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Abstract—For mission planners and evaluators alike, value in
cost models comes from a mean or median prediction, an
understanding of the uncertainty on that prediction, and an
understanding of model performance. Here we apply advanced
statistical and machine learning methods to spacecraft flight
software cost, effort, and SLOC estimation, and present the
results in the latest version of the Analogy Software Cost Tool
(ASCoT). We present in- and out-of-sample performance
metrics for our models, each of which incorporate some
amount of epistemic uncertainty. ASCoT, hosted on the One
NASA Cost Engineering (ONCE) database via the Online
NASA Space Estimation Tool (ONSET), was first showcased in
2016 as a number of analogy-based models and methods
(kNN and Clustering) to support early project
formulation. This ASCoT update improves upon the
previous analogic methods by incorporating uncertainty
in the data transformations. In particular, we use a
Nonlinear Principal Components Analysis (NLPCA) to
deal with ordinal data.
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1. INTRODUCTION

Proposal concepts and designs need to be evaluated quickly
and early in the lifecycle in order to keep pace with the
increasing number of proposal calls released by NASA.
Mission planners and evaluators use parametric and
nonparametric cost models to assess concepts’ most
pressing cost and risk drivers. In particular, sensitivity
studies are routinely performed on new and established
models to quantify how the mean or median cost predictions
respond to architectural changes. As models improve in
accuracy and precision, fewer fruitless architectural
decisions are made early in the project lifecycle, saving
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time, decreasing cost, and increasing the probability of
success [1].

Here we present novel models and methods for analogy-
based cost estimation for spacecraft flight software. We
implement a Nonlinear Principal Components Analysis
(NLPCA) algorithm with epistemic uncertainty to deal with
non-numeric data and produce probabilistic estimates for
mean cost (in the form of labor effort and number of lines of
code [2, 3]) alongside probabilistic statements about
analogies. We also improve the previous ASCoT Cost
Estimating Relationships (CERs) by modeling the entire
posterior distribution of parameters of a Bayesian
regression, and by using out-of-sample model performance
metrics for model selection, to produce a rule of thumb with
aleatoric and epistemic uncertainty for total flight software
cost as a function of spacecraft bus cost.

ASCoT was first showcased at the 2016 IEEE Aerospace
conference [4-6], where the importance of using a range of
validated models in the early lifecycle in order to minimize
risk of cost overruns was elucidated [1]. Here, we continue
to advocate for the simultaneous usage and advancement of
multiple methodologies to predict cost, as well as the
explicit inclusion of uncertainty in cost and schedule
estimates.

Section 2 contains detailed descriptions of the advanced
methods we use, including the Bayesian regression with
Hamiltonian Markov Chain Monte Carlo, NLPCA, kNN,
and Clustering. In Section 3 we explain the model
performance metrics used for model selection, and how our
models perform with respect to those metrics. We close out
with discussion in Section 4.

2. MODELS AND METHODS

A. Bayesian Regression

Here we present a simple parametric model which predicts

software cost using only the cost of a spacecraft bus and its

orbital destination. We use the following model form:
log(Costggy) ~ SkewNormal(y, o, @),

1= Bo + By log(Costsc) + (B, + B3 log(Costsc)) Leartn,
€y

where Costggyy is the Cost of the flight software, Costg is
the cost of the spacecraft bus, 15,4, is an indicator variable
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Figure 1. Pairplot for the posterior distribution of the parameters in Equation (1).

equal to 1 if the spacecraft’s destination is Earth and 0
otherwise, and u, o2, & are the mean, variance, and skew of
the Skew Normal distribution. Using uninformative priors
and the ASCoT CER dataset (N=43), we estimate the six-
dimensional posterior distribution of 62, a, By, 1, B2, and
[5 using the probabilistic programming language Stan [7].
Figure 1 shows the posterior distribution of the parameters
in Equation (1).

Typical linear regression assumes a normal distribution
around a mean line. Here we choose a skew normal
distribution to better align with our data. More specifically,
there are a few missions with very cheap flight software
costs relative to their spacecraft bus costs. Analysis of a
linear regression with a normally distributed error term
might suggest these points are outliers and analysts may
choose to remove those points from the dataset. Analysis of
the skew normal model suggests the more predictive error
distribution around the mean cost has more density at lower
costs because of the negative skew parameter a. Of course,
adding in an additional parameter increases the risk of
overfitting, but we use out-of-sample model performance
metrics to confirm that the skew parameter adds predictive
power and is not more overfit than a typical regression (see
Section 3).

Note also the marginal distribution of the parameter S5
overlaps with zero. Analysts using typical linear regression
may come to the conclusion that 55 is not significant and
decide to remove this term because the p-value may be
greater than 0.05. But this model performs better

predictively than the model without the 3 term, based on a
leave-one-out cross validation (see Section 3).

B. Nonlinear Principal Components Analysis

NASA cost analysts are routinely gifted datasets with many
fields but few records. The most pressing question is, of
course, how to find the variable or group of variables that
best predict cost or some other variable of interest. A good
starting point is to fit a sequence of simple and multiple
regressions and comparing models along the way.

A next step might be to fit a PCA regression, in which a
(linear) Principal Components Analysis is done on the
continuous predictor variables in the dataset. Because
principal components from a PCA analysis are orthogonal,
there is no risk of misinterpreting results from models with
correlated variables. But if there are no (or few) continuous
variables in the dataset, or you suspect the features of the
data may be nonlinear, then PCA will be insufficient and
misleading.

In these all-too-common scenarios, some sort of nonlinear
dimension reduction scheme must be deployed. For a
dataset of predictors X with domain (1 of dimension k to be
optimally nonlinearly reduced to dimension £ < k, we must
determine functions f: Q — R? and g: R® - Q such that

[|X — g o f(X)]|| is minimized. In other words, we want an
autoencoder g o f from () to Q, with a bottleneck of
dimension 4. Intuitively, if data of dimension k can be
sufficiently recovered after passing through this low-
dimensional bottleneck, then we have an acceptable



dimension reduction function f (also called the “mapping
function”) and recovery function g (also called the “de-
mapping function”).

One natural way to learn the mapping and de-mapping
functions are with feed-forward neural networks (FFNNs).
FFNNs are built up with perceptrons, which are simply
nonlinear, typically nondecreasing functions applied to
linear combinations of variables. Mathematically, a
perceptron is a function with domain R™ and codomain R of
the form

Y=f<b+ZWiXi>=f(b+W~)?),

where b is a bias parameter and W is a vector of weights. A
layer in a FFNN is a vector of perceptrons with the same
domain. Mathematically, a layer is a function with domain
R"™ and codomain R™ of the form

V=rF(5+W-%)

-
b . . = - .
where b is a vector of bias parameters and W is a matrix of
weights. A FFNN is a sequence of layers, each successive
layer’s domain equaling the previous layer’s codomain.

We can specify the form of a FFNN using a list of
dimensions of the input and each successive layer. For
example, if the dimension of the input is 7 and the
dimension of the output is 3, then the FFNN has one layer,
and we say the FFNN has dimension [7,3]. FFNNs with
multiple layers are specified using longer lists; for example,
a FFNN with dimension [7,8,2,8,7] has four layers — the
input and output are of dimension seven, and the
intermediate steps have dimension eight, two, and eight,
respectively.

Fitting a FFNN to data means finding the parameters of the

FFNN (the weight matrix W and the bias vector b for each
layer) to minimize predictive error. This is typically done
using an efficient algorithm called back-propagation, which
optimizes subsets of the FFNN in sequence instead of the
entire FFNN at the same time using classical optimization
schemes like gradient descent.

For nonlinear dimension reduction, ASCoT uses FFNNs to
generate the mapping and de-mapping functions. In
particular, we fit FFNNs with dimension [D, x, d, x, D],
where x is some positive integer greater than d, D is the
dimension of the data (in our case 6 or 7), and d is the
number of nonlinear principal components we are interested
in finding (in our case 2). After fitting the FFNN to the data,
the mapping function is the first half of the FFNN, of
dimension [D, x, d], and the de-mapping function is the
second half of the FFNN, of dimension [d, x, D].

Future ASCoT work could involve more state-of-the-art
dimension reduction algorithms like KernelFlows, in which
the mapping and de-mapping functions are defined as
Gaussian processes rather than FFNNs.

There are fewer data records than parameters in the defined
FFNNSs, which causes an identifiability problem when
fitting the mapping and de-mapping functions. In other
words, there is not an optimal single set of weights and
biases, but rather an optimal manifold of weights and biases.
In order to account for the uncertainty of weights and biases,
we fit 1000 independent FFNNs with random initializations,
and therefore extract 1000 paired mapping and de-mapping
functions. This means that instead of a single low-
dimensional dataset, we have a distribution of low-
dimensional datasets that we are able to analyze. The
distributions are used in our k-Nearest Neighbors and
Clustering algorithms.

C. k-Nearest Neighbors
The ASCoT k-Nearest Neighbors (kKNN) algorithm is a
nonparametric algorithm to predict the Effort required to
produce flight software, in work-months (WM), or the
number of thousands of equivalent logical source lines of
code (kEqSLOC) in completed flight software, based on
input proximity to existing data records. For the ASCoT
kNN Effort model, users input the following variables:
1. Inheritance Level: the proportion of the flight
software codebase inherited from past projects,
2. Mission Size: the cost target (including
development and operations) of the entire mission,
3. Mission Type: the top-level architecture of a
mission (orbiter, observatory, lander, rover),
4. Redundancy: the architecture of backup computers
on board the spacecraft,
5. Destination: the orbital or planetary destination of
the mission,
6. Number of Instruments: the number of scientific
instruments on board the spacecraft, and
7. Number of Deployables: the number of unique
non-scientific, movable components on board the
spacecraft (booms, arms, etc.).
For the ASCoT kEqSLOC model, users input the same
variables except the inheritance level.

Let X, denote the vector of user input variables, and let
f(%,) denote the dimension-reduced, numerically
transformed user input after passing through the same
numerical transformations as the data (N=39 for the Effort
model and N=46 for the kEGSLOC model). We calculate the
distance d; to f(%,) from each transformed record in the

dataset f ()? L-), defined
di = ||f G = FX)I,
where |||, is the Euclidean norm. The k data points X ;

closest to the input in the transformed space (smallest d;)
are called the “k nearest neighbors.” After reordering the

points )?i such that d; < d, < --- (i.e. in order from closest
to farthest), we estimate Effort or kKEQSLOC as the weighted
average



kSLOC

Effort
Estimates
Create New Estimate Current Estimate
Estimate Name Inheritance Level Mean Effort CDF —— -
My Earth Orbiter Medium X v Percen
Mission Size Mission Type 796.4 WMs
Large X v Orbiter/Flyby v
Redundancy Destination
Single String X v Earth v 50th le
= ! I t 2
Choose min = max for instruments or deployables if a single point input Is desired. 2 743.8 WMs
Number of Instruments Number of Deployables 5
e
Min: 2 Max: 2 S Min: 2 Max: 2 &
Upload Inputs as CSV Download Inputs as CSV Create Estimate

1000

1200

400 600 800
Mean Effort (WMs)

Figure 2. ASCoT Effort kNN tool inputs (left) and Mean Effort distribution (right). The 50" and 70™ percentiles of the
distribution are highlighted. Inputs are “Medium” inheritance (20-50%), “Large” mission size (600M-1.1B in $FY16),
“Orbiter/flyby” mission type, “single string” redundancy, “Earth” destination, two instruments, and two deployables

k Y also have the option to leave certain inputs blank if they are
_ 2 uncertain and give ranges for the number of instruments and
Yu = 1’ ( ) d 1 bl
kL eployables.
i=1q;

where Y; denotes the Effort or kEQSLOC associated with X;.

Previous versions of ASCoT reported the weighted average
and which missions were nearest. In the newest version of
ASCoT, we have a distribution of data transformations,
which means we compute a distributon of weighted
averages as well as a distribution of neighbors. The current
ASCoT version reports the full distribution of mean Effort
and kEqSLOC, and, for each mission in the dataset, the
probability it is one of the three nearest neighbors. Figure 2
shows an example of user input and the resulting
distribution of Effort, and Figure 3 shows the probabilities
each mission is one of the three nearest neighbors. Users
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D. Clustering

Like ANN, the ASCoT Clustering algorithm is another
nonparametric algorithm to predict Effort or kEqSLOC.
Like the NN algorithm, user input is transformed according
to the nonlinear dimension reduction mapping functions
described above. The input is assigned to a particular cluster
of missions based on proximity to the cluster. Then Effort or
kEqSLOC is estimated as a weighted average of the
missions in the cluster. Specifically, if the transformed input
f(%,) is placed in cluster j and C; is the collection of
missions in cluster j, then Effort or kEqSLOC is:

A/&) ”Slg 413( Oess Z’/VOMS& /V%A/
/7?%

Q,//"

Mission

Figure 3. ASCoT Effort kNN tool probabilities of being a neighbor, given inputs defined in Figure 2. SMAP is very
likely the most useful analog, and other potentially useful analogs are GPM Core and Genesis.
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Figure 4. ASCoT kEqSLOC Clustering tool inputs (left) and Mean KEqSLOC distribution (right). The 50" and 70™

percentiles of the distribution are highlighted. Inputs are

“Large” mission size (600M-1.1B in $FY16), “Orbiter/flyby”

mission type, “single string” redundancy, “Earth” destination, two instruments, and two deployables.

ZCEC j g_i
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ZCEC i d_c
where Y, denotes the Effort or KEGSLOC associated with
mission ¢ and d,. = ||f(c) — f(XIl; is the Euclidean
distance between mission ¢ and the user input in
transformed space. Also like the ANN algorithm, since there
are a distribution of transformations, we calculate a
distribution of weighted averages as well as the distribution
of cluster assignments. Figure 4 shows an example of user
input and the resulting distribution of kEqSLOC, and Figure
5 shows the probability distribution of cluster assignment,
as well as the KEqQSLOC distribution colored by cluster
assignment.
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3. MODEL PERFORMANCE

After building and fitting one or more models, it is critical
to then assess model performance. The most useful metrics
for assessing performance are those which account for both
fit to the data and out-of-sample prediction. Especially in
the context of small sample size, analysts who fit statistical
models and report R? only are potentially endorsing models
which are overfit to the data and have very bad predictive
performance. Intuitively, for predictive models, we are less
interested in how well a model fits the data you have, and
more interested in how well a model predicts data you do
not have. We suggest instead using cross validation
techniques to estimate out-of-sample performance. In
particular, the expected log predictive density, or elpd, is the
theoretical expected log pointwise predictive density for a
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Figure 5. ASCoT KEqSLOC Clustering tool probabilities of being assigned to a cluster given inputs defined in Figure
(left) and the stacked histogram of mean KEqSLOC colored by cluster (right). Clusters 5 and 6 are the most likely

assignments.



I kNN Model
=3 Clustering Model

IS

Relative Error

w

w n X o ox M s o oa = o ow o v o L o m o c - & = & = w
4 8 ¢ .52 82 £ 2 £ 88 % 52 53§85 8 .88 F &2 fgefz gEzl3yofoELE QOB
2 z = 38 §F = g K & £ o Z T 7z & g & O g8 E 5 § = %28 ©3Ig g2 2 2 % E§ 2 9 o
3 £ 2L 9 g P 2 o s X = ¢ £ ca 2 & 8 8 23
s =z & b 2 = g & z 55 = H ] A
@ o 5] = B ]
8 2 S

Projects, sorted by kNN Model Median Relative Error

Figure 6. Relative Error of the ANN and Clustering Effort models for each of the 39 projects used to fit the models,
ordered by median ANN Effort model performance.

new dataset, which is estimated using a leave-one-out cross out), but rather than refitting the model without each data

validation (LOOCYV) scheme, and denoted elpd,,: record, we can estimate elpd,,, using importance sampling
I [8]. elpd,, for our CER model is approximately —39.1.

elpdio, = Z logp(yi ly-i), 4) The elpd,,, for the model without an indicator variable for

i=1 Destination is approximately —39.3, and the standard error

where p(y; | y_;) is the predictive density of the ith data of the difference of elpd,,, between the two models is 1.9.

record given the data without the ith data record (leave-one-
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Thus there is only a weak signal that the model containing
the indicator variable for Destination performs predictively
better than the model without it, and therefore ASCoT
developers should consider removing Destination from the
CER in future releases.

Figures 6 and 7 show the relative predictive errors for each
point the Effort and kEqSLOC 4NN and Clustering models,
respectively. 10.3% of the points in the ANN Effort model,
12.8% of the points in the Clustering Effort model, 10.9%
of the points in the ANN kEqSLOC model, and 13.0% of the
points in the Clustering kEqQSLOC model have MdRE > 1,
respectively, which is a significant improvement over the
most recent previous version of the ASCoT analogic models
[5]. Also, 50% of the MdRE values for the ANN Effort,
Clustering Effort , ANN kEqQSLOC, and Clustering
kEqSLOC models are below 0.35, 0.36, 0.25, and 0.23,
respectively, all improvements over the previous ASCoT
version at 0.36, 0.36, 0.34, and 0.34, respectively.

4. CONCLUSIONS AND DISCUSSION

The Analogy Software Cost Tool (ASCoT) contains
multiple tools to help cost analysts predict the cost of
spacecraft flight software. We provide four non-parametric
models (kNN and Clustering for Effort and kEqSLOC) and
two parametric models (COCOMO-II and the CER). This
paper has detailed significant improvements in model
performance and uncertainty quantification and
communication for the ANN, Clustering, and CER models.

The ASCoT 3 Bayesian regression model (the CER)
represents an improvement over typical linear regression
because (a) the model was chosen based on out-of-sample
predictive performance, and not fit to the data alone, (b)
predictions come from sampling the full posterior
distribution of parameters and not an assumption of
multivariate normality or orthogonality, and (c) we use the
skew normal error distribution instead of the typical normal
distribution, which accounts for what would have been
considered outliers in the dataset. The online tool allows
users to download the full posterior distribution of
parameters and specify inputs with different types of
uncertainty. The output in the tool is shown either in a log-
log scale or in the native space.

All four ASCoT 3 nonparametric models (ANN and
Clustering Effort and kEqSLOC) now incorporate
uncertainty inherent in the nonlinear dimension reduction,
which propogates to uncertainty in the mean Effort and
kEqSLOC predictions and in the probability distribution of
neighbors and clusters. Analysts are now better able to
assess the risk of overrunning cost and determine which
groups of missions should be considered analogs of the
mission concept they are trying to analyze. The online tool
allows users to download the raw data and the distribution
of datasets defined by the nonlinear dimension reduction.

Understanding the uncertainty in cost predictions is critical
in early project formulation. Without this information,

project managers are unable to make data-informed
decisions regarding the level of risk they are taking on.
Analysts should also report how much uncertainty they
believe comes from lack of knowledge about the cost
drivers (epistemic uncertainty) vs uncertainty that comes
from inherent randomness (aleatoric uncertainty).
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