

A Modeling and Simulation Study for the GeoXO Atmospheric Composition Instrument (ACX): System Level SO₂ and O₃ Retrieval Performance as a Function of SNR

Monica Cook¹, Francis Padula¹, Aaron Pearlman¹, Boryana Efremova¹, Joel McCorkel², Joanna Joiner² ¹GeoThinkTank LLC ²NASA Goddard Space Flight Center

AMS 103rd Annual Meeting 8 - 12 January 2023 Denver, Colorado

NOAAs Geostationary and Extended Observations (GeoXO) ACX Introduction

ACX: observations of air pollutants to improve air quality monitoring and mitigate health impacts from severe pollution and smoke events

- Enhance NOAA's current capabilities to monitor hourly variation in pollutants
- Enhance NOAA's air quality forecasting capabilities (pollution alerts, regulatory guidance, reduced health impacts)

Planned ACX Instrument				
Spectral Resolution	0.6 nm			
Spectral Sampling	0.2 nm			
Spectral Range	300 – 500 nm; 540 – 740 nm			
Temporal Revisit	60 min			
Spatial Resolution	25 km ² at nadir			

ACX Performance Assessment

	ACX	100 km	Translate instrument specifications to science performance metrics			
		100 km	Stratospheric + Composition	Assess instrument performance considerations through end-to-end physics based imaging system & scene modeling & simulation to inform decision making.		
		2 km	Tropospheric Composition	 Investigate the impacts of simulated ACX SNR specification on trace gas retrieval performance Previously studied NO₂ (420 – 450 nm) [EUMETSAT 2021] This study investigates SO₂ and O₃ 		
	-	$\mathbf{\hat{\mathbf{V}}}$	Boundary Layer Composition	NO ₂ O ₃ SO ₂ High Concentration		
Urban	Vegetation	Water	Surface	[reference		

3

Utility of the Instrument Performance Assessment Simulations

Objective:

Assess instrument performance considerations through end-to-end physics based imaging system & scene modeling & simulation

Framework designed to rapidly facilitate various quantitative instrument performance assessment trade studies against engineering and science applications

Modeling & Simulation Framework

Modeling & Simulation Framework

ACX SNR Performance Assessment – Scene Stand Atmosphe ric Scene Stand Interest

RTM

Accounts for the variability of concentration amount for a given standard atmosphere under typical surface and aerosol conditions with varying view geometry and solar conditions from GEO-central orbital location (105°W)

> 72 scene simulations were generated for each trace gas to span the bounding cases of observation conditions

Modeling & Simulation Framework

ACX Noise Simulation

The ACX instrument model consists of the following steps:

- 1) The MODTRAN output spectra are convolved with a gaussian simulating the instrument spectral response function, resulting in a 0.6 nm spectral resolution
- 2) The degraded resolution spectrum is resampled to the expected instrument sampling of 0.2 nm/pix
- 3) Noise is added to achieve varying SNR as described below

ACX Instrument Response Model

- Realistic baseline instrument parameters are used for setting up the tool
 - Follows current GeoXO ACX Performance Operational Requirement Document (PORD) specifications
 - Special thanks to Xiong Lu and Kelly Chance for assistance in this process
- Can be updated as the ACX instrument evolves

Instrument Parameters					
	spectral radiance at instrument resolution				
	detector area				
≈π/(2f#)²	solid angle of acceptance of instrument				
	integration time				
	wavelength				
	spectral interval per pixel				
	optical system transmittance, combined with grating efficiency				
	detector quantum efficiency				
	Bit depth				
	Read-out noise				
	Dark current				

ACX SNR Simulations – 10 Levels Assessed

Instrument Model

For each spectrum, 1000 implementations for 10 different SNR levels are generated

- Each increasing SNR level decreases the noise by factors of 1 through 10, corresponding to averaging 1 100 samples
- 1000 random normally distributed noise implementations are generated for each SNR level Note that the SNR values are calculated using nominal radiance defined in PORD

Modeling & Simulation Framework

Simulated ACX Retrieval Algorithms and A

Physical retrieval of concentration amount derived via comparison to a "Truth" LUT

Predicted at sensor radiance distribution as a function of SNR of known atmospheric concentrations

- Concentration Amount: Low, Medium, High
- Constrained Atmospheric Cases at a given SNR level
- Fixed at a single view geometry

Searched for Best

Truth LUT

 Concentration Amount: none through extreme amount in finite step sizes

NO Noise Included
Fixed at a single view geometry

Compute retrieval concentration amount error (retrieval - truth):

- Computation: determine error as the standard deviation of (retrieval truth) for each SNR
- Output: Illustrates the simulated instrument retrieval performance as a function of SNR and physical parameters of the scene simulated

Retrieval Algorithm: Constrained Energy Minimi

Retrieval Algorithm

Step 1 – Build Look Up Table (**LUT**) **Result:** Observed reflectance for a realistic range of known constituent amounts

Retrieval Algorithm: Constrained Energy Minimi

Step 3 – For each spectra, x ... use constrained energy minimization (CEM) to determine slant column amount

Result: Retrieved amount for each observed spectra

Step 4 – For each SNR level, calculate bias and standard deviation (predicted error) from 1000 implementations

Result: Expected error for this SNR

- Bias and standard deviation of 1000 implementations gives retrieval error
- Repeat for each SNR level to plot as a function of SNR
- Repeat with a new scene to plot as a function of constituent amount

Retrieval

Algorithm

Analysis

Baseline Retrieval and Analysis Framework For This Effort

Solar Model

RTM

Scene Inputs

- Aerosol
- Surface Type •Time of Day
- Location
- •Atm. Profiles

(Known Total Column Amount)

Instrument Noise Model

Instrument Inputs Detector Specs •Optical System Transmittance Detector Quantum Efficiency •Bit-Depth •Read-out Noise

Dark Current

1000 implementations

Retrieval Algorithm

Predicted Slant Column **Amount** for each spectra output from instrument noise model

- 10 SNR levels
- 1000 implementations per SNR level
- Constrained Energy Minimization (CEM) compares each observed spectra to a LUT with CE known constituent amounts

Note: Analysis based on a DOAS-like approach; results may vary with other operational approaches

Analysis

- Calculate bias and standard deviation of 1000 implementations to determine retrieval error
- Repeat for each SNR level
- Repeat for each constituent amount Retrieval Error vs SNR Level, SO2, 3.6993 DU

Modeling & Simulation Framework

ACX SO₂ Modeling Scenarios

Two modeling constinct

- Boundary layer case: SO₂ injected into the atmosphere from 0 3 km (anthropogenic pollution)
 - Three amounts of SO₂ (Low, Medium and High)
- 5 km tropospheric plume: SO₂ injected into 1 km of the atmosphere at 5 km altitude (outgassing volcano)
 - Three amounts of SO₂ (Low, Medium and High)

Different viewing geometries result in different slant column amounts for the same amount of SO₂

		Norman, OK (near-nadir) Seattle, WA (oblique)	
	SO ₂ Injected*	Slant Column	Amount (SCA)
Low	0.2 DU	0.27 DU	0.37 DU
Medium	0.5 DU	0.68 DU	0.94 DU
High	2.0 DU	2.68 DU	3.70 DU

 \ast SO₂ was injected to US standard atmospheric profile Oblique viewing results in larger SCAs than near-nadir viewing

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- Norman, OK: June 20, 2021 @ 1 pm (closer to nadir viewing)
- Retrieval results improve for greater amounts of SO₂ in profile
- Retrieval performance with a tropospheric plume outperforms retrieval performance for the boundary layer case

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- Norman, OK: June 20, 2021 @ 1 pm (closer to nadir viewing)
- Retrieval results improve for greater amounts of SO₂ in profile
- Retrieval performance with a tropospheric plume outperforms retrieval performance for the boundary layer case
- Results as a percentage of slant column amount show that boundary layer cases have extremely

Similar results were found for the Seattle, WA: March 20, 2021 @ 1pm (backup

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulation
- All location, date and time combinations with SO₂ added to the be
- Retrieval results improve for greater amounts of SO₂ in profile
- Retrievals errors decrease as solar zenith angle decreases in mos

Location	Date	Local Time	SZA
Norman, OK	June 20	1 pm	13.63°
Norman, OK	March 20	5 pm	58.72°
Seattle, WA	March 20	1 pm	47.55°
Seattle, WA	March 20	4 pm	59.12°

Boundary Layer Case

21

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulation
- All location, date and time combinations with SO₂ added @ 5km a
- Retrieval results improve for greater amounts of SO₂ in profile
- Retrievals errors decrease as solar zenith angle decreases in mos

Location	Date	Local Time	SZA
Norman, OK	June 20	1 pm	13.63°
Norman, OK	March 20	5 pm	58.72°
Seattle, WA	March 20	1 pm	47.55°
Seattle, WA	March 20	4 pm	59.12°

5 km Tropospheric Plume

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- See variation in retrieval performance with changes in solar zeni
- Same location and SCA but different date and time different re
- Different locations and SCA with similar SZA similar results

<u> </u>				
1	Location	Date	Local Time	SZA
	Norman, OK	June 20	1 pm	13.63°
	Norman, OK	March 20	5 pm	58.72°
	Seattle, WA	March 20	1 pm	47.55°
	Seattle, WA	March 20	4 pm	59.12°

This illustrates the SZA impact on simulated retrieval performance

ACX O₃ Modeling Scenarios

Two modeling constinct

- Boundary layer case: O_3 injected into the atmosphere from 0 3 km (smog)
 - Three amounts of O_3 (Low, Medium and High)
- 5 km tropospheric plume: O₃ injected into 2 km of the atmosphere at 5 km altitude (photochemical reactions)
 - Three amounts of O₃ (Low, Medium and High)

Different viewing geometries result in different slant column amounts for the same amount of O₃

Note: There are multiple O_3 operational retrieval algorithms; this study utilizes a DOAS-like approach

					100 km	100 km
		Norman, OK (near-nadir)	Seattle, WA (oblique)			
	O ₃ Injected*	Slant Column	Amount (SCA)			
Low	50 DU	476 DU	653 DU			
Medium	60 DU	489 DU	671 DU			
High	70 DU	503 DU	690 DU			
 * O₃ was injected to US standard atmospheric profile Oblique viewing results in larger SCAs than near-nadir viewing 				_5 km	5km Tropospheric Plume	
				Boundary Layer Case		
				Surface		Surface

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- At near-nadir viewing and small SZA, retrieval performance is comparable for O_3 injected into the boundary layer and at 5 km in the troposphere

Norman, OK: June 20, 2021 @ 1pm (near-nadir viewing, SZA = 13.63°)

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- At near-nadir viewing and small SZA, retrieval performance is comparable for O_3 injected into the boundary layer and at 5 km in the troposphere

Norman, OK: June 20, 2021 @ 1pm (near-nadir viewing, SZA = 13.63°)

Note that retrieval bias as a percentage is small because O₃ slant column amounts are large due to an increased amount of O₃ in the stratosphere

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- At near-nadir viewing and small SZA, retrieval performance is comparable for O_3 injected into the boundary layer and at 5 km in the troposphere
- At oblique viewing and larger SZA, retrieval performance is better for O_3 injected at 5 km in the troposphere compared to O_3 injected in the boundary layer

Seattle, WA: March 20, 2021 @ 1pm (oblique viewing, SZA = 47.55°)

Note that retrieval bias as a percentage is small because O₃ slant column amounts are large due to an increased amount of O₃ in the stratosphere

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- All location, date and time combinations with O₃ added to the boundary layer
- Retrieval performance is comparable for all view geometries and solar zenith angles simulated when O₃ is injected into the boundary layer, with the exception of near-nadir viewing on the summer solstice near solar noon (improved retrieval performance). Location Pater local time 574

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- All location, date and time combinations with O_3 added @ 5 km altitude
- Retrieval performance is comparable for all view geometries and solar zenith angles simulated with O_3 injected at 5 km in the troposphere

5 km Tropospheric Plume

Local Time

1 pm

5 pm

1 pm

4 pm

SZA 13.63°

58.72°

47.55°

59.12°

Date

June 20

March 20

March 20

March 20

Location

Norman, OK

Norman, OK

Seattle, WA

Seattle, WA

Summary and Conclusions

- An end-to-end physics based imaging system and scene modeling & simulation capability has been further developed in support of the GeoXO program to conduct quantitative instrument performance assessments and trade studies of the ACX system
- This work investigated the impacts of simulated ACX SNR specifications on trace gas retrieval performance: » Previously studied NO₂ (420 – 450 nm) [EUMETSAT 2021]
 - » This study investigated SO₂ and O₃ retrievals (approx. 300 350 nm)

Simulated ACX SO₂ Retrievals Summary

- Retrieval uncertainty decreased as the slant column amount of SO₂ increased
- Retrieval performance for a tropospheric plume outperforms retrieval performance for the boundary layer case
- Retrievals errors decrease as solar zenith angle decreases in most cases

Simulated ACX O₃ Retrievals Summary

- Retrieval performance is better for O_3 injected at 5 km in the troposphere compared to O_3 injected in the boundary layer
 - » Exception is near-nadir viewing on the summer solstice near solar noon
- Retrieval performance is comparable for most view geometries and solar zenith angles simulated
 - » Exception is boundary layer O₃ injection with near-nadir viewing on the summer solstice near solar noon (improved retrieval performance)

Conclusions:

- Retrieval of SO₂ and low amounts of O_3 in the boundary layer were found to be challenging regardless of SNR
- Retrieval errors did not vary greatly with changes in SNR (up to 50%) for O_3 and large amounts of SO_2 at higher altitudes in the troposphere; performance for these scenarios was acceptable within this range of SNR values

30

Backup

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- Seattle, WA: March 20, 2021 @ 1 pm (off-nadir viewing)
- Retrieval results improve for greater amounts of SO₂ in profile
- Retrieval performance with a tropospheric plume outperforms retrieval performance for the boundary layer case

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- Seattle, WA: March 20, 2021 @ 1 pm (off-nadir viewing)
- Retrieval results improve for greater amounts of SO₂ in profile
- Retrieval performance with a tropospheric plume outperforms retrieval performance for the boundary layer case
- Results as a percentage of slant column amount show that boundary layer cases have extremely

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- At near nadir viewing and small SZA, retrieval performance is comparable for O₃ injected into the boundary layer and at 5 km in the troposphere

Norman, OK: June 20, 2021 @ 1pm (closer to nadir viewing, SZA = 13.63°)

- Each data point and error bars: (mean $\pm 1 \sigma$) of 1000 simulations
- At near nadir viewing and small SZA, retrieval performance is comparable for O_3 injected into the boundary layer and at 5 km in the troposphere
- At off-nadir viewing and larger SZA, retrieval performance is better for O_3 injected at 5 km in the troposphere compared to O_3 injected in the boundary layer

Seattle, WA: March 20, 2021 @ 1pm (off-nadir viewing, SZA = 47.55°)

