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1. Abstract
Both pluvial and fluvial flooding events pose direct challenges on urban 
infrastructure and communities across the United States. Heavy rainfall events 
oversaturate the ground, overflow waterbodies, and overwhelm stormwater 
infrastructure. Vulnerable areas receive heavy damage from flooding events due to
physical factors like increased impervious surfaces, poor stormwater systems, and 
limited greenspaces. These vulnerable neighborhoods are comprised of aging 
populations, minority communities, and lower income levels. Lack of data in these 
communities have made it difficult to implement policymaking and flood mitigation
strategies. Using the Urban Flood Risk Mitigation model (InVEST) and the 
PlanetScope satellite constellation, the team visualized historical flooding and tree 
canopy coverage as a measure of flood susceptibility. The team also used the Arc-
Malstrom model to provide further insight into where flooding accumulates via 
surface elevation depressions in the study area. To validate these models, the team
explored the spatial variation of rainfall events using NASA’s Integrated Multi-
satellite Retrievals for Global Precipitation Measurement (GPM IMERG). The 
resulting maps highlight areas surrounding the cities of Youngstown and Warren 
as being the most flood susceptible and socially vulnerable, while the city centers 
contain the lowest tree canopy coverage. The DEVELOP team collaborated with 
the Environmental Collaborative of Ohio (ECO) to create products for end users 
within the City of Warren’s Water Pollution Control Department, the Eastgate 
Regional Council of Governments and the Healthy Community Partnership of 
Mahoning Valley. These products help identify target areas for preventative flood 
mitigation measures as well as areas ideal for green infrastructure intervention.

Key Terms
InVEST Urban Flood Risk Mitigation Model, urban flooding, tree canopy cover, 
flood vulnerability

2. Introduction
2.1 Background Information
The cities of Youngstown and Warren, Ohio, and their surrounding areas are 
vulnerable to flash flood events due to changes in weather patterns and the lack of 
adequate infrastructure to manage flooding that has been increasing in both 
severity and frequency. The primary concern for this area is pluvial flooding, which
occurs when surface water accumulates and “saturates the urban drainage 
system” past its capacity (Seleem et al., 2021). As climate change increases the 
frequency and severity of precipitation events, this will likely put further strain on 
the infrastructure for handling pluvial flooding (Hosseinzadehtalaei et al., 2021).

Youngstown and Warren are the county seats of Mahoning and Trumbull counties, 
respectively. The cities are located only sixteen miles from each other with the 
Mahoning River flowing through them. During the late 19th and early 20th 
centuries, both cities were major industrial towns and steel manufacturing was the
primary source of employment for the area's growing population (Traficant, 1970). 
Since the collapse of the steel industry in the 1970s, however, both cities 
experienced an economic downturn and a significant decrease in population. 
Insufficient means of drainage, combined with old and deteriorating infrastructure 
in many areas of Trumbull and Mahoning counties, compounds the problem of 
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pluvial flooding events (Ricciutti, 2022). As water accumulates or pools with no 
means of proper drainage, property damage and threats to human life increase. 

Green infrastructure, such as rain gardens, permeable pavements, or even 
increased urban tree canopy, is more cost-effective and environmentally beneficial 
than gray infrastructure, such as dams, seawalls, or pipes for stormwater 
management (Zimmerman et al., 2016). In one study, the planting of trees in a 
parking lot was found to reduce runoff by 17%, as well as reducing stormwater 
management costs (Zabret and Sraj, 2015). The Mahoning River Valley is already 
moving away from gray infrastructure and starting to embrace green 
infrastructure. One of our partners, Eastgate Regional Council of Governments, 
has been working to bring the Mahoning River back to its free-flowing state by 
removing all nine low-head dams, once used for steel mills, on the river. So far, 
they’ve removed two dams, and are working to acquire the $20 million in funding 
to demolish the rest (Eastgate). 

Modeling urban flooding has come a long way within the past few decades, with a 
variety of options existing varying in both spatial extent, dimensionality (2D vs. 
3D), and mathematical complexity (Nkwunonwo et al., 2020). However, the use of 
Earth observations within these modeling scenarios is often rare, as the complexity
of urban environments’ surfaces make it challenging to map floods using spectral 
data (Zhang et al., 2021). Previous studies have used the Natural Capital Project’s 
Integrated Valuation Services and Tradeoffs (InVEST) Urban Flood Risk Mitigation 
Model to successfully model pluvial flooding in urban environments similar to our 
study area in Cincinnati, OH. The InVEST Model is a software package that 
calculates flood runoff and retention using primarily landcover and gridded soil 
datasets. The model is especially well suited for helping users understand pluvial 
flooding, which is often more difficult to capture via radar, as these types of flood 
events tend be very localized and to happen during a very short duration (Ochoa-
Rodriguez et al., 2013). Another flood methodology, the BlueSpot Model, also 
known as the Arc-Malstrøm model, is a series of tools that allow the user to 
identify depressions in elevation in which water may pool during a precipitation 
event. The BlueSpot Model is particularly useful for identifying developed areas 
and specific buildings that may be susceptible to damage during a flooding event, 
as large blue spots can indicate where there is likely to be large amounts of water 
accumulation.  

2.3 Study Area and Period 
The study area is Trumbull County and Mahoning County, Ohio, which encompass 
the cities of Warren and Youngstown, respectively (Figure 1). These two counties 
are in northeastern Ohio, along the Pennsylvania border. The study period extends 
from January 2017 to December 2022. For use in the InVEST model and BlueSpot 
model, the team created a watershed boundary that encompassed all of Trumbull 
and Mahoning counties, using the HUC-12 basin level classification (Figure 2).
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     Fi
gure 1. The study area of Trumbull
and Mahoning counties. The inset

map highlights the counties' location
in Ohio alongside the border of

Pennsylvania.

Figure 2. The selected sub
watersheds are at the HUC 12

level and encompass the
Trumbull and Mahoning counties

study area.

2.2 Project Partners & Objectives 
The NASA DEVELOP Langley team partnered with the Environmental 
Collaborative of Ohio (ECO), Eastgate Regional Council of Governments, Healthy 
Community Partnership Mahoning Valley, and City of Warren, Water Pollution 
Control Department, to analyze social vulnerability of flooding in the cities of 
Youngstown and Warren, Ohio. The primary project collaborator, ECO, is a 
multidisciplinary environmental collaborative that works to solve complex 
environmental problems by partnering with communities across Ohio. One of the 
ways they address this is by implementing preventative flood mitigation measures 
such as removing existing aging dams and adding green infrastructure solutions, 
including rain gardens, permeable pavement, and natural play spaces, and 
gathering areas. Eastgate Regional Council of Governments is an association of 
local governments working on restoring the Mahoning River to its pre-industrial 
state through removing dams along the river, and is also interested in increasing 
green spaces and green infrastructure. Healthy Community Partnership Mahoning 
Valley is a collaboration of organizations that work with community partners to 
improve the health and social determinants of health for its residents and a key 
tenet of this mission is through making sure residents have access to healthy 
greenspaces and safe transportation. 

We created runoff and runoff retention maps as well as a tree canopy cover map 
within the study area of Mahonning and Trumbull Counties. For their ongoing 
flood mitigation initiative, ECO and the City of Warren will be able to use the flood 
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susceptibility map product to identify neighborhoods of high priority. These 
analyses will help support the ongoing water resource management initiative and 
provide important results from Earth observations that our partners currently do 
not have.

3. Methodology
3.1 Data Acquisition 
3.1.1 InVEST Inputs
The InVEST Urban Flood Mitigation model requires several inputs including a 
watershed vector, a rainfall depth value for each run of the model (mm/24hr), a 
soil hydrological group classification raster, a land cover raster, and a biophysical 
table showing curve values that correspond to the soil types and land cover 
classes. The watershed vector was acquired from the Unites States Geological 
Survey (USGS) Watershed Boundary Dataset (WBD). We created a raster dataset 
of hydrologic soil groups, which are a measure of water infiltration and runoff 
potential, using a 10m resolution raster and tabular soil data from the United 
States Department of Agriculture (USDA) Gridded Soil Survey Geographic 
(gSSURGO). We collected this data from the USDA Natural Resources 
Conservation Service (NRCS) Geospatial Data Gateway. We created a biophysical 
table containing runoff curve numbers based on each hydrologic soil group for 
each United States Geological Survey (USGS) National Land Cover Dataset 
(NLCD) land use class. This methodology was based off the Soil Conservation 
Service (SCS) curve number method, which is used to model surface runoff from 
precipitation based on the relationship between rainfall and ground conditions 
(Appendix 4, USDA, 2009). We selected three values for rainfall depth in 24 hours 
for three runs of the model from the Hydrometeorological Design Studies Center. 
These values are the point precipitation frequency estimates in a 24-hour duration 
for a 1-year, 10-year, and 1000-year rainfall event. The selected point precipitation 
frequency estimates are 2.47 in, 3.36 in, and 6.91 in, respectively. We collected 
this data from The National Oceanic and Atmospheric Administration's (NOAA) 
Hydrometeorological Design Studies Center, from the Precipitation Frequency 
Data Server. We obtained the land use land cover (LULC) raster from the 2019 
NLCD.

3.1.2 Tree Canopy Coverage
 We used PlanetScope imagery as the input for a supervised land cover 
classification for the land class of interest which was canopy cover. The spatial 
resolution of the imagery was three meters and consisted of eight bands. The 
imagery was captured from the month of June 2022, covering the Mahoning and 
Trumbull counties (Table 1). National Agriculture Imagery Program (NAIP) data 
was acquired for the accuracy assessment of the supervised classification. NLCD 
landcover data from 2019 was also acquired to compare with the classification 
output. 

3.1.3 Pluvial Flood Pooling
For the Blue Spot Model, we used a ten-meter resolution digital elevation model 
(DEM) from the USGS of Warren and Mahoning counties. This model allows us to 
locate impervious surfaces based on elevation within the area of study and 
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understand how and where water would accumulate during a pluvial flooding 
event. For the flood vulnerability map, we retrieved a census block group polygon 
shapefile and social vulnerability index data from the Centers for Disease Control's
Geospatial Research, Analysis, and Services Program 2018 data.

3.1.4 Other Data
The data for the flood vulnerability map were acquired from Center for Disease 
Control’s Social Vulnerability Index, which included US census block group 
shapefiles and social vulnerability data. We extracted daily precipitation data from 
the Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrieval 
GPM IMERG using both Google Earth Engine (GEE) and the Earthdata portal 
(Table 1). This precipitation data was retrieved as a companion to the InVEST 
Urban Flood Mitigation Model to show the spatial variability of precipitation in the 
study area. 

Table 1
Description of Earth observations used in data processing
Platfor

m
Paramet

er Dates Purpose Source Resolution 

GPM
IMERG

Daily
calibrate

d
precipitat

ion 

January
2017 –

Novemb
er 2019

Precipitation
reference data
for the InVEST

input

NASA GES DISC
at NASA

Goddard Space
Flight Center

10 km x 10
km 

Planet
Scope

Surface
reflectan

ce 
June
2022

Used to create
high resolution

tree canopy
coverage maps

PlanetLabs PBC 3 m per
pixel

3.2 Data Processing
3.2.1 InVEST Inputs
For the InVEST model, we created a watershed vector from the National 
Hydrography Dataset (USGS) by selecting the Hydrologic Unit Code (HUC) level 
12 sub-watersheds that encompass the entire study area of Mahoning and 
Trumbull counties. We clipped the LULC raster and soil hydrologic group raster to 
the watershed vector. We then reclassified the soil hydrologic groups into A, B, C, 
and D categories based on different infiltrations rates (USDA, 2009). We assigned 
intermediate soil types of A/D, B/D, and C/D as type D, in accordance with the 
USDA National Engineering Handbook Chapter 7 (USDA, 2009). We created a 
biophysical table that associated the soil hydrological groups and the LULC types 
with a runoff curve number, based on the Natural Resources Conservation Service 
(NRCS) Soil Survey Geographic Database (SSURGO, USDA, 2022).  

3.2.2 Tree Canopy 
We clipped the 3-meter resolution PlanetScope imagery to the extent of the 
Warren and Trumbull County boundaries. We filtered the imagery to remove cloud 
cover when possible. We then mosaiced the raster imagery and projected it to the 
State Plane Ohio North coordinate system. Lastly, we classified the mosaiced 
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image through a supervised classification method, where training points were 
made to delineate each land class. A pixel-based classification was used along with 
the Support Vector Machine classification approach.

3.2.3 Blue Spot 
The Blue Spot model, also known as the Arc-Malstrøm model was created from a 
digital elevation model from the USGS as well as vector layers depicting building 
footprints and streams within the study area. These layers were then used as 
inputs to run a series of geoprocessing tools which created watershed basins, 
building digital terrain models, and flowline outputs. Using these outputs, we were 
then able to identify areas within Trumbull and Mahoning counties that are 
susceptible pluvial flooding, and the possible depth of water accumulation based 
on the outputs of the ‘identify bluespot features’ tool. These processes allowed us 
to conduct analysis to help inform risk mitigation policy. 

3.2.4 Other Data 
Utilizing GEE, GPM IMERG data were spatially averaged over the study area to 
generate a chart of monthly aggregated precipitation values across Trumbull and 
Mahoning Counties during 2017 to 2019. We identified a major precipitation event 
with large variation in precipitation amounts across the study area from 
September 8th – 10th, 2018. We then mapped these three days of precipitation in 
ArcGIS Pro to visualize the spatial distribution of precipitation totals across the 
study area (Figure A). 

3.3 Data Analysis
3.3.1 InVEST
To validate the rainfall values used as inputs for the InVEST model, we used 
aggregated precipitation values from GPM IMERG to assess the variability of 
rainfall across the study area. Figure 3 below shows pixel values of rainfall amount
over the study area from 2018. 

Figure 3. Spatially averaged, monthly aggregated precipitation in Trumbull and
Mahoning counties  

    
3.3.2 Tree Canopy Coverage

6



To look at how canopy cover compares across different regions of the study area, 
we produced an aggregated tree canopy map for each census block group. The 
Summarize Within tool was used to calculate the area of canopy cover in each 
block group. We then divided the area of canopy cover by the area of its block 
group, producing the final percentage value for each boundary. Additionally, to 
validate the original canopy cover classification, an accuracy assessment was 
conducted by placing 50 random points for each of the two classes, tree cover or 
no tree cover. The reference imagery used was NAIP, which has a higher 
resolution than the PlanetScope imagery used for the classification. The outcome 
of the assessment was 94% accuracy for the tree canopy map.

3.3.3 Blue Spot
In order to assess which locations within the study area are most susceptible to 
flooding damage, the team used the outputs of the Arc-Malstrøm model to find 
areas with large amounts of overlap between where water accumulates and areas 
that have high levels of social vulnerability. These areas include portions of 
Youngstown and Warren that are adjacent to the Mahoning River.  

3.3.4 Environmental Justice Impacts
3.3.4.1 Flood Vulnerability Bivariate Analysis
For comparing the intersection between flood susceptibility and social 
vulnerability, we produced a bivariate map comparing surface runoff amount with 
the Social Vulnerability Index (Centers for Disease Control and Prevention). This 
analysis was conducted using the Zonal Statistics tool in ArcGIS Pro to calculate 
the mean surface runoff value for each census block group. This was then added to
the attribute table of the Social Vulnerability Index using a table join with the 
census block groups FIPS attribute. Lastly, bivariate symbology was used to depict
the intersection of surface runoff amount and social vulnerability.

3.3.4.2 Tree Canopy Equity Bivariate Analysis
We generated a tree canopy equity map to compare the Social Vulnerability Index 
to percent tree canopy cover by block group. This analysis was conducted using 
the Zonal Statistics tool in ArcGIS Pro to calculate the percent tree canopy cover 
by census block group. This was then added to the attribute table of the Social 
Vulnerability Index using a table join with the census block groups FIPS attribute. 
Lastly, bivariate symbology was used to depict the intersection of tree canopy 
cover and social vulnerability.

  
4. Results & Discussion
4.1. InVEST Results 
To understand flood susceptibility at different levels of intensity, we used storm 
precipitation data for a 1-year, 10-year, and 1000-year storm. For the 1-year storm,
the areas directly surrounding the cities of Youngstown and Warren were modeled 
to have the highest surface runoff levels, reaching 2.44 inches (Figure 4). The 
eastern and western boundaries of watershed have the highest runoff retention, up
to 2825 ft3, likely due to the decrease in urban development in areas further away 
from the two cities (Figure 4).
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Fi
gure 4. Modeled surface runoff and runoff retention for a 1-year storm of 2.47

inches in 24 hours.

For the 10-year storm, surface runoff gets significantly worse across the county, 
illustrated in the abundance of darker blue tones across the entire watershed 
(Figure 5). Runoff retention increases in amount, but decreases in concentration 
along the scale, indicating that the land and soil cannot keep up with the 
increasing surface runoff (Figure 5).

F
igure 5. Modeled surface runoff and runoff retention for a 10-year storm of 3.36

inches in 24 hours.

For the 1000-year storm, the trend continues, with high levels of surface runoff 
across the entire watershed, reaching a high of 6.98 inches (Figure 6). The 
majority of land is represented in values on the second half of the scale, from 3.43 
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inches to 6.89 inches (Figure 6). Although the runoff amount increases for the 
1000-year storm, the land types are primarily represented in the lower part of the 
scale from 0 – 3673 ft3 (Figure 6). The runoff retention map is lighter because land 
and soil type are unable to infiltrate water at higher storm levels. All three outputs 
show similar spatial patterns of runoff and retention due to the InVEST model 
inputs of land use and land cover type and soil hydrological group remaining the 
same. The only input that changes is the rainfall amount, expressed in the 
increasing intensity of output runoff and retention values. The outputs of the 
InVEST model illustrated that the areas around Youngstown and Warren will 
experience high surface runoff and low runoff retention during storm events. The 
highly developed and impervious land cover in these areas contribute to pluvial 
flooding and should be where flood risk mitigation efforts are focused.

Figure 6. Modeled surface runoff and runoff retention for a 1000-year storm of
6.91 inches in 24 hours.

4.2 Tree Canopy Cover Results 
Figure 7 shows tree canopy cover as of June 2022, where areas in green represent 
canopy cover. Canopy cover is low within the cities of Youngstown and Warren and
starts to increase away from the cities. Outside of the cities, cropland is 
responsible for fragmenting large sections of tree cover, which prevents large 
continuous areas of forests from establishing. At the census block group level 
(Figure 8), the lightest green colors indicate block groups that are of highest 
priority to increase tree canopy cover. These areas are primarily located in and 
around the cities of Youngstown and Warren. The 40% tree canopy percentage 
goal can be applied to many of these block groups with low tree canopy 
percentages (USDA, 2019).
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Figure 7. Tree canopy cover of
Trumble and Mahoning Counties from

June 2022

Figure 8. Percent tree canopy cover for
each census block group.

4.3 Blue Spot Results 
The Bluespot Model outputs illustrate where water will accumulate based on 
elevation within the study area. Based on the model, low-lying areas, as well as 
areas near streams, rivers, major and highways and railroads are particularly 
susceptible to pluvial flooding. Additionally, larger blue spots can be found within 
developed areas in and around Youngstown and Warren. Building footprints are 
outlined in red, and “blue spots,” or areas where rainfall is likely to pool during a 
storm event according to elevation depressions (Figure 9). Based on the model, 
water is most likely to pool in urban areas within Youngstown and Warren and 
their surrounding suburbs and less likely in rural surrounding areas and cropland.
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Figure 9. Results of the Blue Spot model shown at the city- and neighborhood-
scale.

4.4 Environmental Justice Results
4.4.1 Social Vulnerability Bivariate Map
To understand who is most vulnerable during flood disasters, we examined the 
spatial relationship between flood susceptibility and social vulnerability. The 
bivariate analysis results showed 20 census block groups surrounding the cities of 
Youngstown and Warren that have the highest aggregate value of social 
vulnerability and surface runoff amount, putting these areas at the greatest 
vulnerability and risk during flood disasters (Figure 10). It is also apparent in the 
pink colored census block groups that there is a high amount of social vulnerability
in the less urbanized districts on the outskirts of the two counties (Figure 10). 
These are still important areas for intervention as the rain regime changes and 
flood disasters become worse in all parts of the county.  

Figure 10. Bivariate analysis of social vulnerability and surface runoff
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4.4.2 Tree Canopy Equity 
The census block groups in blue represent areas with high social vulnerability and 
low tree canopy cover (Figure 11). There are 10 census block groups that have 
high social vulnerability and low tree canopy cover, in the areas surrounding the 
cities of Youngstown and Warren. This region overlaps with the areas where there 
is high flood vulnerability in Figure 10. Efforts to expand tree canopy coverage 
should begin in these 10 most vulnerable census block groups. 

Figure 11. Bivariate Analysis of social vulnerability and tree canopy cover

4. 2 Limitations, Errors, and Uncertainties 
Our errors and uncertainties included the InVEST Model not considering elevation 
in its model calculation as well as applying uniform rainfall across the study area, 
whereas in real life, rainfall is not always uniform. For the Blue Spot analysis, the 
spatial accuracy of the model is dependent on the quality of the input DEM. The 
Blue Spot model is also unable to account for sewer systems. For tree canopy there
were misclassifications for some pixel values due to the spatial and spectral 
resolution of the imagery. Additionally, the classification model was being used on 
both urban and agricultural areas resulting in a diverse pixel value for the training 
classes, contributing to some error. Lastly, the bivariate social vulnerability map 
uses the scale of the census block level, not the neighborhood level.  

4.3 Future Work
Future research in this area should include running the second component of the 
InVEST Urban Flood Mitigation model to include the building damage economic 
costs. Other InVEST models can be used in research, such as the InVEST Urban 
Stormwater Retention model, which outputs annual stormwater retention volume. 
This would be useful for creating water management masterplans, to understand 
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the capacity of the stormwater system and plan for alternative methods of water 
management. In addition, future work should map past historical tree canopy cover
to calculate canopy change over time, helping cities with planning decisions. 
Lastly, mapping riverine flooding using Sentinel imagery could be used to compare
the effectiveness of FEMA maps and citizen reports.  

5. Conclusions 
This study examined flood susceptibility, flood vulnerability, tree canopy coverage, 
and tree canopy equity in Mahoning and Trumbull counties in northeastern Ohio. 
Flood susceptibility based on infiltration was modeled using the InVEST Urban 
Flood Mitigation model outputs of surface runoff and runoff retention. The 
BlueSpot model was used to illustrate where flooding will pool, based on elevation.
We observed that surface runoff was worst in areas around Youngstown and 
Warren because of urban development and impervious landcover. Runoff retention 
was highest along the eastern and western boundaries of the watershed. In 
addition, rainfall pools mainly in rural and suburban areas surrounding 
Youngstown and Warren towards rivers and streams. When comparing these 
results to social vulnerability, we found that the 20 census block groups 
surrounding Youngstown and Warren have both high values for social vulnerability
and surface runoff, making these high-risk areas during flood disasters. The tree 
canopy coverage results showed that tree canopy is low within the center regions 
of Youngstown and Warren, where there are high levels of urban development. We 
compared tree canopy coverage to social vulnerability and found that there are 10 
census block groups with the highest category of social vulnerability and lowest 
amount of tree canopy coverage. These results are important for our partners to 
use when planning flood mitigation measures by targeting highly vulnerable and 
susceptible areas where increasing adaptation capacity is most important.
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7. Glossary
Earth observations – Satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time.
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Fluvial flooding – flooding caused by a river breaking its banks due to extreme 
rainfall; commonly known as riverine flooding.
InVEST – Integrated Valuation Services and Tradeoffs: a suite of models used to 
visualize and assess the changes in ecosystems influencing natural goods and 
services that sustain human life.
LULC – Land Use Land Cover: the classification of human-related activities and 
land elements on the Earth’s surface.
Pluvial flooding – flooding that occurs when water accumulates due to extreme 
rainfall, independent of a water body; commonly referred to as flash floods.
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9. Appendices
Appendix A

Figure A. This plot shows rainfall variability over the study area from GPM IMERG 
data during a high precipitation event from September 8th through the 9th 2018. 
The study area of Trumbull and Mahoning counties area outlined in bolded black, 
and the state border of Ohio is outlined in a thinner black line. 

16


	1. Abstract
	2. Introduction
	3. Methodology
	5. Conclusions
	6. Acknowledgments
	7. Glossary
	8. References
	9. Appendices

