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Abstract: The NASA System-Wide Safety (SWS) project and its predecessor projects have been 
developing Machine Learning (ML) algorithms for commercial aviation safety for many years. 
These algorithms have been applied to Flight Operations Quality Assurance (FOQA); radar 
track data (e.g., Threaded Track); and safety reports, including Aviation Safety Reporting 
System (ASRS) and Aviation Safety Action Plan (ASAP). SWS is working with partners to get 
access to other data that air carriers provide, such as maintenance data, and has been assisting 
carriers in working with other data, such as Line Operations Safety Audit (LOSA) data, using 
manual methods. However, the project has discussed whether there are other data that are not 
traditionally used in aviation safety analysis that may be useful. This paper discusses four sets 
of data and models that are not traditionally used in aviation safety but that have shown promise 
for such use. In the future, we plan to incorporate such data into ML algorithms to use with data 
that we have used before and determine the additional benefit that is actually achieved under 
different contexts from the inclusion of these non-traditional data sources. 

Introduction 

The NASA SWS project and its predecessor projects have developed several Machine 
Learning algorithms to solve two primary problems---anomaly detection and precursor 
identification. Anomaly detection is used to perform vulnerability discovery---finding 
statistical anomalies, of which some may be safety issues that have not been previously 
identified and characterized in the form of exceedances. Precursor identification looks 
for precursors, that may possibly represent causes, of safety issues (e.g., initiating 
descent late may be a precursor to a high-speed exceedance). For these problems, we 
have worked with FOQA data, radar track data, and safety reports from ASRS and 
ASAP. For assessing human performance and fatigue, SWS has used data from 
wearable sensors and a mobile application designed to assess the user’s fatigue 
(PVT+). However, we hypothesized that there are other data sources that have not 
traditionally been used to assess aviation safety that could turn out to be useful. In 
2018, we briefly explored the potential usefulness of pilot blogs for aviation safety. In 
some preliminary work, we observed spikes in blog posts the day after any incident. We 
were motivated to explore pilot blogs by the thought that their posts could be written in 
response to changes in regulations or procedures, such as to complain about the 
procedures or discuss difficulties in handling the procedures and could therefore be 
predictive of close calls or incidents. 

Based on the preliminary result obtained on pilot blog data, we decided to explore other 
data sources in the context of problems on which we were already working. To that end, 
we describe four threads of work in this report: 

1. The use of ASRS and associated information, together with traditional/objective
data such as SWIM and FOQA, to obtain information beyond what each one
could provide on its own.

2. Work done so far on assessing whether the Boeing Alertness Model (BAM) can
be used to predict flights that are at increased risk for performance issues due to
pilot fatigue. The goal is to make changes to legal operations that reduce the risk
of fatigue while maintaining efficiency.

3. Initial explorations of how to use crowdsourced ADS-B data to assess stability of
flight approach and landing.



4. An example of insights that a human factors expert can provide on an ASAP
report, some key questions about the ASAP Event Review Committee (ERC)
debrief process, and what additional value can be gained from the ASAP reports
and ERC debrief information.

Use of ASRS and Associated Information 

Taken from the ASRS website: “ASRS captures confidential reports, analyzes the 
resulting aviation safety data, and disseminates vital information to the aviation 
community.”1 Reports are submitted anonymously through electronic report submission 
on the website or by mail. Five different report forms are available, depending on the 
role of the submitter.  

The anonymous nature of ASRS assures that details such as tail number, location, 
exact time, and the specifics of the reporter are unavailable. Published databases 
include only descriptions of the chain of events that led to the filing of the safety report, 
which are themselves synopses of the original report. This lack of identifying features 
presents a challenge for joining the data with other traditional data sources, such as 
System Wide Information Management (SWIM). However, the data do present 
information that could be useful for analyzing aviation safety trends. 

Natural Language Processing 

Since the main content of published ASRS reports is prose written by humans, Natural 
Language Processing (NLP) may be used to analyze the reports. The existing ASRS 
categories offer a limited number of classes, such as altitude deviations or aircraft 
equipment problems. The human written free text forms in the reports, though 
unstructured, offer rich descriptions of the event that may not fall ideally within these 
categories. Topic modelling, clustering, and other techniques can provide deeper insight 
beyond the high-level fixed categories available to reporters. To start, a quick analysis 
of co-occurring keywords (e.g. Latent Dirichlet Allocation) might reveal some unique 
topics and risk factors. Word association and stacked embedding models may further 
reveal compound word correlations suggestive of deeper themes present in the data.  
Further insights on risk factors could also be gleaned by generating report embeddings 
(doc2vec2, fasttext3), projecting them into lower dimensional space (UMAP4), and 
clustering (HDBscan5). Becky Hooey, ASRS director, expressed interest in NLP when 
the team discussed it with her. 

1 https://asrs.arc.nasa.gov/index.html 
2 NLP model based on word2vec used for generating numerical representations of documents. 
3 library used for learning word embeddings and text classification 
4 Uniform Manifold Approximation and Projection – a projection technique used for dimension reduction 
5 extension of DBSCAN – clustering algorithm 
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Augmenting with Google Analytics (GA) Data 

Though identifying information is not stored in the ASRS databases, there is 
summarized usage data available through the government’s Google Analytics (GA) 
account (also known as Universal Federated Analytics or Digital Analytics Program 
(DAP)). This data could be invaluable at providing a new independent variable to 
augment the SWIM dataset, as it would present how frequented the ASRS service was 
at any given time. With the right setup, GA extends an application programming 
interface (API) with available Java and Python libraries6. This means it can potentially 
be integrated into another tool, such as Runtime for Airspace Concept Evaluation’s 
(RACE) actor framework. GA data also presents an opportunity for analyzing user-level 
analytics, which would inform whether ASRS reports are primarily filed often by a small 
group of reporters or infrequently by a diverse group of reporters. The data could also 
serve as a proxy for total report counts. 

Statistical Relevance for GA data 

In addition to aggregation and summary statistics, the GA data can be used for 
powering relevant statistical tests, for example, to check for seasonality in reporting. If 
seasonality does not exist, a simple t-test could determine whether there is a significant 
increase in number of safety incidents reported. Conversely, if the data is highly 
seasonal, we could use a Chow breakpoint test7 to determine if there is a change in 
number of safety incidents (breakpoint). Combining GA data with NLP could also yield 
further insights into common failure modes and their incidences over time. 

Analyzing Server Logs 

As a fallback, if GA data turns out to not be usable, we could take advantage of parsing 
and analyzing server logs to generate similar statistics. This is somewhat of a last-ditch 
strategy, as it would be time consuming compared to taking advantage of an existing 
solution. 

Map / Informatics 

There could be value in displaying historical incident information on a map display for 
dispatchers to use. Dispatchers could use this historical information to see what sorts of 
incidents are frequently reported in specific airspace or locations. This display could 
take the form of caution flags, markers, or tooltips that the dispatcher could toggle on 
and off. 

6 https://developers.google.com/analytics/devguides/reporting/core/v4 
7 statistical test for determining change in trend lines at a (hypothesized as significant) a priori determined point in 
time 



Use of Alertness Model for Crew Fatigue Predictions 

Proficient pilot performance is central to the safe operation of an aircraft. However, due 
to the demand for 24-hour aviation operations, long-, and ultra-long-haul flights, pilots 
are often scheduled for extended and irregular work hours, with varying workload 
(Flynn-Evans et al., 2018, Bourgeois-Bougrine et al., 2003, Arsintescu et al., 2020). 
Such operations can reduce pilot performance, introducing a vulnerability in the 
operation that has the potential to interact with other factors to cause an incident or 
accident. There is a need for tools and technology that provide in-time information that 
maximizes safety, while also maintaining efficiency. Such tools must be scalable to be 
effective at the level of the national airspace. They must also enable in-time mitigation 
strategies to reduce risk when identified. 

There have been many studies conducted to identify the causes and consequences of 
pilot performance impairment (Flynn-Evans et al., 2018, Arsintescu et al., 2021, Young, 
2008, Endsley, 1999, Boril et al., 2020, Hitchcock et al., 2010, Honn et al., 2016), but 
passive tools to monitor pilot performance changes remain challenging to implement at 
scale. While it is important to continue to explore objective indicators of pilot 
performance impairment, exploring alternative, non-traditional methods for assessing 
changes in pilot performance during flight operations will allow us to scale up these 
analyses. There are several biomathematical models to predict pilot alertness, fatigue, 
and performance that show promise as tools that could be integrated into broader risk 
assessment tools. For biomathematical models to be useful in risk assessment, they 
must be 1) scalable and 2) they must be validated in operational environments against 
objective data to support their widespread use and integration with other risk factors. 

The mitigations that have typically been employed to counter performance impairment 
in pilots have not allowed for in-time correction during a flight or even within a day. 
Historically, such mitigations have involved duty-hour restrictions or augmentation of 
certain types of flights. While these regulations have been a critical component of risk 
management, the nature of aviation operations still results in some flights where pilots 
experience performance degradation. In addition, some pilot schedules are inefficient, 
with pilots who are eligible for duty sidelined due to sub-optimal scheduling procedures. 

Optimizing pilot schedules to sustain pilot performance, while also maintaining efficiency 
has the potential to not only provide in-time safety information, but also has the potential 
to introduce significant cost savings to airlines. 

This work seeks to achieve three primary aims: 
1. Evaluate whether the Boeing Alertness Model (BAM; [Åkerstedt et al., 2004,

2007])
can be scaled and integrated into flight schedules at the level of all flights that
enter an entire country or region.

2. Validate biomathematical models against objective inflight data.
3. Use the scaled BAM to identify legal operations that are associated with reduced

pilot alertness and elevated inefficiency in order to introduce best practices that
minimize pilot fatigue without sacrificing scheduling efficiency.
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Methods 

Jeppesen has developed a tool (Concert) that uses actual flights to simulate pilot 
schedules based on rules governing work and rest times (e.g., Federal Aviation 
Regulations [FAR, 14 CFR Parts 117, 119, and 121, 2009]) to estimate changes in pilot 
alertness. This tool can be used to identify legal schedules that introduce risk of pilot 
alertness degradation in order to introduce mitigations. 

Files from OAG that track commercial flights are fed into Jeppesen’s pilot scheduling 
software which generates pilot schedules based on the actual flights flown and makes 
alertness predictions using BAM for each pilot and flight. We are then able to observe 
how introducing and taking away constraints impacts alertness/fatigue predictions. More 
specifically, the planned flight timetables currently loaded into the Concert platform 
include all flights that were operated around the world for an entire week (n ≈ 3 million 
flights). We have access to this data for three separate weeks, including one before the 
pandemic and one in 2021. These files are imported to the Jeppesen crew pairing 
software to generate realistic schedules using regional regulations as a guide. These 
schedules are then imported to the Concert platform where BAM is implemented to 
generate biomathematical models of alertness which is all accessible in a separate 
platform (Qlik Sense) that enables quick and user-friendly data visualization and 
analytics. 

This analytics tool contains many variables, from airline-specific information (e.g., 
airline, aircraft types, trips, working periods, departure and arrival destination duty 
duration, etc.) to regional information (e.g., destination and departure traffic density). 
The Qlik platform uses the Karolinska Sleepiness Scale [KSS, Åkerstedt and Gillberg, 
1991] alertness ratings as well as Absolute Fatigue Risk (AFR) which represents the 
likelihood of a fatigue-related incident occurring calculated based on the KSS. This has 
then been averaged to calculate Normalized Fatigue Risk (NFR), which is our primary 
fatigue-related outcome. 

Work in Progress 

We have generated BAM alertness predictions for all of the flights available in the 
database (more than one million flights). We are currently reviewing the schedules and 
predictions to identify anomalies. Preliminary visualization suggests that we can identify 
pilots and flights that are vulnerable to pilot performance impairment. Furthermore, it 
appears that assessing the data in this manner will allow us to identify regions that may 
pose an elevated safety risk due to reduced pilot alertness (Figure 1). 



Figure 1: Map showing average modeled alertness (CAS) by arrival location. Darker, larger red dots show worse predicted 
performance, smaller yellow dots show better predicted performance. 

Figure 2: Scatter plot of average efficiency as a function of fatigue risk for each individual leg under FAR 

We are currently collecting KSS and performance data from short-haul pilots to validate 
against the BAM predictions. We have previously collected KSS and performance data 
from long-haul 
pilots to compare against BAM predictions, and we aim to initiate additional studies for 
this 
purpose in the future (we have experienced delays due to the pandemic). We have 
started to identify flight operations that are both fatigue-inducing and inefficient (Figure 
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2). We aim to segregate the flights that fall in this category in order to determine 
whether the schedules for 
such flights could be changed to improve pilot alertness predictions and also to improve 
efficiency. 
 
 

Crowdsourced ADS-B Data to Estimate Stability of Flight Approach 
and Landing 

 
Stabilized approach criteria have been established to ensure safe approach and 
landing. In particular, the Flight Safety Foundation (FSF) established the following 
criteria for stabilized approach: 
 

• Profile: 
• Only small changes in heading/pitch are required to maintain the correct 

flight path profile.  
• Specific types of approaches are stabilized if they fulfill the following: 

• CAT I ILS: within 1-dot deviation of glide path and localizer. 
• RNAV: within ½-scale deflection of vertical and lateral scales and 

within RNP requirements. 
• LOC/VOR: within 1-dot lateral deviation. 
• Visual: within 2.75 and 3.25 degrees of visual approach path 

indicators and lined up with the runway centerline no later than 300 
ft AGL. 

• Configuration: Aircraft is in the landing configuration (gear and flaps set, speed 
brakes retracted). 

• Energy: 
• Airspeed is stabilized within VREF +10 kt to VREF (without wind 

adjustments). 
• Thrust is stabilized to maintain the target approach airspeed. 
• Sink rate is no greater than 1,000 fpm. 

• General: 
• The stabilized approach gates should be observed. 
• Occasional momentary “overshoots” made necessary by atmospheric 

conditions are acceptable. Frequent or sustained “overshoots” are not. 
 
FOQA data and radar track data can be used to determine whether the stabilized 
approach criteria are being satisfied. However, Automatic Dependent Surveillance-
Broadcast (ADS-B) also can be used for this purpose and has several advantages. In 
particular, ADS-B has wider coverage than radar surveillance and is not proprietary, 
unlike FOQA data. ADS-B is also more accurate than radar track data. There are also 
free crowdsourced repositories of ADS-B data that are available for research. For this 
reason, we decided to investigate the use of ADS-B data and Machine Learning to 
determine whether aircraft satisfy stabilized approach criteria. 
 
ADS-B data is broadcast by aircraft transponder without radar interrogation. Common 
aircraft state parameters included in ADS-B message are aircraft callsign, transponder 
ID, aircraft operational status, position, altitude, track, and groundspeed. The position is 
determined by GPS. The velocity is derived from the GPS position and the inertial 
measurement system on the aircraft. The altitude information includes both barometric 



 

 

altitude and GPS altitude “ADS-B out” equipment is mandated by FAA and Eurocontrol. 
ADS-B data can be captured by widely available inexpensive receivers. 
 
After looking into several sources of ADS-B data (see table below), we decided to 
investigate using OpenSky data. 
 

  
 

In addition to OpenSky data repository being available free for research purposes, 
OpenSky has the advantage of associated software. In particular, there is an open-
source Python library called Traffic that is available under the MIT license. The 
library provides: 
• Download assistance tool for the OpenSky historical data. 
• Functionality to process flight trajectories, including resampling, filtering faulty 

data, projecting, querying, and intersecting with geospatial objects. 
• Exporting facilities to common visualization tools such as Matplotlib or 

Cartopy and Google Earth. 
• The Traffic library is based on three main core classes for handling: aircraft 

trajectories through Flight class, collections of aircraft trajectories through 
Traffic class and airspaces through Airspace class. Flight and Traffic 
classes are wrappers around pandas DataFrame. 

• Additional databases: Airports, Navaids, Aircraft. 
 
We follow the following processing steps to prepare OpenSky data for use in detecting 
unstabilized approach: 

• Download from OpenSky flight trajectories within specified geographic area for 
flights landing at specified airport during specified time period (e.g., day). 

• For each flight: 
• Truncate trajectory to the altitude below 4000 ft. 
• Determine landing runway (using runways/ILS info) and calculate distance 

to threshold. 
• Calculate localizer deviations (contiguous intervals longer than certain 

minimal duration for different altitude ranges). 
• Calculate glideslope deviations. 
• Calculate vertical rate excursions. 
• Calculate flight energy metrics. 
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Upcoming work includes testing the pipeline and testing ML algorithms with these data 
to determine how much more effective ADS-B data is at detecting unstabilized 
approach. 
 
 

Assessment of additional data from Aviation Safety Action Program 
(ASAP) Event Review Committee (ERC) beyond ASAP Reports 

 
The goal of this work was to assess the benefits gained from having a non-airline 
human factors expert (i.e., NASA) observe an Aviation Safety Action Program (ASAP) 
Event Review Committee (ERC) debrief of the crew that submitted an ASAP report.  A 
second goal was to assess the potential benefit of review and annotation of an ASAP 
report by a non-airline human factors expert. 
 
Part of the motivation of having a human factors expert perform a debrief and report 
annotation is due to problems inherent with ASAP reports. One problem is that each 
report is a retrospective reconstruction of the events---every time the reporter replays 
the event (re-remember), it will change. Our mind creates stories to lend coherence to 
our experience; we are sense-making machines; therefore, the report may never be 
completely accurate. Additionally, the report normally describes the reporter’s 
observations, which may be symptoms of general systemic issues. A human factors 
expert can identify these underlying issues/causes that may be common across multiple 
events even though they may have been written up differently in the different reports. 
Such identification of causes can contribute to improved training, procedures, LOSA, 
FOQA, and other aspects of aviation operations. 
 
As part of this effort, three NASA human factors experts observed two ERC debriefs 
each, for a total of six debriefs and associated reports. As such, this is preliminary work 
and there is much potential for future work. Performing and observing additional 
debriefs is an obvious task to be done that is likely to yield significant additional insights. 
However, a process to handle the information that is collected, and identify and 
calculate relevant metrics is needed. A systematic process to assess these results to 
determine where within carrier operations the learned information can provide benefit 
and how to properly change those aspects of operations are also needed. 
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