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Outline

q Introduction – Solid-state Architecture Batteries for Enhanced 

Rechargeability and Safety (SABERS) transformative technology

q Solid state lithium sulfur (Li-S) batteries – brief overview

q Modeling cathode microstructure: particle dynamics electro-

mechanical model

q Modeling capabilities and results

q Summary
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SABERS Focused on Electric Aircraft 
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UAM – urban air mobility
eVTOL – electric vertical takeoff and landing
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State of the Art (SOA) Battery Technologies
q Lithium-Ion

Ø Highly flammable liquid electrolyte
Ø Cooling/insulation/fire containment packing requirements
Ø Safety concerns: thermal runaway and energy uncertainty

q Li-S
Ø Only chemistry known to meet 500 Wh/kg
Ø Cycle life poor
Ø Charge/discharge rate insufficient

q Solid-State Battery
Ø Non-flammable
Ø Weight saving design
Ø Higher operating temperature
Ø Bi-polar stack design possible
Ø Low ionic conductivity
Ø Difficult to fabricate

Bi-polar All Solid-State Battery System

Solid 
electrolyte

Separator

Cathode

Lithium 
metal anode

Current focus is on all solid-state Li-S battery systems
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Cathode Composition and Microstructure

Solid State Cathode constituents:

q Cathode active material (CAM) - S, Se, SexSy, Li2S
q Solid electrolyte (SE) with high LI+ ionic conductivity -

Ceramic oxide electrolyte LLZO - Li7La3Zr2O12 of ionic cond: 5x10-4 S/cm

q Electronic conductive agent (ECA) with high electron 
conductivity – carbon black (CB), and holey graphene (hG)

S + 2Li+ + 2e- → Li2S

Model cathode microstructure at particle level 

Battery Cell

Cross-sectional SEM image of an SE cathode layer
Particle model of an SE cathode

Modeling cathode microstructure can help battery design
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Purpose of the Modeling

Critical parameters for optimal cathode performance:
q Grain size of the powder components 

Ø larger – better conductivity (less interface resistance)
Ø smaller – increased power output (larger surface area)

q Composition ratio between CAM : SE : ECA 
Ø High amount of CAM, or cathode loading – 50⎯90 vol%
Ø Sufficient, but minimal amount of SE, with good CAM/SE contact to ensure 

sufficient Li+ diffusion
Ø Sufficient, but minimal amount of CA for e- transport

q Li+ and e- conductivities of SE and ECA

q Mass weight of the components – affects the overall battery weight 

Superior battery performance strongly depends on optimizing multiple cathode design parameters 

CAM: S, Se
SE:    Ceramic oxide
ECA: Carbon Black

Modeling helps to find the optimal design parameters for superior battery performance
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Model construction:

q Generate particles of given type 
(SE, C, S) and given size distribution

Robust physics-based electro-mechanical model

Cathode Model at Particle Level
Solid Electrolyte Sphere Approximation Model (SESAM) (NTR: LAR-19842-1)
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ElectrolyteElectrolyte

Sulphur

Electrolyte

Sulphur

Carbon Black

Cathode Representative Volume Element (RVE)

Model construction:

q Generate particles of given type 
(SE, C, S) and given size distribution

q Fills the system box (or RVE) with 
particles of all types randomly

Robust physics-based electro-mechanical model

Cathode Model at Particle Level
Solid Electrolyte Sphere Approximation Model (SESAM) (NTR: LAR-19842-1)
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Cathode Representative Volume Element (RVE)

Model construction:

q Generate particles of given type 
(SE, C, S) and given size distribution

q Fills the system box (or RVE) with 
particles of all types randomly

q Compress the powder composite 
and measure conductivities

Robust physics-based electro-mechanical model

Cathode Model at Particle Level
Solid Electrolyte Sphere Approximation Model (SESAM) (NTR: LAR-19842-1)

𝜎!"
𝑗𝑖

𝐼! = 𝜎!" 𝑉"

Solving Kirchhoff’s matrix equation 
gives conductivity

𝑖 𝑗
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Conductivity ratio, ⁄𝜎!"" 𝜎#, vs material vol%, 𝜙
𝐶$- percolation threshold

Ø Percolation threshold at Cp,SE ≈ 17 vol%
Ø High conductivity at CSE > 30 vol %
Ø No noticeable dependence on CAM:SE size ratio (SE size was constant = 100 nm)

§ Effect on size could be expected when SE size changes (to be performed)

Conductive region

Results: Li+ - Conductivity vs Cathode Content

AM:SE size

Tortuosity, 𝜏, vs material vol%, 𝜙
𝐶$

𝜏 =
𝜎$
𝜎%&&

𝜙

Conductive region

AM:SE size

Prediction of Li+ and e- conductivities helps design optimization

𝜎!"" - effective conductivity; 𝜎% - conductivity of a fully dense material  



12

Results: e- - Conductivity
Ø e- conductivity increases exponentially with CB wt%
Ø 𝜏 – values are in agreement with literature results: ~ 10

MacMullin Number: 𝑁' = ⁄𝜎$ 𝜎%&& = ⁄𝜏( 𝜙 = 10( ÷ 10)

AM:SE size

𝜏 =
𝜎$
𝜎%&&

𝜙

AM:SE size

Prediction of Li+ and e- conductivities helps design optimization

𝜎!"" - effective conductivity; 𝜎% - conductivity of a fully dense material  

Conductivity ratio, ⁄𝜎!"" 𝜎#, vs material vol%, 𝜙 Tortuosity, 𝜏, vs material vol%, 𝜙
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hG Model
hG allows for:
q High active material content (up to 90 wt%)
q High mass loading: high areal capacity
q Excellent current collector– cathode contact

hG is expected to significantly improve battery performance 

ACS Appl. Mater. & Interfaces 2022, 14, 21363-21370.

- Li7La3Zr2O12
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Modeling hG Li+ Permeability
Universal permeability diagram

Perm
eability threshold

Permeable Impermeable

LLZO / hG Pore Size

Hole size [nm]: 9 – 200
Porosity [%]: 5 - 55 

ACS Appl. Mater. & Interfaces 2022, 14, 21363-21370.

hG is transparent for Li+ when SE particles are smaller than 4-times the pore size
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hG vs CB as Conductor Material

• Study how hG size and wt% affect Li+ and e- conductivities to optimize cathode utilization 
and battery performance

• Compare hG vs CB as conductors for Li-ion and e- conductivities

Purpose

Simulation Setup

Electrolyte:
Al-doped LLZO
E = 150 GPa
𝝂 = 0.25
𝛔SE = 1 mS/cm 
D = 40 nm
Conductor:
hG: D:
50, 100, 200, 400 nm
System size: 
1000 x 1000 x 1000 nm
P: (1 ÷ 100 MPa)

Animation for hG of D = 100 nm; at 4 wt%

First time explicit modelling of hG disks inserted in electrolyte powder 
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Electron vs Lithium-Ion Transport of hG
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• As weight percent increases, electron conductivity increases while lithium-ion 
conductivity decreases

Addition of hG particles provides increased e- conductivity, but may significantly inhibit Li+ transport 
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Summary

q During the CAS-SABERS project a particle dynamics solid-state cathode model has 
been developed for optimizing multiple cathode design parameters: (NTR: LAR-
19842-1)
§ Grain size of the cathode powder particles
§ Cathode powder composition
§ Cathode utilization

q The model was used to study Li+ and e- conductivities as functions of cathode 
composition and particle size

q The addition of hG as a conductor material has been studied in terms of its effect on 
Li+ and e- conductivities 
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If Enough Funding is Available 
Develop a large scale (possibly multiscale) “digital twin” battery cell model to

q Incorporate:
§ Anode, interface, and cathode composition
§ Ion transport from anode to cathode and inside the cathode
§ Electrochemical reactions in the cathode

q Predict and validate through experiment:
§ Cathode utilization
§ Power output
§ Charge – discharge parameters

q Improve and accelerate the design of battery development for advanced electric 
aircrafts
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