristic, the error can be directly attributed to either distortion or drift of the
vortex. For such cases, apart from an initial adjustment of the numerical solution on the discretized meshes, a constant
rate of error accumulation throughout the time history is observed and the error levels are consistent with the drift
magnitude observed in Figure 5. For the coarse Cartesian result, a flattening of the error accumulation can be observed
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Fig. 5 Pressure contours for initial conditions (blue) and after 5 vortex pass-through periods (red). Focus is
given to the region near the center of the domain with 𝑋,𝑌 ∈ [−0.6, 0.6].

for pass-through periods greater than 3. This is due to the large drift of the vortex, resulting in little to no overlap with
the analytical solution and hence saturating the error. Between the CentralQ solutions with the same mesh spacing, the
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Cartesian results exhibit the largest error, followed by BCC and FCC meshes. The error for the upwind scheme, both
dissipative and dispersive in nature this time, grows much more rapidly and reaches the saturation level sooner.
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Fig. 6 Non-dimensional integrated kinetic energy (left) and 𝐿∞ norm of the pressure error (right) history over 5
vortex pass-through periods. All simulations were run with the CentralQ scheme except ‘CartU’, which was
computed using the upwind method.

2. Coarse-fine interface meshes
The computational domain used to analyze the isentropic vortex propagation through a refinement interface differs

from the ones used in the case of uniform meshes. A periodic cubic domain with an edge length of 4 centered around
zero was chosen. The domain included a refinement region contained in a smaller cube with unitary edge length. This
change allowed us to retain a perfect periodic overlap in all directions, free from the influence of coarse/fine interface
smoothing. A BCC seeding strategy is used with spacings of ℎ = 1/16 in the coarse region and ℎ = 1/32 in the fine
region.

The Lloyd procedure (see Section III) with varying number of iterations is used to smooth the coarse/fine interface,
spreading the cell size transition over multiple layers of cells as opposed to an abrupt change. The initial mesh (0 Lloyd
iterations), as well as the mesh after 500 Lloyd iterations are shown in Figure 7. Also shown is the normalized cell
volume distribution through the refinement interface region along the 𝑥 axis for various numbers of Lloyd iterations. It
can be observed that the transition from fine to coarse becomes increasingly more gradual as the number of iterations
increase.

Fig. 7 Effect of Lloyd smoothing on the coarse (ℎ = 1/16) - fine (ℎ = 1/32) interfaces.

This test case being inviscid and the CentralQ scheme being kinetic energy preserving, any discretization error
generated in the advection through the coarse fine interface is expected to accumulate, rendering the simulation noisy
and unstable if no further treatment is adopted. Therefore the Vreman Sub-Grid Scale (SGS) model is utilized here to
help attenuate the high wave number errors.
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The integrated kinetic energy history as well as the 𝐿1 and 𝐿∞ norms of the pressure error are shown in Figure 8.
When SGS is off, we observe that the kinetic energy is preserved even with existence of the coarse/fine interface.
However, the pressure error rapidly climbs due to deformation and drift of the vortex. When SGS is activated, the
kinetic energy decay is apparent as expected, but the pressure error rise is more controlled and the vortex retains a
coherent shape. Please note that in practical LES simulations, molecular viscosity as well as the upwind sensor also act
to reduce spurious oscillations, as will be shown in Section IV.C.
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Fig. 8 Kinetic energy (left) as well as 𝐿1 (center) and 𝐿∞ (right) pressure error norms as a function of time
for the isentropic vortex advecting through coarse fine interfaces with different number of Lloyd smoothing
iterations. Results are shown for a mesh composed of two BCC regions with spacings of ℎ = 1/16 and ℎ = 1/32.

Figure 8 also reveals that with increased number of smoothing iterations, the error accumulation rate decreases
consistently (until late stage saturation and flattening of the error curve as discussed above). However this effect is
marginally small. Same observation can be made via Figure 9 where the vortex structures are similar between the
non-smoothed and smoothed interfaces of different number of iterations. The non-smoothed case, however, shows a
greater tendency to accrue spurious content at the coarse/fine interface as well as a slightly faster decay of the vortex.
Another observation is that as the drift promoted by dispersion errors accumulates, the vortex core moves in the positive
𝑦 direction and approaches the upper coarse-fine interface region. Once part of the core starts propagating along the
transitional region, the energy dissipation rate (as seen in Figure 8) slightly accelerates.

10



Fig. 9 Pressure contours for initial conditions (blue) and after 2, 3 and 4 vortex pass-through periods (red) for a
vortex propagating through a coarse (ℎ = 1/16) - fine (ℎ = 1/32) interface.

B. Homogeneous Isotropic Turbulence
The purpose of studying the forced Homogeneous Isotropic Turbulence (HIT) problem at an asymptotically high

Reynolds number (Re_ → ∞) is to demonstrate: a) Non-dissipative character of the inviscid flux discretization, and b)
Robustness and dissipation rate accuracy provided by the diffusive flux discretization of the SGS model.

A triply periodic domain with extents from [0, 0, 0] to [1, 1, 1] is used. While a statistically identical stationary
state can be reached with any non-zero initial condition, in the present case the flow is initialized with the Taylor-Green
vortex as described in Carton et al. [38] so that the initial flow field is divergence free (single-mode) - and hence
avoids occurrence of spurious acoustics due to initial transience. At the asymptotic state the turbulent Mach number is
𝑀𝑡 < 0.2 and hence no-shock capturing is needed due to absence of shocklets. A momentum forcing source term is
used as[39]:

𝑆𝑖 = 𝜌𝑢𝑖𝐶 𝑓

𝐸target

𝐸 (𝑡) for 𝑖 = 1, 2, 3 (10)

where 𝜌 is the density, 𝑢𝑖 is the velocity component, 𝐶 𝑓 = 0.01 is the forcing constant, 𝐸target = 5 × 10−5 is the
target non-dimensional integrated kinetic energy, and 𝐸 (𝑡) is the instant non-dimensional integrated kinetic energy. The
forcing term allows energy production and dissipation to settle into an equilibrium after the decay of the initial energy.

11



The CentralQ convective scheme with no upwind sensor or limiter was used (see Section II). The Vreman SGS
constant used was 0.08. A maximum CFL number of 1.5 was used for all cases.

Three different uniform Voronoi meshes were investigated; Cartesian, BCC and FCC seeded. Each was run at two
resolution levels with spacings of: ℎ = 1/32, and ℎ = 1/64. The Cartesian mesh was also run with ℎ = 1/128 to serve
as reference; the dissipation rate set by the source term is identical in each case simulated.

The results for energy spectra are shown in Figure 10 for all mesh types. For each mesh type, energy decay rate in
the inertial range follows the correct slope due to Kolmogorov’s hypothesis, indicated with the solid black, 𝑘−5/3 line.
For each case, the onset of rapid energy dissipation at the subgrid scale is captured at correct Nyquist wave numbers as
shown with vertical black lines. Note that the energy pile up, or loss in the case of FCC, near the Nyquist wave number is
attributed to the procedure of interpolating the solution on to a uniform mesh in order to perform fast Fourier transform.

Fig. 10 Turbulent energy spectra for decay of homogeneous isotropic turbulence for Cartesian meshes (upper)
and Voronoi meshes (lower).

C. 30P30N Multi-Element Airfoil
McDonnell Douglas 30P30N multi-element airfoil is an experimental setup [40] that has widely been adopted as a

CFD benchmark case for high-lift wing configurations [41–44]. The setup is a constant-profile, unswept wing with a
leading edge slat and a single-element flap. With the available measurements of aerodynamic loads data as well as
surface pressures at a realistic high-lift flow regime of Ma = 0.2 and Re = 9 × 106, it is a great test bed for the WMLES
numerical schemes and the unstructured meshing methods presented here.

An overview of our mesh sizing approach for 30P30N is shown in Figure 11. Refinement regions are generally setup
to cover bands of wall-distance. The finest region is located next to all the wing surfaces except the main element lower
surface where flow is known to stay attached. The finest region covers about 0.15𝑐 distance from the walls (where 𝑐 is
the stowed airfoil chord length) and the cells in this zone are sized to have a spacing of 0.0005𝑐. The spacing doubles in
the next region, and for each subsequent region with growing wall distance, the spacing increases by a factor of 1.5. A
box shaped region was added to avoid coarsening too soon in the wake. The domain boundary extends to 100𝑐 in both
directions. The mesh is created in 2𝐷 and extruded along the span, using a spacing of 0.001𝑐, for 100 layers covering a
span length of 10%𝑐. Periodic boundary condition is applied at the span end planes.

The computational meshes were generated with our in-house LAVA Voronoi meshing tool, using a clipped Voronoi
tessellation with two different seeding types: Cartesian and hexagonal. A close-up view of the resulting meshes is
shown near the slat trailing edge in Figure 12. The seeds near walls have been aligned into four wall layers. The cells
near refinement region interfaces have been smoothed using the Lloyd iteration method, which naturally changes the
shape and size of these transition cells in order to converge towards a centroidal cell shape (where the generating seed
and cell centroid locations coincide). For Cartesian seeded meshes, cells in the smoothing zones (which include the wall
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Fig. 11 Computational mesh sizing overview for 30P30N.

layers) naturally tend towards hexagonal and transitional shapes during smoothing. This introduces a cell type transition
in region interfaces. On the other hand, the hexagonal seeded mesh exhibits much more consistent cell shapes.

All of the meshes tested are made up of isotropic cells with the exception of spanwise spacing. The spanwise
extrusion of the 2D mesh was done using a spacing of 0.001𝑐 for all meshes as listed in Table 2. As a result, the
extrusion introduces anisotropy away from the walls where the cells get larger on the 2D plane. At the wall, the coarse
Cartesian seeded mesh is isotropic in spanwise direction whereas the fine Cartesian and Hexagonal seeded meshes have
spanwise aspect ratio of 2.

A summary of near wall spacings and the total number of cells and faces for each mesh is listed in Table 2. The
coarse version of the Cartesian seeded grid is generated by simply turning-off the finest near-wall sizing region while
keeping the rest of the mesh identical.

Table 2 Near-wall mesh spacings, and number of cells and faces for 30P30N.

Spacing (chord normalized) # Cells # Faces
Mesh Slat Main Upper Main Lower Flap Spanwise (million) (million)

Cartesian Voronoi - Coarse 1e−3 1e−3 2e−3 1e−3 1e−3 31.8 101.3
Cartesian Voronoi 5e−4 5e−4 2e−3 5e−4 1e−3 41.7 133.8

Hexagonal Prism Voronoi 5e−4 5e−4 2e−3 5e−4 1e−3 50.9 198.3

Simulations were run at angles of attack of 𝛼 = 8.10°, 16.21°, 21.34° and 23.28° corresponding to the cases listed by
Klausmeyer and Lin [43] for Ma = 0.2 and Re = 1× 109. For all the runs, the CentralV scheme was used along with the
upwind sensor as described in Section II. Vreman subgrid scale model [33] was utilized with a model constant of 0.08.

Simulations were carried out until statistical convergence of the lift coefficient was attained. The hexagonal mesh
cases were impulsively started from free-stream conditions and were simulated to about 100 convective time units
(CTU) calculated based on the free-stream velocity and stowed chord length. The coarse Cartesian mesh cases were
also impulsively started but the convergence required a significantly longer time integration interval between 170 to 240
CTUs. The Cartesian fine mesh cases were started with interpolated results from corresponding Cartesian coarse mesh
cases and required an additional time integration interval of about 80 CTUs.

Instantaneous velocity magnitude contours of solutions on the Hexagonal Voronoi mesh are shown in Figure 13 for
each angle of attack. For all angles of attack, slat wake is prominent, with increased intensity and larger scale turbulent
structures at higher angle of attacks. At 𝛼 = 21.34° and 23.28°, the slat and flap wakes merge.

At the lower two angles of attack, the slat top surface remains largely attached and laminar, whereas the higher
angles of attack exhibit development of laminar separation bubbles and transition to turbulence. This can be better
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(a) Cartesian Voronoi - Coarse

(b) Cartesian Voronoi

(c) Hexagonal Prism Voronoi

Fig. 12 Computational mesh around slat gap for 30P30N.

observed in the close-up view of the solution over the slat and the main elements as shown in Figure 14 for each mesh.
We immediately notice that at high angles of attack, the flow over the slat upper surface is mesh sensitive. The coarse
mesh tends towards predicting a laminar separation whereas the finer meshes tend towards a break down and transition
of this structure. This suggests that we could benefit from further mesh refinement in this zone, a conclusion that will
also be apparent in the following results. A similar observation can be made for the main element upper surface where
the finer meshes exhibit earlier transition.

Figure 15 shows the close-up views of the instantaneous flow field over the flap. Here, we don’t immediately observe
mesh sensitivity in terms of bulk features of the flow. However the fine mesh results, particularly the hexagonal Voronoi
mesh, exhibit better definition of the turbulent structures near the top surface of the flap.
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Figure 16 shows pressure coefficient, 𝐶𝑝 , distributions in comparison to the experimental measurements (digitized
from Klausmeyer and Lin [43]) for each angle of attack simulated. The simulation pressure distributions are extracted at
the mid-span from the time-averaged solution. Time averaging was carried out over 50 CTU’s (Convective Time Units)
starting from the point of statistical convergence of the integrated lift. A small magnitude but persistent oscillatory
behavior in 𝐶𝑝 around highly curved surfaces were noticed after time averaging was performed. Upon investigation,
it was found that the resolution of the 30P30N geometry definition we utilized was coarser than our eventual mesh,
leading to paneling. In retrospect, the geometry should have been splined before meshing to avoid this issue.

Overall, agreement with the experimental pressure coefficient measurements is excellent, with few exceptions. On
the slat upper surface, simulations qualitatively differ from the experiments, particularly at higher angles of attack. This
is not surprising because of the transitional nature of the flow over the slat. As also observed in the instantaneous
velocity magnitude contours, simulations stay laminar over the suction side of the slat at lower angle of attacks. At
higher angles, separation bubbles form and break down, eventually developing into turbulence. Increased grid resolution
seems to yield an earlier onset of transition. In this context, we may also observe that the hexagonal mesh exhibits
an effectively higher resolution compared to the Cartesian mesh even though they share the same spacing. This is
consistent with the findings we discussed in Section IV.A. We note that the transitional flow over the slat, and the
observed grid sensitivity, is a characteristic that is largely due to the 2D nature of the unswept wing geometry. For more
realistic, swept wing configurations, the transition over the slat is further aided by the spanwise flow.

Interestingly, the coarse Cartesian mesh results over the slat seem to agree better with the experimental pressure
coefficients up until the highest angle of attack. This can be explained by the fact that the boundary layer is largely
missed by the wall model due to insufficient resolution of the coarse mesh, therefore not imposing enough momentum
retardation to cause separation.

Over the main element, the pressure coefficient predictions are in excellent agreement with the experiments, with
the coarse mesh slightly under-predicting the suction peak at high angles of attack. For all angles, the hexagonal mesh
displays consistently better agreement with the experiments, although the differences between the simulations are small.

Predictions over the flap are in line with the experiment at low angles of attack. At the high angles, however, the
suction peak is slightly under-predicted but with apparent convergence to the experiment with grid refinement.

Figure 17 shows the lift coefficient, 𝐶𝐿 , values in comparison to experiments [40] and the similar WMLES study
conducted by Wang et al [44]. The simulation time history of 𝐶𝐿 for one of the cases is also shown in the figure along
with the averaging period. The hexagonal mesh result has excellent agreement with the experiment with the exception
of the lowest angle of attack where all simulations predicted slightly higher lift. The Cartesian mesh cases, both coarse
and fine, under-predicted the lift at high angles of attack, but displayed correct convergence trend with mesh refinement.

Figure 18 and Table 3 demonstrate the effect of the upwind sensor used in the convective scheme (as described
in Section II.A). These tests are shown for hexagonal mesh near 𝐶L,max at 𝛼 = 21.34°. For the fully upwind scheme
(Z = 1), flow field is largely diffused, with the slat wake remaining laminar, and the boundary layer over the upper surface
of the main element only transitioning to turbulence past mid-chord location. The corresponding 𝐶𝐿 is significantly
under-predicted; a trend consistent with coarse mesh results seen in Figure 17. Due to the dissipative nature of this
approach, it would take a significantly finer grid resolution to attain accurate predictions. The pure CentralV scheme
(Z = 0) solution is completely contaminated with spurious noise. Although the run remains stable, the 𝐶𝐿 is significantly
over-predicted. In contrast, the CentralV scheme with the upwind sensor based blending avoids the spurious oscillations
and provides accurate results. Although not strictly kinetic energy preserving, the CentralV scheme was chosen in
lieu of CentralQ for the simulations in this section because, in our experience, it provides improved robustness in the
presence of supersonic regions (which exist for this case at high angles of attack). We did perform a verification of this
choice by restarting a CentralV run with CentralQ for 𝛼 = 21.34. No noticeable difference, qualitative or quantitative,
was observed for nearly 10 CTU’s, although ultimately CentralQ simulation was not stable.

Table 3 Lift coefficients for different convective scheme approaches, computed on the hexagonal prism mesh at
𝛼 = 21.34.

Scheme 𝐶𝐿 Error w.r.t to Experiment
Experiment [40] 4.35 —
Pure upwind 4.05 6.8%
Pure CentralV (upwind sensor off) 4.58 5.4%
CentralV with upwind sensor 4.34 0.2%
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A summary of computational costs is provided in Table 4. Please note that the metrics presented in the table exclude
the periodic boundary condition which adds further 20% to the cost. Periodicity implementation in our solver has not
yet been optimized because it is not critical for practical applications of high lift configurations. Instead, symmetry
boundary condition was used for the timings reported here. Considering that the hexagonal mesh cases took around
100 Convective Time Units (CTU’s) to complete, they can be completed in 4 days with these resources. When overall
turn-around time is critical, we have seen reasonably efficient scalability up to 50 CTU’s per day. Runs on the Cartesian
mesh of equivalent spacing were 1.56 times faster per CTU, closely reflecting the ratio of number of faces. Although the
hexagonal mesh runs were more expensive, they had an effectively higher resolution evidenced by the better agreement
with the experiment.

Table 4 Computational cost summary.

# Cells # Faces Time step Wall time Wall time
Mesh (million) (million) Node Type CPU cores (s) per step (s) per CTU (hr)

Hexagonal 50.9 198 Intel Skylake 1200 3.85 × 10−7 0.0925 0.961
Cartesian 41.7 134 Intel Skylake 1200 4.18 × 10−7 0.0644 0.616
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(a) 𝛼 = 8.10°

(b) 𝛼 = 16.21°

(c) 𝛼 = 21.34°

(d) 𝛼 = 23.28°

Fig. 13 Instantaneous normalized velocity magnitude contours on the hexagonal prism mesh.
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(a) Cartesian Voronoi - Coarse (b) Cartesian Voronoi (c) Hexagonal Voronoi

Fig. 14 Instantaneous normalized velocity magnitude contours, 𝛼 = [8.10°, 16.21°, 21.34°, 23.28°] (top to
bottom).
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(a) Cartesian Voronoi - Coarse (b) Cartesian Voronoi (c) Hexagonal Voronoi

Fig. 15 Instantaneous normalized velocity magnitude contours, 𝛼 = [8.10°, 16.21°, 21.34°, 23.28°] (top to
bottom).
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(a) 𝛼 = 8.10°

(b) 𝛼 = 16.21°

(c) 𝛼 = 21.34°

(d) 𝛼 = 23.28°

Fig. 16 Time-averaged pressure coefficient distributions over 30P30N slat (left), main (center) and flap (right)
elements.
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Fig. 17 Lift coefficient results for 30P30N. Right figure shows time history and the averaging interval for the
LAVA WMLES - Hexagonal Voronoi case at 𝛼 = 23.28°.

(a) Pure upwind (b) Pure CentralV

(c) CentralV with upwind sensor

Fig. 18 Effect of the upwind sensor, showing instantaneous normalized velocity magnitude contours on the
hexagonal prism mesh at 𝛼 = 21.34.
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V. Conclusions
A 2nd order accurate cell-centered finite volume unstructured scheme suitable for large eddy simulations has been

presented and tested with model problems of increasing complexity.
By studying isentropic vortex propagation through various Voronoi mesh types, we observed: (a) The convective

scheme utilized is non-dissipative in uniform mesh regions of both cube (Cartesian seeding), truncated octahedron
(BCC seeding) and rhombic dodecahedron (FCC seeding) cell types. (b) For a given mesh spacing, vortex dispersion
errors are greatest for Cartesian mesh type, followed by BCC and FCC seeded meshes. (c) The subgrid scale model was
sufficient to stabilize the scheme in existence of mesh size transitions. (d) Lloyd smoothing procedure at the coarse/fine
interfaces helps reduce the error, although the effect was marginal for the vortex problem.

Forced Homogeneous Isotropic Turbulence (HIT) test also demonstrated the non-dissipative character of the
convective flux discretization and verified the chosen subgrid scale model’s utility in providing non-linear robustness as
well as accuracy in representing the correct behavior for the turbulent energy cascade.

With the 30P30N multi-element airfoil case at a high Reynolds Number of 9 × 106, we verified the suitability of
the proposed numerical scheme, along with Voronoi meshing approaches, to high-lift aerodynamics. The hexagonal
prism Voronoi mesh simulation results were in overall excellent agreement with the experiment, both in terms of CL,max
and the 𝐶𝑝 distributions along each element. The only noticeable deviation from the experiment was observed over
the slat upper surface where LES seems to predict a delayed transition to turbulence in comparison to the expected
behavior that can be interpreted from the experimental 𝐶𝑝 distributions. The Cartesian seeded mesh type resulted in an
under-prediction of the CL,max, despite having mesh sizing regions identical to the hexagonal prism mesh. However, the
results with the Cartesian mesh displayed the correct trend of convergence with mesh refinement, leading us to the
conclusion that for the same mesh spacing, the hexagonal mesh had a higher effective resolution.
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