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Abstract—For mission planners and evaluators alike, value in 
cost models comes from a mean or median prediction, an 
understanding of the uncertainty on that prediction, and an 
understanding of model performance. Here we apply advanced 
statistical and machine learning methods to spacecraft flight 
software cost, effort, and SLOC estimation, and present the 
results in the latest version of the Analogy Software Cost Tool 
(ASCoT). We present in- and out-of-sample performance 
metrics for our models, each of which incorporate some 
amount of epistemic uncertainty. ASCoT, hosted on the One 
NASA Cost Engineering (ONCE) database via the Online 
NASA Space Estimation Tool (ONSET), was first showcased in 
2016 as a number of analogy-based models and methods 
(kNN and Clustering) to support early project 
formulation. This ASCoT update improves upon the 
previous analogic methods by incorporating uncertainty 
in the data transformations. In particular, we use a 
Nonlinear Principal Components Analysis (NLPCA) to 
deal with ordinal data.  
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1. INTRODUCTION 
Proposal concepts and designs need to be evaluated quickly 
and early in the lifecycle in order to keep pace with the 
increasing number of proposal calls released by NASA. 
Mission planners and evaluators use parametric and 
nonparametric cost models to assess concepts’ most 
pressing cost and risk drivers. In particular, sensitivity 
studies are routinely performed on new and established 
models to quantify how the mean or median cost predictions 
respond to architectural changes. As models improve in 
accuracy and precision, fewer fruitless architectural 
decisions are made early in the project lifecycle, saving 

time, decreasing cost, and increasing the probability of 
success [1]. 
 
Here we present novel models and methods for analogy-
based cost estimation for spacecraft flight software. We 
implement a Nonlinear Principal Components Analysis 
(NLPCA) algorithm with epistemic uncertainty to deal with 
non-numeric data and produce probabilistic estimates for 
mean cost (in the form of labor effort and number of lines of 
code [2, 3]) alongside probabilistic statements about 
analogies. We also improve the previous ASCoT Cost 
Estimating Relationships (CERs) by modeling the entire 
posterior distribution of parameters of a Bayesian 
regression, and by using out-of-sample model performance 
metrics for model selection, to produce a rule of thumb with 
aleatoric and epistemic uncertainty for total flight software 
cost as a function of spacecraft bus cost. 
 
ASCoT was first showcased at the 2016 IEEE Aerospace 
conference [4-6], where the importance of using a range of 
validated models in the early lifecycle in order to minimize 
risk of cost overruns was elucidated [1]. Here, we continue 
to advocate for the simultaneous usage and advancement of 
multiple methodologies to predict cost, as well as the 
explicit inclusion of uncertainty in cost and schedule 
estimates. 
 
Section 2 contains detailed descriptions of the advanced 
methods we use, including the Bayesian regression with 
Hamiltonian Markov Chain Monte Carlo, NLPCA, kNN, 
and Clustering. In Section 3 we explain the model 
performance metrics used for model selection, and how our 
models perform with respect to those metrics. We close out 
with discussion in Section 4. 
 
2. MODELS AND METHODS 
 
A. Bayesian Regression 
Here we present a simple parametric model which predicts 
software cost using only the cost of a spacecraft bus and its 
orbital destination. We use the following model form: 

log(Cost!"#) ∼ SkewNormal(𝜇, 𝜎, 𝛼),	
𝜇 = 𝛽$ + 𝛽% log(Cost"&) + (𝛽' + 𝛽( log(Cost"&))𝟏)*+,-,	
																																																																																																						(1) 
where Cost!"# is the Cost of the flight software, Cost"& is 
the cost of the spacecraft bus, 𝟏)*+,- is an indicator variable 
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equal to 1 if the spacecraft’s destination is Earth and 0 
otherwise, and 𝜇, 𝜎', 𝛼 are the mean, variance, and skew of 
the Skew Normal distribution. Using uninformative priors 
and the ASCoT CER dataset (N=43), we estimate the six-
dimensional posterior distribution of 𝜎', 𝛼, 𝛽$, 𝛽%, 𝛽', and 
𝛽( using the probabilistic programming language Stan [7]. 
Figure 1 shows the posterior distribution of the parameters 
in Equation (1). 
 
Typical linear regression assumes a normal distribution 
around a mean line. Here we choose a skew normal 
distribution to better align with our data. More specifically, 
there are a few missions with very cheap flight software 
costs relative to their spacecraft bus costs. Analysis of a 
linear regression with a normally distributed error term 
might suggest these points are outliers and analysts may 
choose to remove those points from the dataset. Analysis of 
the skew normal model suggests the more predictive error 
distribution around the mean cost has more density at lower 
costs because of the negative skew parameter 𝛼. Of course, 
adding in an additional parameter increases the risk of 
overfitting, but we use out-of-sample model performance 
metrics to confirm that the skew parameter adds predictive 
power and is not more overfit than a typical regression (see 
Section 3). 
 
Note also the marginal distribution of the parameter 𝛽( 
overlaps with zero. Analysts using typical linear regression 
may come to the conclusion that 𝛽( is not significant and 
decide to remove this term because the 𝑝-value may be 
greater than 0.05. But this model performs better 

predictively than the model without the 𝛽( term, based on a 
leave-one-out cross validation (see Section 3). 
 
B. Nonlinear Principal Components Analysis 
NASA cost analysts are routinely gifted datasets with many 
fields but few records. The most pressing question is, of 
course, how to find the variable or group of variables that 
best predict cost or some other variable of interest. A good 
starting point is to fit a sequence of simple and multiple 
regressions and comparing models along the way. 
 
A next step might be to fit a PCA regression, in which a 
(linear) Principal Components Analysis is done on the 
continuous predictor variables in the dataset. Because 
principal components from a PCA analysis are orthogonal, 
there is no risk of misinterpreting results from models with 
correlated variables. But if there are no (or few) continuous 
variables in the dataset, or you suspect the features of the 
data may be nonlinear, then PCA will be insufficient and 
misleading. 
 
In these all-too-common scenarios, some sort of nonlinear 
dimension reduction scheme must be deployed. For a 
dataset of predictors 𝑋 with domain Ω of dimension 𝑘 to be 
optimally nonlinearly reduced to dimension ℓ < 𝑘, we must 
determine functions 𝑓: Ω → ℝℓ and 𝑔:ℝℓ → Ω such that 
‖𝑋 − 𝑔 ∘ 𝑓(𝑋)‖ is minimized. In other words, we want an 
autoencoder 𝑔 ∘ 𝑓 from Ω to Ω, with a bottleneck of 
dimension ℓ. Intuitively, if data of dimension 𝑘 can be 
sufficiently recovered after passing through this low-
dimensional bottleneck, then we have an acceptable 

Figure 1. Pairplot for the posterior distribution of the parameters in Equation (1). 
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dimension reduction function 𝑓 (also called the “mapping 
function”) and recovery function 𝑔 (also called the “de-
mapping function”). 
 
One natural way to learn the mapping and de-mapping 
functions are with feed-forward neural networks (FFNNs). 
FFNNs are built up with perceptrons, which are simply 
nonlinear, typically nondecreasing functions applied to 
linear combinations of variables. Mathematically, a 
perceptron is a function with domain ℝ/ and codomain ℝ of 
the form 

𝑌 = 𝑓 K𝑏 +M𝑤0𝑋0

/

01%

O = 𝑓P𝑏 + 𝑤QQ⃗ ⋅ 𝑋⃗	T, 

where 𝑏 is a bias parameter and 𝑤QQ⃗  is a vector of weights. A 
layer in a FFNN is a vector of perceptrons with the same 
domain. Mathematically, a layer is a function with domain 
ℝ/ and codomain ℝ2 of the form 

𝑌Q⃗ = 𝐹 V𝑏Q⃗ +𝑊QQQ⃗QQQ⃗ ⋅ 𝑋⃗X, 

where 𝑏Q⃗  is a vector of bias parameters and 𝑊QQQ⃗QQQ⃗  is a matrix of 
weights. A FFNN is a sequence of layers, each successive 
layer’s domain equaling the previous layer’s codomain. 
 
We can specify the form of a FFNN using a list of 
dimensions of the input and each successive layer. For 
example, if the dimension of the input is 7 and the 
dimension of the output is 3, then the FFNN has one layer, 
and we say the FFNN has dimension [7,3].  FFNNs with 
multiple layers are specified using longer lists; for example, 
a FFNN with dimension [7,8,2,8,7] has four layers – the 
input and output are of dimension seven, and the 
intermediate steps have dimension eight, two, and eight, 
respectively. 
 
Fitting a FFNN to data means finding the parameters of the 
FFNN (the weight matrix 𝑊QQQ⃗QQQ⃗  and the bias vector 𝑏Q⃗  for each 
layer) to minimize predictive error. This is typically done 
using an efficient algorithm called back-propagation, which 
optimizes subsets of the FFNN in sequence instead of the 
entire FFNN at the same time using classical optimization 
schemes like gradient descent. 
 
For nonlinear dimension reduction, ASCoT uses FFNNs to 
generate the mapping and de-mapping functions. In 
particular, we fit FFNNs with dimension [𝐷, 𝑥, 𝑑, 𝑥, 𝐷], 
where 𝑥 is some positive integer greater than 𝑑, 𝐷 is the 
dimension of the data (in our case 6 or 7), and 𝑑 is the 
number of nonlinear principal components we are interested 
in finding (in our case 2). After fitting the FFNN to the data, 
the mapping function is the first half of the FFNN, of 
dimension [𝐷, 𝑥, 𝑑], and the de-mapping function is the 
second half of the FFNN, of dimension [𝑑, 𝑥, 𝐷]. 
 
Future ASCoT work could involve more state-of-the-art 
dimension reduction algorithms like KernelFlows, in which 
the mapping and de-mapping functions are defined as 
Gaussian processes rather than FFNNs. 

 
There are fewer data records than parameters in the defined 
FFNNs, which causes an identifiability problem when 
fitting the mapping and de-mapping functions. In other 
words, there is not an optimal single set of weights and 
biases, but rather an optimal manifold of weights and biases. 
In order to account for the uncertainty of weights and biases, 
we fit 1000 independent FFNNs with random initializations, 
and therefore extract 1000 paired mapping and de-mapping 
functions. This means that instead of a single low-
dimensional dataset, we have a distribution of low-
dimensional datasets that we are able to analyze. The 
distributions are used in our k-Nearest Neighbors and 
Clustering algorithms. 
 
C. k-Nearest Neighbors 
The ASCoT k-Nearest Neighbors (kNN) algorithm is a 
nonparametric algorithm to predict the Effort required to 
produce flight software, in work-months (WM), or the 
number of thousands of equivalent logical source lines of 
code (kEqSLOC) in completed flight software, based on 
input proximity to existing data records. For the ASCoT 
kNN Effort model, users input the following variables: 

1. Inheritance Level: the proportion of the flight 
software codebase inherited from past projects, 

2. Mission Size: the cost target (including 
development and operations) of the entire mission, 

3. Mission Type: the top-level architecture of a 
mission (orbiter, observatory, lander, rover), 

4. Redundancy: the architecture of backup computers 
on board the spacecraft, 

5. Destination: the orbital or planetary destination of 
the mission, 

6. Number of Instruments: the number of scientific 
instruments on board the spacecraft, and 

7. Number of Deployables: the number of unique 
non-scientific, movable components on board the 
spacecraft (booms, arms, etc.). 

For the ASCoT kEqSLOC model, users input the same 
variables except the inheritance level. 
 
Let 𝑥3 denote the vector of user input variables, and let 
𝑓(𝑥⃗3) denote the dimension-reduced, numerically 
transformed user input after passing through the same 
numerical transformations as the data (N=39 for the Effort 
model and N=46 for the kEqSLOC model). We calculate the 
distance 𝑑0 to 𝑓(𝑥⃗3) from each transformed record in the 
dataset 𝑓P𝑋⃗0T, defined 

𝑑0 = b𝑓(𝑥3) − 𝑓P𝑋⃗0Tb', 
where ‖⋅‖' is the Euclidean norm. The k data points 𝑋⃗0 
closest to the input in the transformed space (smallest 𝑑0) 
are called the “k nearest neighbors.” After reordering the 
points 𝑋⃗0 such that 𝑑% ≤ 𝑑' ≤ ⋯ (i.e. in order from closest 
to farthest), we estimate Effort or kEqSLOC as the weighted 
average 
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𝑦3 =
∑ 𝑌0

𝑑0
4
01%

∑ 1
𝑑0

4
01%

,																																				(2) 

where 𝑌0 denotes the Effort or kEqSLOC associated with 𝑋0. 
 
Previous versions of ASCoT reported the weighted average 
and which missions were nearest. In the newest version of 
ASCoT, we have a distribution of data transformations, 
which means we compute a distributon of weighted 
averages as well as a distribution of neighbors. The current 
ASCoT version reports the full distribution of mean Effort 
and kEqSLOC, and, for each mission in the dataset, the 
probability it is one of the three nearest neighbors. Figure 2 
shows an example of user input and the resulting 
distribution of Effort, and Figure 3 shows the probabilities 
each mission is one of the three nearest neighbors. Users 

also have the option to leave certain inputs blank if they are 
uncertain and give ranges for the number of instruments and 
deployables. 
 
D. Clustering 
Like kNN, the ASCoT Clustering algorithm is another 
nonparametric algorithm to predict Effort or kEqSLOC. 
Like the kNN algorithm, user input is transformed according 
to the nonlinear dimension reduction mapping functions 
described above. The input is assigned to a particular cluster 
of missions based on proximity to the cluster. Then Effort or 
kEqSLOC is estimated as a weighted average of the 
missions in the cluster. Specifically, if the transformed input 
𝑓(𝑥⃗3) is placed in cluster 𝑗 and 𝐶5 is the collection of 
missions in cluster 𝑗, then Effort or kEqSLOC is: 

Figure 2. ASCoT Effort kNN tool inputs (left) and Mean Effort distribution (right). The 50th and 70th percentiles of the 
distribution are highlighted. Inputs are “Medium” inheritance (20-50%), “Large” mission size (600M-1.1B in $FY16), 
“Orbiter/flyby” mission type, “single string” redundancy, “Earth” destination, two instruments, and two deployables 

Figure 3. ASCoT Effort kNN tool probabilities of being a neighbor, given inputs defined in Figure 2. SMAP is very 
likely the most useful analog, and other potentially useful analogs are GPM Core and Genesis. 
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𝑦3 =
∑ 𝑌6

𝑑66∈8!

∑ 1
𝑑66∈8!

,																																					(3) 

where 𝑌6 denotes the Effort or kEqSLOC associated with 
mission 𝑐 and 𝑑6 = ‖𝑓(𝑐) − 𝑓(𝑥⃗3)‖' is the Euclidean 
distance between mission 𝑐 and the user input in 
transformed space. Also like the kNN algorithm, since there 
are a distribution of transformations, we calculate a 
distribution of weighted averages as well as the distribution 
of cluster assignments. Figure 4 shows an example of user 
input and the resulting distribution of kEqSLOC, and Figure 
5 shows the probability distribution of cluster assignment, 
as well as the kEqSLOC distribution colored by cluster 
assignment. 
 

3. MODEL PERFORMANCE 
After building and fitting one or more models, it is critical 
to then assess model performance. The most useful metrics 
for assessing performance are those which account for both 
fit to the data and out-of-sample prediction. Especially in 
the context of small sample size, analysts who fit statistical 
models and report 𝑅' only are potentially endorsing models 
which are overfit to the data and have very bad predictive 
performance. Intuitively, for predictive models, we are less 
interested in how well a model fits the data you have, and 
more interested in how well a model predicts data you do 
not have. We suggest instead using cross validation 
techniques to estimate out-of-sample performance. In 
particular, the expected log predictive density, or elpd, is the 
theoretical expected log pointwise predictive density for a 

Figure 4. ASCoT kEqSLOC Clustering tool inputs (left) and Mean kEqSLOC distribution (right). The 50th and 70th 
percentiles of the distribution are highlighted. Inputs are “Large” mission size (600M-1.1B in $FY16), “Orbiter/flyby” 
mission type, “single string” redundancy, “Earth” destination, two instruments, and two deployables. 

 

Figure 5. ASCoT kEqSLOC Clustering tool probabilities of being assigned to a cluster given inputs defined in Figure  
(left) and the stacked histogram of mean kEqSLOC colored by cluster (right). Clusters 5 and 6 are the most likely 
assignments. 
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new dataset, which is estimated using a leave-one-out cross 
validation (LOOCV) scheme, and denoted elpd9:::  

elpd9:: ≔Mlog𝑝( 𝑦0 ∣∣ 𝑦;0 ) ,
/

01%

																		(4) 

where 𝑝( 𝑦0 ∣∣ 𝑦;0 ) is the predictive density of the 𝑖th data 
record given the data without the 𝑖th data record (leave-one-

out), but rather than refitting the model without each data 
record, we can estimate elpd9:: using importance sampling 
[8]. elpd9:: for our CER model is approximately −39.1. 
The elpd9:: for the model without an indicator variable for 
Destination is approximately −39.3, and the standard error 
of the difference of elpd9:: between the two models is 1.9. 

Figure 6. Relative Error of the kNN and Clustering Effort models for each of the 39 projects used to fit the models, 
ordered by median kNN Effort model performance. 

Figure 7. Relative Error of the kNN and Clustering kEqSLOC models for each of the 46 projects used to fit the models, 
ordered by median kNN kEqSLOC model performance. 
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Thus there is only a weak signal that the model containing 
the indicator variable for Destination performs predictively 
better than the model without it, and therefore ASCoT 
developers should consider removing Destination from the 
CER in future releases. 
 
Figures 6 and 7 show the relative predictive errors for each 
point the Effort and kEqSLOC kNN and Clustering models, 
respectively. 10.3% of the points in the kNN Effort model, 
12.8% of the points in the Clustering Effort model, 10.9% 
of the points in the kNN kEqSLOC model, and 13.0% of the 
points in the Clustering kEqSLOC model have MdRE > 1, 
respectively, which is a significant improvement over the 
most recent previous version of the ASCoT analogic models 
[5]. Also, 50% of the MdRE values for the kNN Effort, 
Clustering Effort , kNN kEqSLOC, and Clustering 
kEqSLOC models are below 0.35, 0.36, 0.25, and 0.23, 
respectively, all improvements over the previous ASCoT 
version at 0.36, 0.36, 0.34, and 0.34, respectively. 
 
4. CONCLUSIONS AND DISCUSSION 
The Analogy Software Cost Tool (ASCoT) contains 
multiple tools to help cost analysts predict the cost of 
spacecraft flight software. We provide four non-parametric 
models (kNN and Clustering for Effort and kEqSLOC) and 
two parametric models (COCOMO-II and the CER). This 
paper has detailed significant improvements in model 
performance and uncertainty quantification and 
communication for the kNN, Clustering, and CER models. 
 
The ASCoT 3 Bayesian regression model (the CER) 
represents an improvement over typical linear regression 
because (a) the model was chosen based on out-of-sample 
predictive performance, and not fit to the data alone, (b) 
predictions come from sampling the full posterior 
distribution of parameters and not an assumption of 
multivariate normality or orthogonality, and (c) we use the 
skew normal error distribution instead of the typical normal 
distribution, which accounts for what would have been 
considered outliers in the dataset. The online tool allows 
users to download the full posterior distribution of 
parameters and specify inputs with different types of 
uncertainty. The output in the tool is shown either in a log-
log scale or in the native space. 
 
All four ASCoT 3 nonparametric models (kNN and 
Clustering Effort and kEqSLOC) now incorporate 
uncertainty inherent in the nonlinear dimension reduction, 
which propogates to uncertainty in the mean Effort and 
kEqSLOC predictions and in the probability distribution of 
neighbors and clusters. Analysts are now better able to 
assess the risk of overrunning cost and determine which 
groups of missions should be considered analogs of the 
mission concept they are trying to analyze. The online tool 
allows users to download the raw data and the distribution 
of datasets defined by the nonlinear dimension reduction. 
 
Understanding the uncertainty in cost predictions is critical 
in early project formulation. Without this information, 

project managers are unable to make data-informed 
decisions regarding the level of risk they are taking on. 
Analysts should also report how much uncertainty they 
believe comes from lack of knowledge about the cost 
drivers (epistemic uncertainty) vs uncertainty that comes 
from inherent randomness (aleatoric uncertainty). 
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