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Introduction

• LES addresses major challenges faced by RANS in shear-dominant flows such as take-off 
and landing of airplanes with deployed high-lift devices

• And it is becoming feasible at practical scale thanks to advancements in high-performance 
computing

• AIAA 4th High-Lift Prediction Workshop (HLPW4)
– Nine participants submitted WMLES results, of which 6 used unstructured meshes
– In contrast, HLPW3 had no WMLES submissions

• Results are extremely encouraging, but success highly depends on mesh density and quality 

• High quality unstructured meshes can be generated at scale using Voronoi methods



3

Voronoi Mesh Properties

• Voronoi diagrams have inherent special properties: 
– Cells are guaranteed to be convex
– Faces are planar
– Faces are located halfway between seed points
– Face are orthogonal to the vector connecting the two seeds on 

either side

• These properties act to significantly improve 
robustness and reduce dissipation in CFD

• Various cell types can be generated:
– Cartesian seeding – Cubic cells
– Body-centered Cubic (BCC) – Truncated octahedral cells
– Face-centered Cubic (FCC) – Rhombic dodecahedral cells

https://en.wikipedia.org/wiki/Voronoi_diagram
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Voronoi Mesh Smoothing

• Coarse/fine interfaces, or irregular point distributions can be naturally smoothed 
– Lloyd procedure iteratively moves seed points to the generated cell’s centroid
– Results in a regularized point distribution
– Cells converge towards a centroidal shape

• In practice, we apply the smoothing in a limited zone around mesh size transitions
– Majority of the regularly seeded mesh is unaffected
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Numerical Scheme

• LAVA Unstructured solver was used
– Developed at NASA Ames Research Center
– A decade of successful use for RANS simulations using arbitrary polyhedral meshes
– Recently refactored and highly optimized for modern CPU’s

• 2nd order accurate cell-centered finite volume method

• Sensor based, blended upwind/central convective flux scheme

• Vreman Sub-Grid Scale (SGS) turbulence model

• Explicit 3rd order accurate time integration with a strong stability preserving, 3-stage Runge-
Kutta scheme

• Blended log-layer explicit wall model
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Test Cases

• Isentropic vortex propagation 
– Demonstrate kinetic energy preservation
– Investigate effects of different Voronoi mesh types
– Study coarse/fine interface effects

• Homogeneous Isotropic Turbulence (HIT)
– Test SGS for non-linear robustness
– Study the turbulent energy cascade

• McDonnell Douglas 30P30N multi-element airfoil
– Compare high-lift aerodynamics predictions to experimental data
– Demonstrate results for different Voronoi mesh types
– Verify current numerical approach’s suitability for WMLES
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Isentropic Vortex Propagation – Uniform Mesh Results
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• Inviscid vortex tube traveling in x-direction
– Triply periodic domain with extents [-2, 2]
– Measured integrated kinetic energy and pressure error for 

5 pass-through periods

• Voronoi mesh types: Cartesian, BCC & FCC

• Central convective flux is non-dissipative, with 2nd order 
solution error convergence for all grid types

• Dispersion errors manifest as drift

• For the same grid spacing, Cartesian has the largest 
error, FCC has the least
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Isentropic Vortex Propagation – Coarse/Fine Interfaces

• A 1:2 coarse/fine interface was studied by embedding a cubic refinement region in the domain
• Interfaces of varying smoothness are generated via Lloyd iterations
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Isentropic Vortex Propagation – Coarse/Fine Interfaces
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• Only BCC Voronoi meshes were used in this test

• Simulations without SGS is not stable when coarse/fine interface present
– No mechanism to attenuate the errors due to the interface
– Kinetic energy is preserved

• SGS was provided sufficient stability without any upwinding

• Smoother interface: Less energy decay, and less pressure error

• But the difference is marginal
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Homogeneous Isotropic Turbulence (HIT)

• HIT with a momentum forcing source was studied
• Energy decay rate at the inertial rate is correctly predicted
• Onset of rapid dissipation at the sub-grid scale is captured at correct Nyquist wave numbers
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30P30N Setup

• Ma = 0.2, Re = 9e6
• 10%c span length simulated with periodic boundary conditions on end planes
• Meshes are created in 2D, extruded spanwise with a constant spacing of 1e-3c
• Two different Voronoi mesh types tested: Cartesian seeded and Hexagonal seeded

Mesh Sizing Field
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30P30N Meshes – Slat Gap Close-up

Hexagonal Prism

Cartesian Cartesian - Coarse

• Refinement regions of same sizing contoured around different 
elements seamlessly join together

• 4 wall-aligned layers, 15 Lloyd smoothing iterations
• Smoothed cells in Cartesian mesh naturally morph into 

hexagonal cells and other transitional cell types
• Cartesian – Coarse mesh simply skips the finest sizing region
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30P30N Results – Instantaneous Velocity Magnitude Field 

• Instantaneous velocity magnitude contours shown for the hexagonal prism mesh 

⍺ = 8.10° ⍺ = 16.21°

⍺ = 21.34° ⍺ = 23.28°
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30P30N Results – Mesh Sensitivity at CL,max ( ⍺ = 21.34°)

Cartesian - Coarse

Cartesian

Hexagonal Prism

• Slat upper surface stays laminar and 
attached

• Finer scale turbulence over the main 
element boundary layer

• Further breakdown of slat boundary layer

• Better definition near flap upper surface

• Onset of transition over the slat

• Earlier transition over the main element
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30P30N Results – Pressure Coefficient Distributions

• Time-averaged (~50 CTU’s) pressure field, 
extract at mid-span

• Excellent agreement with the experiment over 
the main element

– Hexagonal mesh doing slightly better

• Slat is transitional, while experiment doesn’t 
show a sign of this

– Coarse mesh doesn’t show transition until the highest angle
– Transition onset location moves upstream with refinement
– Hexagonal mesh exhibits higher resolution compared to 

Cartesian mesh of same spacing

• Great agreement over the flap until post-stall
– Results display higher mesh sensitivity compared to 

the main element
– Predictions trend towards the experiment with mesh 

refinement
– Hexagonal mesh results better capture the suction 

peak
• Slight under-prediction at highest angle
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30P30N Results – Lift Curve

• Integrated aerodynamic forces are time-averaged for about 50 CTU’s

• Hexagonal mesh shows excellent agreement with the experimental lift 
– Slight overprediction at the lowest angle for all meshes

• Cartesian meshes underpredicts the lift at high angles
– Mesh refinement trends toward experimental values
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Summary & Conclusions

• A 2nd order accurate cell-centered finite volume unstructured scheme suitable for large eddy 
simulations has been presented and tested with model problems of increasing complexity.

• Isentropic vortex propagation:
– The central scheme was able to preserve the integrated kinetic energy for all Voronoi mesh types tested
– For the same mesh spacing, Cartesian mesh had the highest error, followed by BCC and FCC
– When there is a coarse/fine interface, SGS was sufficient to stabilize the scheme 
– Coarse/fine interface smoothing made little difference; more smoothing à marginally less error

• Homogeneous isotropic turbulence:
– SGS provided sufficient robustness without any upwinding
– Both Cartesian, BCC and FCC meshes produced correct turbulent energy cascade

• 30P30N:
– Excellent agreement with experiments when using the hexagonal prism Voronoi mesh
– Cartesian mesh of same spacing was still mesh sensitive, displaying correct trend with refinement
– Hexagonal mesh has higher effective resolution, although with higher computational cost
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