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Abstract 41 

 Ecosystems in the North American Arctic-Boreal Zone (ABZ) experience a diverse 42 

set of disturbances associated with wildfire, permafrost dynamics, geomorphic processes, 43 

insect outbreaks and pathogens, extreme weather events, and human activity. Climate 44 
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warming in the ABZ is occurring at over twice the rate of the global average, and as a result 45 

the extent, frequency, and severity of these disturbances are increasing rapidly. Disturbances 46 

in the ABZ span a wide gradient of spatiotemporal scales and have varying impacts on 47 

ecosystem properties and function. However, many ABZ disturbances are relatively 48 

understudied and have different sensitivities to climate and trajectories of recovery, resulting 49 

in considerable uncertainty in the impacts of climate warming and human land use on ABZ 50 

vegetation dynamics and in the interactions between disturbance types. Here we review the 51 

current knowledge of ABZ disturbances and their precursors, ecosystem impacts, temporal 52 

frequencies, spatial extents, and severity. We also summarize current knowledge of 53 

interactions and feedbacks among ABZ disturbances and characterize typical trajectories of 54 

vegetation loss and recovery in response to ecosystem disturbance using satellite time-series. 55 

We conclude with a summary of critical data and knowledge gaps and identify priorities for 56 

future study. 57 

Keywords: high-latitude, vegetation, boreal forest, arctic tundra, climate change, disturbance, 58 

permafrost 59 

 1. Introduction 60 

 In the North American Arctic-Boreal Zone (ABZ), climate change and human activity 61 

are rapidly and extensively reshaping vegetation dynamics via a range of disturbance 62 

processes, resulting in considerable uncertainty in the fate of these ecosystems (Shaw et al 63 

2021). Many disturbances (i.e., an event that alters ecosystem composition, structure, 64 

function, or the physical environment, Pickett and White 1985) trigger a transient reduction 65 

and gradual recovery of vegetation cover and ecosystem function (Liu et al 2011, Li et al 66 

2021), although there is high variability in the nature and pace of these changes depending on 67 

the type and severity of disturbance (Jorgenson et al 2015, Gaglioti et al 2021) (Fig. 1). 68 

Climate warming is occurring in the ABZ at more than twice the global average rate (Price et 69 
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al 2013, Smith et al 2019, Chylek et al 2022, Rantanen et al 2022), and many disturbance 70 

processes are highly sensitive to climate. Consequently, the impact of climate change via 71 

disturbance on ABZ vegetation dynamics is expected to increase over the next century (Price 72 

et al 2013, Gauthier et al 2015, Smith et al 2019, Bush and Lemmen 2019).  73 

 74 

 Disturbance-driven loss and subsequent recovery of vegetation partly explain 75 

widespread trends in satellite-observed vegetation indices (i.e., “greening” and “browning”) 76 

within the North American ABZ (Wang and Friedl 2019, Sulla-Menashe et al 2018, Ju and 77 

Figure 1. Examples of disturbances and successional responses in North American Arctic 

and boreal forest ecosystems. a) Burned (2020) upland black spruce forest in early 

succession, Interior Alaska; b) spruce beetle infestation in 2016, south-central Alaska, credit 

Bruce Cook; c) non-sorted circles arising from cryoturbation, Alaska North Slope; d) seismic 

line disturbance cutting across a treed peatland, northern Alberta, Canada; e)  thermokarst 

after ice-wedge degradation, Alaska North Slope; f) suspended oil and gas well, drilled in 

2006, north-eastern British Columbia, Canada; g) recently drained lake basin in early 

succession, Alaska North Slope; h) thaw slump, Old Crow Flats, Yukon, Canada. 
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Masek 2016). Large-scale greening trends across the ABZ are complex (Myers-Smith et al 78 

2020), but have generally been interpreted as an increase in ecosystem productivity driven by 79 

climatic warming and recovery from disturbance (Bhatt et al 2010, Berner et al 2020). 80 

Meanwhile, areas of browning are generally attributed to vegetation stress from disturbances 81 

such as fires, insect outbreaks, warming-induced drought, and increased surface water 82 

associated with permafrost degradation (Goetz et al 2005, Berner and Goetz 2022, Verbyla 83 

2011, Shur and Jorgenson 2007). Many of these disturbances are increasing in their extent, 84 

frequency, and/or severity because of climatic changes and increasing anthropogenic 85 

pressures (Jorgenson et al 2006, Baltzer et al 2021). Understanding the net impact of climate 86 

change and its effects on different disturbance regimes is critical for forecasting future ABZ 87 

composition, dynamics, ecosystem services, and potential management responses. 88 

 As in many other ecosystems, fires have dramatic and extensive impacts on 89 

vegetation cover and carbon dynamics in the ABZ, and exceptional warming in this region is 90 

intensifying fire regimes (Soja et al 2007, Veraverbeke et al 2017, Kasischke et al 2010, 91 

Whitman et al 2022, McCarty et al 2021). However, the unique characteristics of ABZ 92 

ecosystems result in additional types of disturbances that lack analogs in tropical and 93 

temperate ecosystems. The wide extent of permafrost (i.e., perennially frozen ground; Gruber 94 

2012) that underlies large parts of the northern high-latitudes makes these ecosystems 95 

vulnerable to a unique set of other disturbances (Shur and Jorgenson 2007). For example, 96 

thawing permafrost causes ground surface subsidence that can induce persistent changes in 97 

hydrology, vegetation, and microtopography in ABZ landscapes with high ground-ice 98 

contents (Jones et al 2015, Farquharson et al 2019, Swanson 2021, Carpino et al 2018, 99 

Grosse et al 2011). Exceptional warming in the ABZ also makes high-latitude forests 100 

vulnerable to increasing incidences of drought and insect outbreaks (Volney and Fleming 101 

2000, Hogg et al 2008, Kurz et al 2008). Natural resource development activities such as oil 102 
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and gas well exploration and production and logging introduce additional complexity to 103 

disturbance regimes (Gauthier et al 2015, Shaw et al 2021) in various parts of the region 104 

(Williams et al 2021, 2013, Raynolds et al 2014, Pasher et al 2013). 105 

 Fire is a key driver of the carbon balance of boreal ecosystems (Harden et al 2000, 106 

Bond-Lamberty et al 2007, Wang et al 2021), but the relative importance and impacts of 107 

other disturbance types have been less studied (Shaw et al 2021). Thus, it remains unclear 108 

how much these other disturbance types and their interactions (Buma 2015) impact ABZ 109 

ecosystems. In this review, we summarize the existing state of knowledge of major 110 

disturbance types in North American ABZ ecosystems and use case studies of Landsat 111 

satellite-derived time series of vegetation greenness and moisture indices to illustrate the 112 

distinct spatiotemporal characteristics of vegetation loss and recovery associated with each 113 

disturbance type. Additionally, we review interactions between disturbances, which are likely 114 

to intensify in the future (Buma 2015, Seidl et al 2017).  115 

 In this review, we focus on “pulse” disturbances, characterized as generally abrupt, 116 

relatively discrete events that rapidly alter ecosystem structure, resources, or the physical 117 

environment (Pickett and White 1985). We do not address “press” disturbances which impact 118 

ecosystems slowly over decades and centuries (e.g., long-term warming; Grosse et al 2011). 119 

We divide major ABZ disturbances into several categories: 1) fire; 2) insects and pathogens; 120 

3) permafrost-related disturbances; 4) anthropogenic disturbances; 5) weather-related 121 

disturbances; 6) riverine processes; and 7) ungulate and grazer activity. These disturbance 122 

types are not meant to be an exhaustive list of all known disturbances within the North 123 

American ABZ, but rather a characterization and discussion of the major climate-sensitive 124 

and anthropogenic disturbances within the region that impact vegetation processes. We do 125 

not, for example, include coastal erosion, alpine landscapes (e.g., avalanches), or localized 126 

geologic settings (e.g., volcanism).  127 
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 By considering a range of major disturbance types, we seek to answer a set of 128 

interrelated questions: What are the distinct causes of each disturbance type, and how are 129 

disturbance regimes (i.e., extent, frequency, and severity) sensitive to climate change and 130 

human activity? How does each disturbance type impact vegetation composition, structure, 131 

and recovery? How do different disturbance regimes interact with each other? In doing so, 132 

we aim to provide context, identify data and knowledge gaps, and lay the groundwork for 133 

future studies that analyze how the full suite of disturbance agents are reshaping the 134 

vegetation dynamics of ABZ ecosystems. 135 

2. Methods 136 

 This paper discusses the background, outstanding science questions, and data relevant 137 

to each of the seven broad disturbance categories. We also introduce case studies showcasing 138 

typical vegetation loss and recovery in response to select disturbances evident from remote 139 

sensing data. 140 

2.1 Literature survey 141 

Articles referenced in the background (Section 3), spatiotemporal characteristics 142 

(Section 4), and interactions (Section 5) sections were selected based on a thematic literature 143 

review as well as our own bibliographic lists derived from our active research in these fields. 144 

We searched the peer-reviewed literature using terms related to each disturbance category 145 

and type and biome (e.g., ‘boreal forest windthrow’, ‘cryoturbation’, ‘ice-jam flooding’). We 146 

emphasized recent (since 2014) papers and studies published on the North American boreal 147 

and Arctic ecosystems; however, we included studies from Eurasia to supplement topics 148 

where North American studies are lacking and to expand the global relevancy of this review. 149 

2.2 Case studies and datasets 150 
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To evaluate patterns of vegetation loss and recovery after different disturbance types 151 

we compiled a set of locations (n = 397) of known disturbances within the North American 152 

ABZ to serve as case studies (Fig. 2). We compiled locations of known disturbance 153 

occurrences based on expert knowledge and field work of the authors as well as published 154 

locations in the literature and existing disturbance databases (Table S1). For each case study, 155 

we analyzed vegetation greenness and moisture changes during and following disturbance 156 

using time series of surface reflectance data from the Landsat series of satellites (1985-2020; 157 

Wulder et al 2019).  158 

159 

 For case study locations derived from individual latitude and longitude points, we 160 

extracted Landsat time series within a 100-m buffer surrounding each site to mitigate issues 161 

with geospatial accuracy of the case study locations. For case study locations derived from 162 

Figure 2. Locations of case study sites for disturbance types in the North American ABZ. 

Locations for spruce budworm and extreme drought provided by, and is the property of, 

the Forest Management Division, Department of Environment and Natural Resources, 

Government of the Northwest Territories.  
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polygons, polygons were first filtered to only include “severe” impacts (if known), as well as 163 

disturbances that occurred between 2001 and 2016 to ensure adequate temporal coverage of 164 

pre- and post-disturbance vegetation greenness and wetness. The selected polygons were then 165 

randomly sampled (n = 25 per disturbance type), and 30 m Landsat pixels were randomly 166 

selected within each sampled polygon (n = 50 per polygon). For fire disturbance, in order to 167 

ensure broad coverage of diverse ecological conditions present within the North American 168 

ABZ, ten random points were sampled within each of five random fire polygons per Level II 169 

Ecoregion (US EPA 2015). 170 

2.3 Case study analysis 171 

 We calculated spectral indices representing land surface greenness (the Normalized 172 

Difference Vegetation Index - NDVI; Rouse et al 1974, Tucker 1979) and wetness (the 173 

Normalized Difference Moisture Index - NDMI; Gao 1996). NDVI is a widely used index 174 

that is sensitive to leaf chlorophyll content and is generally correlated with vegetative cover 175 

and photosynthetic productivity. However, NDVI is less sensitive to changes in the state of 176 

evergreen forests (Jin et al 2017), which are the dominant forest type in the ABZ (Gauthier et 177 

al 2015). NDMI is an index that is sensitive to leaf water content and may reflect more subtle 178 

changes in vegetative stress in evergreen trees (Goulden and Bales 2019). While more 179 

specific and fine-scale indices may lend more information about, for example, species 180 

composition changes following disturbance, the use of NDVI and NDMI allows for broad 181 

coverage of the impact of different disturbances on vegetative cover and condition. Changes 182 

in NDVI and NDMI thus are interpreted as vegetation loss (e.g., declining NDVI or NDMI) 183 

and recovery (e.g., increasing NDVI or NDMI) in response to disturbance. 184 

We developed time series of annual summer maximum greenness and wetness for the 185 

case study sites (Table S1). For each sampled location, we extracted all available Landsat 5, 186 

7, and 8 surface reflectance data acquired each summer (day-of-year 151-242; May 31 – 187 
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August 31) from 1985 to 2020 for a total of ~11,000,000 multi-band measurements tallied 188 

across all pixels. These data were retrieved from the Landsat Collection 2 surface reflectance 189 

dataset (USGS 2021, Masek et al 2006), accessed using Google Earth Engine (GEE; Gorelick 190 

et al 2017) and functions provided by the lsatTS package (Berner et al 2021, Berner et al in 191 

review) in R (R Core Team 2021). We quality-screened these surface reflectance 192 

measurements based on pixel- and scene-criteria (i.e., scene-wide cloud cover < 80%, 193 

geometric uncertainty < 30 m, and solar zenith angle < 60 degrees) and further cross-194 

calibrated them among Landsat sensors using the lsatTS package. Cross-sensor calibration is 195 

necessary to avoid spurious trends in NDVI and other spectral indices that arise from 196 

systematic differences in spectral bands among Landsat sensors (Sulla-Menashe et al 2016, 197 

Berner et al 2021). We calculated annual summer maximum surface greenness (NDVI) and 198 

wetness (NDMI) at each sampled location as the maximum summer NDVI or NDMI. 199 

Overall, we developed 14,709 annual time series of surface greenness and wetness for 200 

recently disturbed pixels across the study domain (Table S1).    201 

 Because some case study locations were approximate or derived from large aerial 202 

survey polygons, not all pixels were located over an actual disturbed area. Therefore, to focus 203 

our analyses on pixels that captured disturbance events, we filtered pixels to those that 204 

included detectable disturbance impacts on NDVI and NDMI within five years of the known 205 

disturbance event, except for cryoturbation and ice-wedge degradation, which occur within 206 

landscape mosaics and do not correspond to a single “event”. Aside from cryoturbation and 207 

ice-wedge degradation, disturbances were identified using visual interpretation of each time 208 

series and via the Breaks For Additive Season and Trend (BFAST) algorithm in the bfast 209 

package (Verbesselt and Herold 2012) in R (Fig. S1). BFAST iteratively estimates abrupt 210 

changes (or “breakpoints”) within time series and can be used to analyze seasonal and annual 211 
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time series of satellite-observed reflectance to detect statistically significant temporal changes 212 

(Verbesselt and Herold 2012, Verbesselt et al 2010). 213 

 214 

Following breakpoint detection, each time series with detected breakpoints was 215 

smoothed using the R function smooth (Tukey 1977), and inflection points were identified in 216 

the smoothed time series. The series was first smoothed to identify “true” changes in the 217 

vegetation index trajectory, rather than those simply due to noise or interannual variability. 218 

The inflection point with the minimum (or maximum, for NDVI of lake drainage) spectral 219 

index value was identified as the year of full effect from the disturbance on land surface 220 

greenness and wetness. The time series before the breakpoint and following any breakpoints 221 

detected earlier in the series (e.g., between 1994 and 2014 in Fig. S1) was used to calculate 222 

an average pre-disturbance mean NDVI and NDMI. Each time series was then normalized by 223 

Figure 3. Example normalized maximum growing season NDVI for a site in 

the Northwest Territories, Canada (67.023º, -123.348º), where the NDVI is 

normalized to the pre-disturbance mean. A fire occurred in 2014 (dashed 

line). The red dot corresponds to the year of maximum impact of the fire on 

NDVI.  
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its pre-disturbance mean (NDVInorm = NDVI/NDVImean, Fig. 3). We normalized the time 224 

series to better compare within and between disturbances, which occurred in different biomes 225 

and bioclimatic regions. 226 

 These normalized time series were used as our case study trajectories to evaluate the 227 

impact of each disturbance on vegetation as well as the magnitude, direction, and speed of 228 

recovery following each disturbance (see Section 3). 229 

2.4. Disturbance characteristics and interactions 230 

 The major ABZ disturbance types have distinct spatial, temporal, and severity 231 

characteristics. To compare the spatial and temporal dynamics among disturbances, we 232 

developed several spatiotemporal metrics. Spatial grain describes the average extent of an 233 

individual disturbance event (e.g., for a wildfire it would be the size of a polygon associated 234 

with the outer perimeter of the burn scar, but for insect infestation it might be a single tree or 235 

forest stand). Return interval refers to the average length of time for the disturbance to 236 

reoccur in the same location. Occurrence timeline describes the average length of time a 237 

disturbance event lasts from initiation to completion (e.g., for wildfire: from ignition to 238 

extinction). Recovery timeline refers to the average length of time it takes for the 239 

vegetation/ecosystem to return to pre-disturbance conditions. Finally, intensity/impact refers 240 

to the average effect on vegetation and the ecosystem, from vegetation stress to complete 241 

vegetation mortality. We determined qualitative values for each of these categories and 242 

disturbance types using scientific literature and expert knowledge (see Section 4). The 243 

metrics were converted into relative numerical scales (Table S2) and applied to a principal 244 

component analysis (PCA) to understand how the different metrics correlate with one another 245 

across the different disturbance types. The PCA was conducted using the R function prcomp, 246 

with the categorical metrics scaled and centered within the PCA. 247 
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 The degree to which different disturbance types interact with each other is complex 248 

and not well understood, and critical feedbacks between disturbances make their potential 249 

impacts difficult to analyze and predict. Therefore, we developed a disturbance interaction 250 

matrix based on our literature survey and expert knowledge. This matrix describes the impact 251 

(strong/weak positive, strong/weak negative, both, none, or unknown) of a “driver” 252 

disturbance on potential subsequent “response” disturbances (see Section 5). We distinguish 253 

“strong” and “weak” interactions by their relative effect on ecosystem structure and function, 254 

the ubiquity and likelihood of this impact occurring, and the ability of the ecosystem to resist 255 

or recover from subsequent response disturbances. For example, we classify the impact of 256 

boreal windthrow on subsequent insect and pathogen disturbance as “strong positive” (Fig. 257 

20), because this interaction is a well-documented and impactful phenomenon within forested 258 

ecosystems (e.g., Malmstrom and Raffa 2000). In contrast, we classify the impact of logging 259 

on subsequent windthrow events as “weak positive” (Fig. 20), because while forest 260 

fragmentation, such as that created by forest harvest, does impart higher susceptibility to 261 

windthrow (Peterson 2004, Meilby et al 2001), the low probability of windthrow in boreal 262 

North America (Bouchard et al 2009) reduces the overall impact of this interaction. See 263 

Section 5 for a further discussion of these interactions. 264 

3. Disturbance agents in North American Arctic and boreal ecosystems 265 

3.1 Fire 266 

3.1.1 Background  267 

 Wildfire is the most well-studied disturbance agent in forests of boreal North 268 

America, as fires have substantial impacts on human settlements (Kent 2017), subsistence 269 

resources (Nelson et al 2008), and air quality (Trainor et al 2009), in addition to climate 270 

(Randerson et al 2006, Potter et al 2020) and vegetation (Rogers et al 2013, Foster et al 271 
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2022). Fires in boreal North America are generally high-intensity crown fires that kill most 272 

affected trees and consume substantial belowground carbon stocks, in contrast to those in 273 

boreal Eurasia or more temperate ecosystems which include a high fraction of lower-severity 274 

surface fires that result in relatively low tree mortality (Stocks and Kaufmann 1997, de Groot 275 

et al 2013, Rogers et al 2015). Fire is less common in Arctic tundra but has been increasing 276 

in frequency and severity (Hu et al 2015, McCarty et al 2021), especially in the Beringian 277 

region (Rocha et al 2012, Gaglioti et al 2021, Racine et al 1985, Masrur et al 2018). Recent 278 

increases in boreal and Arctic wildfire activity may indicate fundamental shifts in the causes 279 

and impacts of the underlying fire regime, including overwintering fires that smolder during 280 

winter months and reappear the following year (Scholten et al 2021, Xu et al 2022), 281 

increased occurrence of lightning ignitions (Veraverbeke et al 2017, Chen et al 2021c), and 282 

long-term shifts in forest composition following these fires (Baltzer et al 2021, Mack et al 283 

2021). Forest fire records throughout the North American boreal region show an increase in 284 

annual burned area and number of large fires since the mid-20th century (Hanes et al 2019, 285 

Calef et al 2015, Walker et al 2020b). The majority of projections of future fire regimes 286 

suggest increasing fire activity across boreal North America over the 21st century due to 287 

climate change (Bachelet et al 2005, Amiro et al 2009, Hope et al 2016, Veraverbeke et al 288 

2017, Chen et al 2016, Wang et al 2020, Phillips et al 2022). 289 

 Precursors to fire in boreal ecosystems are well understood - an adequate amount of 290 

fuel and fuel dryness are required for fires to ignite and spread, in addition to ignition sources 291 

such as lightning strikes and anthropogenic activities (Veraverbeke et al 2017, Archibald et al 292 

2018, Rogers et al 2020). In the boreal zone, fires are generally limited by fuel dryness and 293 

ignition sources because the characteristically deep organic and moss layers provide ample 294 

fuel. Both species composition and litter moisture are influenced by site drainage conditions, 295 

with organic-rich soils dominated by fire-prone and flammable species such as black spruce 296 
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(Picea mariana). Conversely, Jack pine (Pinus banksiana) and less flammable deciduous 297 

species typically occur in well-drained locations with thinner, drier soils (Walker et al 2018, 298 

2020b). 299 

300 

 Lightning strikes ignite most fires in the North American ABZ. Lightning ignitions 301 

have increased since the mid-20th century due to a warmer and more convective atmosphere 302 

(Veraverbeke et al 2017, Chen et al 2021c). More severe fire weather is also prolonging fire 303 

Figure 4. Average (n = 32) as well as six individual case study trajectories for fire 

disturbances in Alaska and Canada showing NDVI and NDMI normalized to the pre-

disturbance average value. 
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seasons and increasing fire intensity and annual area burned. For example, Kasischke et al 304 

(2010) found the mean annual of area burned in Alaska during the 2000s was 50% greater 305 

than any previous decade since the start of the record in 1940, resulting in increased ground-306 

layer combustion and net carbon emissions to the atmosphere (Turetsky et al 2011).  307 

 Within the North American boreal region, fires create lasting legacies on vegetation, 308 

driving changes in soil characteristics, regeneration patterns, and successional trajectories 309 

(Johnstone et al 2010, Gaglioti et al 2021, Mack et al 2021). High-severity forest fires that 310 

remove much of the organic layer favor regeneration by deciduous and fast-growing pine 311 

species, which may maintain dominance under a warming climate (Johnstone et al 2011).  312 

Field data have also suggested that increased warming and fires may be altering the ability of 313 

typically resilient black spruce forests to recover following large fires, leading potentially to a 314 

tipping point for boreal vegetation – shifting from evergreen to deciduous or non-forested 315 

land cover types (Baltzer et al 2021). Alterations to phenological metrics from time series of 316 

NDVI and other greenness metrics observed in burned areas in Alaska may also indicate 317 

long-term shifts in vegetation cover type and photosynthetic activity at regional scales (Potter 318 

2020, Madani et al 2021). 319 

In the Arctic tundra, our understanding of the drivers of the wildfire regimes is less 320 

thorough, due to a combination of factors including lower fire frequency, remoteness, and 321 

limited in-situ observations. It is commonly believed that lightning (He et al 2022, Chen et al 322 

2021c), summer temperature, and precipitation (Hu et al 2015, Vachula et al 2022) are 323 

among the primary factors controlling the wildfire regimes in Alaskan tundra. Fire usually 324 

favors the recruitment and growth of deciduous shrubs in the tundra. It is therefore an 325 

important mechanism for Arctic shrubification (Lantz et al 2010b, Jones et al 2013, Frost et 326 

al 2020). Following fire, net ecosystem productivity (NEP) declines because of reduced 327 

vegetation productivity and increased ecosystem respiration, with forest ecosystems 328 
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becoming a carbon source for roughly one to two decades (Amiro et al 2010, Kurz et al 2013, 329 

Liu et al 2011). In the tundra, vegetation productivity recovers more quickly, in as little as 330 

three years post-fire, though longer term impacts on NEP remain less clear (Gaglioti et al 331 

2021). As vegetation and soils recover, NEP increases up to a maximum and then decreases 332 

to a steady state, at which point the ecosystem is again carbon neutral or a carbon sink (Goetz 333 

et al 2012, Song et al 2018). Climate change, however, may alter the post-fire NEP response 334 

in the future due to species composition shifts, productivity changes, and permafrost thaw 335 

(Rocha et al 2012, Foster et al 2019, Mekonnen et al 2019, Baltzer et al 2021, Gibson et al 336 

2018). 337 

 Vegetation responses to fire disturbance can be seen in Landsat-derived trajectories of 338 

greenness (NDVI) and wetness (NDMI), as showcased in the average across all fire 339 

trajectories (n = 32) as well six individual fires (Fig. 4). The average trajectory shows a rapid 340 

decline in normalized NDVI and NDMI immediately following fire, with a moderate 341 

recovery rate in the following years (approximately 10 years for NDVI and 15 years for 342 

NDMI). Tundra NDVI recovers more rapidly, with NDVI values reaching the pre-343 

disturbance mean within a decade following fire. The NDMI response following fire is more 344 

varied for the tundra locations, a pattern which highlights the cascading effects of wildfire on 345 

accelerated permafrost thaw and associated changes in soil thermal and moisture regimes, 346 

and variability arising from local differences in fire severity and ground ice conditions (Jones 347 

et al 2015). 348 

3.1.2 Limitations, data needs, and unknowns  349 

 Large fire databases are crucial for understanding fire precursors, effects, trends, and 350 

dynamics in boreal and Arctic ecosystems. In Alaska and Canada, existing fire history 351 

databases provide fire perimeter polygons beginning in the 1940s and 1960s, respectively, 352 

and are maintained and updated annually. These databases are some of the longest and most 353 
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complete large-scale historical fire records available anywhere on the planet (Kasischke et al 354 

2002, Stocks et al 2002) and they are foundational datasets for investigating regional impacts 355 

of post-fire vegetation succession (Rogers et al 2013, Potter et al 2020). Despite this, due to 356 

the great challenges in mapping wildfires in the high latitudes (e.g., limited availability of 357 

Landsat observations during a short growing season and persistent cloud cover; Chen et al 358 

2021b, 2021a), omissions of large wildfire events by these wildfire history records still exist, 359 

particularly in the tundra (Jones et al 2013). Moreover, the fire perimeters themselves 360 

become less accurate further back in time, and often contain substantial patches of unburned 361 

vegetation (Kasischke et al 2002, Potter et al 2020, Walker et al 2018). Advances in remote 362 

sensing tools enable fires and their impacts to be mapped and tracked at increasingly finer 363 

spatiotemporal resolutions (Duncan et al 2020, Hall et al 2020, Eidenshink et al 2007). Field 364 

data are also crucial for studying fire impacts on carbon stocks and fluxes, vegetation 365 

recovery, hydrology, and other ecosystem properties, and a growing number of databases are 366 

allowing for meta-analyses of fire impacts (Walker et al 2020a, Virkkala et al 2022, 2018). 367 

However, additional combustion estimates are needed to better understand the interactions 368 

between fire weather, fire spread and intensity, and combustion (Walker et al 2020b). 369 

 Further data are required to elucidate the interactions between wildfire, vegetation, 370 

and permafrost in the context of changing climate (Treharne et al 2022, Gibson et al 2018). 371 

Increasing temperatures, changing precipitation, and increases in fire activity will impact 372 

vegetation composition and structure, hydrology, and carbon fluxes. Future researchers could 373 

utilize a combination of active radar and subsidence data, high spatial and spectral resolution 374 

imagery, digital elevation models (DEMs), and airborne LiDAR and other remote sensing 375 

data to observe and analyze these changes. It is also unclear how these changes to vegetation 376 

and fuels will interact with future fire regimes. Predicted increases in deciduous fraction and 377 

declines in organic layer and other fuels (Foster et al 2019, Mekonnen et al 2019) may lead to 378 
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decreasing fire frequency and severity, even as fire weather and fuel drying increases (Parks 379 

et al 2015). Further, if young stands re-burn following fire, it is unknown how and which 380 

species may be able to regenerate as seed banks become depleted and soils become less 381 

conducive to seedling establishment (Baltzer et al 2021). 382 

From a societal perspective, the increasing frequency of large fires, and necessary 383 

increased investments in fire-fighting activities at the wildland-urban interface, will strain the 384 

existing fire management budgets and governance structures (Rogers et al 2020). More 385 

studies are needed linking the influence of management on fire regimes, both historically and 386 

in the future, to quantify these relationships and make predictions for the efficacy and costs of 387 

fire management efforts (Melvin et al 2017b, Calef et al 2015, Phillips et al 2022). 388 

 3.2 Insect outbreaks and pathogens 389 

3.2.1 Background  390 

 Biotic disturbances, such as fungal pathogens (e.g., root rots and needle rusts) and 391 

insect outbreaks (e.g., bark beetles and defoliators/leaf miners) can cause extensive tree 392 

mortality during outbreaks (Holsten et al 2008, Kautz et al 2016). Fungal pathogens often kill 393 

individuals slowly by disrupting water and nutrient transport (Holsten et al 1985) and 394 

reducing growth. In contrast, episodic insect outbreaks can cause major growth reductions 395 

and spatially widespread tree mortality over a few years, at times eclipsing that due to fire. 396 

For example, annual forest volume lost due to productivity reduction and mortality from pests 397 

and pathogens in Canada was estimated to be 106 million m3 per year between 1982 and 398 

1987, which was three times that lost annually to fire and 70% of volume harvested in 399 

Canada nationally during that period (Hall and Moody 1994, Malmstrom and Raffa 2000, 400 

Volney and Fleming 2000, Price et al 2013). In the 1990s in Alaska, insects cumulatively 401 

damaged 1.6-2 million hectares of forest, which was 30% more area than burned during that 402 

period (Malmstrom and Raffa 2000). 403 
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 405 

Bark beetles, such as the mountain pine beetle (Dendroctonus ponderosae) and spruce 406 

beetle (Dendroctonus rufipennis), kill host trees outright by feeding on the cambium and 407 

phloem (Fig. 5a,c) and disrupting water transport (Malmstrom and Raffa 2000, Bentz et al 408 

2010). These beetles attack trees through “mass attacks” of many beetles, attracted via 409 

massing pheromones released by the beetles (Raffa et al 2008). Bark beetle populations 410 

typically exist at relatively low levels, punctuated by occurrences of high, epidemic levels 411 

due to climate-, disturbance-, or forest structure-related triggers (DeRose et al 2013, Seidl et 412 

al 2016). Young, healthy trees can often defend against low levels of attacking beetles by 413 

exuding resin and allelochemicals. However, stressed trees and those experiencing a large 414 

number of attacking beetles are more likely to succumb to infestation (DeRose and Long 415 

2012). Thus, conditions that lead to vegetation stress, such as drought, often lead to outbreak 416 

events (Sherriff et al 2011, Seidl et al 2016).  417 

Figure 5. a) Tree trunk infested with mountain pine beetle, showcasing egg galleries; b) 

aerial imagery of white spruce infested with spruce beetle, south-central Alaska, credit 

GLiHT; c) spruce beetle larvae within a white spruce trunk 
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 418 

 Defoliators and leaf miners feed on the leaves and needles of host plants. In the North 419 

American ABZ, these guilds include, for instance, eastern and western spruce budworms 420 

(Choristoneura spp.), Jack pine budworm (Choristoneura pinus), aspen leaf miner 421 

(Phyllocnistis populliella) (Fig. 6a), and large aspen tortrix (Choristoneura conflictana). 422 

Outbreaks of these defoliators and miners cause significant tree growth reduction and 423 

potentially tree mortality. Removal or damage to needles and leaves disrupts water transport 424 

and interferes with photosynthesis, which can kill trees directly or cause physiological stress 425 

that predisposes them to death from other factors, such as drought (Malmstrom and Raffa 426 

2000). Recovery from major defoliation and mining depends on the extent of damage and the 427 

amount of carbon reserves held in other tissues (Boyd et al 2021). Deciduous species 428 

generally are more able to re-foliate from leaf damage than evergreen species, even in the 429 

Figure 6. a) Mines and larvae of an aspen leaf miner, USDA Forest Service 

photo by Robin Mulvey; b) advance of an aspen running canker over the course 

of just three days in 2019, USDA Forest Service photo by Lori Winton; c) spruce 

needle rust on a Sitka spruce, USDA Forest Service photo by Robin Mulvey. 

Photos from the USDA Forest Service public Flickr Page 

(https://www.flickr.com/people/194703066@N07/). 
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same year as defoliation (Krause and Raffa 1996, Holsten et al 2008). Evergreen species, 430 

however, often have a high rate of mortality following successive years of intense defoliation, 431 

potentially leading to species composition shifts post-outbreak. 432 

 433 

 The most common pathogens in the North American ABZ include root rot (e.g. 434 

Inonotus tomentosus), heart rot fungi (e.g. Fomitopsis pinicola), and needle rusts (e.g. 435 

Chrysomyxa ledicola; Fig. 6c) (Armstrong and Ives 1995, Holsten et al 2008). These 436 

pathogens can cause hydraulic impairment by damaging vascular systems, reduce 437 

productivity through impacts on needles and leaves, and ultimately lead to plant mortality. 438 

Recently, an outbreak of the novel aspen running canker (Neodothiopora populina) caused 439 

widespread mortality of quaking aspen (Populus tremuloides) in interior Alaska (Fig. 6b). 440 

Aspen mortality from these infections was exacerbated by ongoing drought as well as an 441 

outbreak of aspen leaf miner (Ruess et al 2021). 442 

Figure 7. Average (black) and individual (colors) case study trajectories for mountain 

pine beetle (British Columbia; n = 4) and spruce beetle (Yukon Territory; n = 4) 

outbreaks showing NDVI and NDMI normalized to the pre-disturbance average value. 
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 While pathogens frequently affect a wide range of species, insects are often species- 443 

or genus-specific in their host requirements (Armstrong and Ives 1995, Holsten et al 2008). 444 

Hosts that are larger, older, or stressed are generally more susceptible to bark beetles. Thus, 445 

areas with high numbers of susceptible hosts are most vulnerable to insect outbreak, with 446 

mature, host-dominated stands being the most susceptible (Raffa et al 2008, Chapman et al 447 

2012, DeRose et al 2013, Hart et al 2015). These homogenous stands provide a high quality 448 

habitat for insects, allowing for self-sustaining populations and sources of large-scale 449 

outbreaks (Malmstrom and Raffa 2000, Seidl et al 2016). The relatively low biodiversity in 450 

ABZ forests thus makes them particularly vulnerable to insect and pathogen outbreaks (Senf 451 

et al 2017a, Campbell et al 2008, Jactel et al 2005). Increasing temperatures and drought are 452 

thus generally expected to increase the impacts of insects and pathogens in the North 453 

American ABZ. 454 

 Insect and pathogen outbreak dynamics are affected and compounded by climate and 455 

weather by influencing the range and population size of insects and pathogens and altering 456 

the vulnerability of plants. For example, warming temperatures can reduce wintertime 457 

mortality and accelerate population growth of insects like the spruce beetle (Raffa et al 2008, 458 

Bentz et al 2010, Gray et al 2013). Spruce beetles usually have a two-year (semivoltine) life 459 

cycle, but warmer conditions can accelerate larval growth, causing a shift to a one-year 460 

(univoltine) life cycle (Hansen et al 2011). More beetles with univoltine life cycles drives 461 

faster population growth and more severe outbreaks, such as occurred with the expansion of 462 

bark beetle outbreaks in British Columbia in the 1970s and 1980s (Bentz et al 2010). Host 463 

plants also interact with climate through host stress levels. Drought predisposes trees to 464 

disease and infestation (Raffa et al 2008, McKenzie et al 2009, Boyd et al 2021, Ruess et al 465 

2021), and can be a secondary cause of mortality following defoliation stress (Malmstrom 466 

and Raffa 2000). Climate change is predicted to result in range expansion of insect species 467 
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(de la Giroday et al 2012) and increases in outbreak severity and frequency (Raffa et al 468 

2008). In Alaska, drought, high vapor pressure deficit, and high temperatures are key 469 

contributors to mortality linked with aspen leaf miner and aspen canker (Ruess et al 2021, 470 

Boyd et al 2021). 471 

 Because bark beetles tend to affect one or only a few host tree species and 472 

preferentially attack larger trees, their outbreaks often result in a shift towards smaller size 473 

classes and non-host species (Veblen et al 1991, Campbell and Antos 2015, Zeppenfeld et al 474 

2015). Productivity often increases in these subsequent stands as non-infested trees are 475 

released from suppression (Campbell et al 2019). In more homogenous stands, species 476 

composition can shift towards early successional species after an outbreak. These impacts can 477 

be seen in trajectories of NDVI and NDMI before and during outbreaks (Fig. 7). Defoliators 478 

also tend to impact one or a few species - the eastern spruce budworm (C. fumiferana) mostly 479 

infests balsam fir (Abies balsamea) and white spruce (Picea glauca), and infestation-caused 480 

mortality often leads to release of seedlings and saplings of host species (Boulanger and 481 

Arsenault 2004). Changes in NDVI are generally subtle as outbreaks build, sometimes 482 

asynchronously, within individual trees (Fig. 5b), and are usually only visible in moderate-483 

resolution satellites when large areas are impacted (DeRose and Long 2012). This subtle 484 

NDVI pattern (Fig. 7) is especially characteristic of spruce beetle outbreaks, which do not 485 

exhibit a characteristic “red-stage” attack as do pine species infested with mountain pine 486 

beetle (Coops et al 2006). However, NDMI often does decline (Fig. 7), due to decreases in 487 

transpiration and increases in foliar water stress during and following bark beetle outbreaks 488 

(Foster et al 2017). In contrast, trajectories of NDVI and NDMI during and following spruce 489 

budworm infestation in the Northwest Territories (Fig. 8) have a clearer signal, with some 490 

variability across the individual sites, highlighting the impact of infestation severity on the 491 

spectral signal. Sites which have a lower infestation severity (e.g., percent defoliation) will 492 
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have a more subtle signal than sites which had more complete defoliation from spruce 493 

budworm infestation (Senf et al 2016). The response of NDVI to aspen running canker is also 494 

clear, with limited recovery following the drop in NDVI due to infestation (Fig. 8). NDMI 495 

response is less clear, with some decline following infestation. 496 

3.2.2 Limitations, data needs, and unknowns  497 

 Past insect outbreaks are often identified through dendrochronology and pollen 498 

records (Sherriff et al 2011, Anderson et al 2010). However, these are limited to specific 499 

locations, usually where an outbreak is known, resulting in biases in our understanding of 500 

their extent and occurrence. Aerial detection surveys that produce polygons of infestation 501 

extent and severity are valuable for determining the regional and national impacts of forest 502 

pests. However, these polygons are often at a coarse spatial scale with potentially low 503 

positional accuracy (Wulder et al 2006, Hall et al 2016). Detection of recent or ongoing 504 

outbreaks using moderate resolution satellite sensors is possible, especially for large, severe 505 

outbreaks (Hall et al 2016, Meddens and Hicke 2014, Senf et al 2017a, 2016). Specialized 506 

methods are generally required for each insect type (e.g., bark beetles vs. defoliators). Foliar 507 

color changes of conifers infested with bark beetles often progress from green, sometimes to 508 

red, and to gray as needles lose moisture and are ultimately shed from the tree. The red and 509 

gray stages are easily detectable in multispectral imagery (Coops et al 2006), however the 510 

green stage is more subtle, making early detection difficult (DeRose et al 2011). Despite this 511 

difficulty, some studies have had success in using the water-sensitive shortwave infrared 512 

wavelengths to detect early moisture stress from green-stage infestations (Foster et al 2017). 513 

 Accurate and temporally and spatially consistent datasets of infestation/infection 514 

status and extent across jurisdictions are crucial for determining the extent and severity of 515 

past and ongoing outbreaks, and for predicting future outbreaks (Kautz et al 2016, Senf et al 516 

2017b). Such large-scale datasets would also aid in generalizing detection methods across 517 
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518 

wider regions and disturbance agents. Because some major limitations to detecting insect and 519 

pathogen disturbance from remotely sensed data include accurately discriminating between 520 

these disturbances and other vegetation stressors, due to the exhibition of similar spectral 521 

signals (Senf et al 2017b), field observations of infestation status that are coincident with 522 

remote sensing observations will assist in developing more accurate algorithms for multi-523 

stage detection efforts (Cessna et al 2021). Increased availability of different types of remote 524 

sensing data, particularly hyperspectral and radar imagery, have the potential to identify 525 

changes in forest moisture related to insect and pathogen outbreaks at regional scales and 526 

with high spatial detail. 527 

 Studies have shown that insects and pathogens are expanding their ranges poleward 528 

with increasing temperatures, increasing the area of forest vulnerable to outbreak (de la 529 

Giroday et al 2012, Pureswaran et al 2018). Insects are also beginning to infest novel host 530 

Figure 8. Average (black) and individual (colors) case study trajectories for spruce 

budworm infestation sites in the Northwest Territories (n = 9) and aspen running canker 

infestation sites in Alaska (n = 8) showing NDVI and NDMI normalized to the pre-

disturbance average value. 
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species (NRC 2018), and it is unclear how such host species will respond. Such range 531 

expansion highlights the need for increased detection and monitoring of outbreaks, as well as 532 

the need for predictions of future infestation vulnerability. 533 

3.3. Permafrost-related disturbances 534 

 Throughout much of the northern high-latitudes, ecosystems are underlain by 535 

permafrost, or soil that remains frozen for more than two years (Gruber 2012). However, with 536 

climate change, permafrost ground temperatures are increasing (Biskaborn et al 2019) and 537 

the active layer – the upper layer of soil that thaws in the summer – is becoming deeper 538 

across large areas (Smith et al 2022). In addition to the active layer, the physical structure of 539 

these soils is being altered across many landscapes in the ABZ due to extensive changes to 540 

permafrost status due to warming, and permafrost thaw is expected to increase further in the 541 

future, both linearly and abruptly (Kokelj et al 2015, Turetsky et al 2020). These changes in 542 

physical structure can dramatically alter the topography, hydrology, and vegetation, resulting 543 

in heterogeneous topography and thermokarst features, especially in ice-rich locations. In this 544 

section, we describe several unique disturbances in the ABZ and their associated permafrost-545 

related processes, including cryoturbation, ice-wedge degradation, cryogenic landslides, and 546 

lake drainage. 547 

3.3.1. Cryoturbation 548 

 Permafrost soils often exhibit warped or broken soil horizons that result from 549 

cryoturbation, the frost-based movements of seasonally frozen materials (Bockheim and 550 

Tarnocai 1998). Cryoturbation can also create distinctive surficial disturbance features that 551 

generate fine-scale spatial heterogeneity in ground conditions and serve as foci for ecological 552 

change (Walker et al 2011, Frost et al 2013, Aalto et al 2017). Frost circles are a common 553 

form of patterned ground. They occur as approximately circular patches (~0.5-3 m diameter) 554 
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of mineral soil that often form geometric mosaics of vegetated and unvegetated microsites at 555 

uniform spacing of ~1–3 m (Fig. 1c). 556 

 Frost circles are common in permafrost regions, particularly where surface organic 557 

material is lacking and the soil profile is dominated by fine-textured silt or clay (Bockheim et 558 

al 1998, Peterson and Krantz 2003). The intensity of cryoturbation is strongly affected by soil 559 

moisture, soil texture, changes in seasonal temperature, and snow cover (Aalto et al 2017, 560 

Daanen et al 2007). In general, climate warming and increased snow cover dampen 561 

cryoturbation by reducing differential frost-heave. Climate warming can also dampen 562 

cryoturbation indirectly by promoting vegetation colonization, which stabilizes the soil and 563 

results in organic matter accumulation on cryoturbated soils. Species that are fast-growing 564 

and/or tolerant of ground surface disturbances are best able to colonize cryoturbated surfaces 565 

(Kade et al 2005, Sutton et al 2006, Frost et al 2013). Once cryoturbation is reduced or no 566 

longer occurring, the increase in biomass is abrupt and persistent; however, cryoturbation can 567 

be renewed if vegetation and organic material are removed by other disturbances (chiefly 568 

wildfire). 569 

 Cryoturbation can have nonlinear responses to climate change with respect to 570 

vegetation cover and biomass, which can be detected in multi-decadal NDVI time series 571 

(Frost et al 2014). Furthermore, cryoturbation has distinctive spatiotemporal properties as a 572 

disturbance agent, because features usually occur as a multitude of 1-3 m microsites within a 573 

broad landscape mosaic, and the disturbance acts annually and is not episodic. At our case 574 

study locations, both NDVI and NDMI increased over the 30-year Landsat record (Fig. 9). 575 

With respect to NDVI, the warming climate could allow vegetation to colonize previously 576 

bare frost circles in cryoturbated landscapes, which would reduce further cryoturbation (Frost 577 

et al 2013). The NDVI increase could additionally reflect a general background greening 578 

(i.e., vegetation increase) of the landscape, as only a fraction is cryoturbated, and the 579 
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remainder can have nearly complete vegetation cover. For NDMI, the increase in moisture is 580 

likely in part due to the moisture content of the colonizing vegetation, but also increased soil 581 

moisture beneath the vegetation cover (Fig. 9) 582 

 583 

 584 

3.3.2. Ice-wedge degradation 585 

 Polygonal ground, encompassing mosaics of ice-wedge polygons (~5-15 m wide) 586 

formed by contraction cracking followed by annual cycles of thawing and refreezing, is 587 

widespread and conspicuous in permafrost landscapes (Liljedahl et al 2016). Wedge-shaped 588 

masses of ice underlie the edges of each polygon (Fig. 10). Ice-wedge degradation occurs 589 

when the uppermost portions of ice wedges thaw, which triggers local ground subsidence, 590 

ponding, and persistent changes to vegetation and hydrologic connectivity across the 591 

Figure 9. Average trajectories for NDVI and NDMI (left, not normalized) and distributions 

of trends (right) for NDVI and NDMI at cryoturbation case study pixels (n = 2129, across 47 

sites) in northern Alaska. Trends were calculated as the slope from linear models fit at 

Landsat pixel for the vegetation index. Note that these trajectories were not normalized 

because cryoturbation is an ongoing disturbance, rather than a single event. 
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landscape (Fig. 10). Ice-wedge degradation often results in substantial micro-topographic 592 

changes, such as the transition from low-centered to high-centered polygonal landforms. 593 

 594 

 595 

 Polygonal ground is most common in tundra with continuous permafrost, especially 596 

areas with fine-textured soils, and patterned landscapes can cover areas as large tens of 597 

square kilometers or larger (Lachenbruch 1962). However, ice wedges are also common in 598 

discontinuous permafrost regions well into the boreal forest (Swanson 2016, Kokelj et al 599 

2014). Extreme warm and wet summers initiate ice-wedge degradation (Liljedahl et al 2016, 600 

Jorgenson et al 2006, 2015). Long periods of time (i.e., millennia) without additional 601 

disturbances are required to develop large ice wedges, so the terrain affected by ice-wedge 602 

degradation has historically supported “climax” vegetation communities – usually tussock 603 

tundra or needleleaf woodlands in boreal forest settings (Billings and Peterson 1980). 604 

 Local and regional variability in the timing and extent of ice-wedge degradation arises 605 

from differences in surficial materials and ground-ice content, disturbance history (natural 606 

Figure 10. Schematic of ice-wedge degradation showing thawing of ice wedges 

and associated ponding and vegetation change. Image credit: Kelcy Kent. 
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and anthropogenic), regional climate gradients, and regional differences in the timing and 607 

magnitude of recent extreme warm summers (Raynolds et al 2014, Kanevskiy et al 2017, 608 

Frost et al 2018a, Farquharson et al 2019). This variability in ice-wedge degradation 609 

contributes to variability in patterns of tundra vegetation change (e.g., tundra greening or 610 

browning). Once thaw begins, the resultant subsidence forms small, flooded pits and troughs 611 

along the polygon margins. These pits and troughs pock-mark the landscape, kill existing 612 

vegetation that is adapted to mesic conditions (i.e., a mechanism for tundra browning) (Lara 613 

et al 2018), and support the colonization of hydrophytic vegetation (e.g., wetland sedges and 614 

mosses). Secondary impacts can affect large areas because the generation of pits and troughs 615 

creates new hydrologic flowpaths that alter soil hydrology and the distribution of surface 616 

water (Koch et al 2018). Over time (usually a matter of years to a decade), most pits and 617 

troughs become colonized by wetland vegetation, and surface water extent declines due to the 618 

development of an organic mat (i.e., a mechanism for tundra greening) (Wolter et al 2016). 619 

Successional processes after ice-wedge degradation could explain in part the increasing 620 

NDVI trajectories in ice-wedge polygon landscapes (Fig. 11). However, this increase is likely 621 

also being driven by a general background greening of the tundra landscape in response to 622 

climate warming (Myers-Smith et al 2020, Berner et al 2020), as the affected microsites 623 

comprise only a fraction of the broader polygonal landscape. The distribution of NDVI 624 

dynamics includes numerous pixels with strong “browning” signals, probably due to 625 

extensive ice wedge degradation and increasing surface water (Jorgenson et al 2022). The 626 

increasing NDMI (Fig. 11) over time in these landscapes is likely being driven by the 627 

increasing surface water due to the development of pits and troughs. 628 
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 629 

 630 

3.3.3. Cryogenic landslides 631 

 Climate-induced thawing of permafrost-affected hillslopes can trigger a variety of 632 

abrupt and gradual disturbances involving the mass movement of soils, collectively termed 633 

“cryogenic landslides.” These landslides can result in losses of vegetation, followed by the 634 

development of successional vegetation on re-transported materials. Different forms of 635 

cryogenic landslides vary with respect to their spatial extent and temporal characteristics, and 636 

thus the pattern and rate of ecological succession after disturbance. These subtypes include 1) 637 

active-layer detachments, 2) frozen debris lobes, and 3) retrogressive thaw slumps. 638 

Active-layer detachment slides are relatively small, local slope failures that develop 639 

after warm, wet summers, such that saturated active-layer soils slide abruptly over the 640 

Figure 11. Average trajectories for NDVI and NDMI (left, not normalized) and distributions 

of trends (right) for NDVI and NDMI at ice-wedge degradation case study pixels (n = 679, 

across 15 sites) in northern Alaska. Trends were calculated as the slope from linear models 

fit at Landsat pixel for the vegetation index. Note that these trajectories were not normalized 

because ice-wedge degradation is an ongoing disturbance, rather than a single event. 
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permafrost table (Leibman 1995, Ermokhina and Myalo 2012, Verdonen et al 2020). Future 641 

climate warming and associated permafrost degradation, as well as increases in triggers such 642 

as extreme warm summer periods, increases in rainfall, and forest fires, could increase their 643 

frequency (Lewkowicz and Harris 2005). Frozen debris lobes are slow-moving, lobate 644 

permafrost features consisting of soil, rock, organic material, and ice that move down 645 

permafrost-affected slopes via shear along their bases (Darrow et al 2016, 2015, Simpson et 646 

al 2016). The distribution and dynamics of frozen debris lobes are comparatively poorly 647 

known. 648 

 Retrogressive thaw slumps are thermokarst slope disturbances that contribute large 649 

volumes of materials downslope to lakes, drainage networks, and coastal zones (Burn and 650 

Lewkowicz 1990, Lantuit and Pollard 2008). Initiation of retrogressive thaw slumps depends 651 

on local geomorphological conditions and meteorology. Fluvial erosion along riverbanks or 652 

coastal zones can initiate slope failures, promoted by extended warm and wet conditions 653 

(Burn and Lewkowicz 1990). Following an initial slope failure, exposure of ice-rich 654 

permafrost enables thaw slump development, which can persist for many years while the 655 

areal size of the thaw slumps can expand to tens of hectares. For example, the thaw slump 656 

shown in Figure 12b and 12c expanded from 0.63 ha immediately after the detachment 657 

failure in 2016 to 1.04 hectares three years later (Turner et al 2021).  658 

 The frequency and size of retrogressive thaw slumps can be highly variable within 659 

and among landscapes. The largest thaw slumps in North America have been observed in the 660 

Richardson Mountains and Peel Plateau regions, NWT, Canada (Lacelle et al 2015). This 661 

region, which includes the Mackenzie Delta, has experienced an increase in occurrences of 662 

thaw slumps in response to wet summer conditions (Lantz and Kokelj 2008, Kokelj et al 663 

2015). Zwieback et al (2018) also found an increase in thaw slumps on the Tuktoyaktuk 664 

Peninsula, northwest of the Mackenzie Delta, Canada, and the Bykovsky Peninsula, Russia, 665 
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associated with available energy and late-season rainfall. Many coastal areas have seen an 666 

increase in thaw slump activity, including Banks Island (Lewkowicz and Way 2019). 667 

Interactions with marine environments, including thermo-abrasion from waves and ice, can 668 

have a strong influence on thaw slump activity along coastlines (Günther et al 2013). 669 

 670 

 671 

 Cryogenic landslides impact terrestrial and aquatic ecosystems and atmospheric 672 

feedbacks. Within lake and river aquatic environments, biogeochemical cycling can be 673 

impacted by the liberated sediment and solutes, which are typically rich in nutrients and ions. 674 

However, the downstream impacts, on nutrient concentrations, for example, can be highly 675 

variable (Frey and McClelland 2009, Harms et al 2014, Lafrenière et al 2017, Mu et al 2017) 676 

and depend on local geomorphic conditions including relief, ice content, permafrost extent, 677 

and parent material (Tank et al 2020). These complex relations present uncertainties for 678 

associated impacts on local and downstream ecology. Vegetation can efficiently colonize 679 

stabilized areas of cryogenic landslides (Turner et al 2021). Habitat characteristics associated 680 

with landslide age and vegetation composition also have an influence on wildlife (Cray and 681 

Figure 12. a) Case study trajectories for average (n = 3) and individual thaw slumps in 

Alaska (Selawik River) and the Yukon Territory (Old Crow Flats; Fortymile River); b) thaw 

slump in Old Crow Flats; c) aerial drone view of thaw slump in Old Crow Flats. 
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Pollard 2019). Atmospheric impacts include climate change feedbacks that stem from 682 

microbial decomposition of parent material and subsequent emission of greenhouse gasses 683 

(CO2 and CH4; Schuur et al 2015, Turetsky et al 2020, Miner et al 2022).  684 

3.3.4. Lake drainage 685 

 Thermokarst lakes are formed when permafrost degradation results in subsidence of 686 

the land, which subsequently fills with water. These features are abundant across ice-rich 687 

permafrost terrain and are highly sensitive to climate conditions (Jones et al 2022). Though 688 

thermokarst lakes may remain stable for centuries, the shorelines are highly susceptible to 689 

erosion and expansion, the rate of which can be strongly influenced by dominant fetch and 690 

shoreline ground-ice content as well as climate (Roy-Léveillée and Burn 2010). When 691 

shoreline expansion progresses into low-lying areas or invades the boundaries of other 692 

thermokarst lakes, they can drain and experience near-complete water loss within days. 693 

Additional mechanisms that trigger drainage events can include drainage across an ice-wedge 694 

network, headward erosion along adjacent streams or coastal boundaries, and bank overflow 695 

when established outflow channels are blocked by snow and ice (Brewer et al 1993, Mackay 696 

1981, 1988, Marsh and Neumann 2001, Hinkel et al 2007, Wolfe and Turner 2008, Jones and 697 

Arp 2015). Drainage can also occur incrementally through partial tapping by a stream and the 698 

development of open talik systems beneath the lake (Yoshikawa and Hinzman 2003). 699 

Thermokarst lake drainage events represent drastic landscape transitions. Newly 700 

exposed lacustrine deposits serve as seedbeds for colonizing vegetation and can quickly 701 

develop continuous vegetation cover (e.g., Eriophorum russeolum, Carex aquatilis, and 702 

Senecio congestus) within the first few years following drainage depending on local 703 

conditions (Lantz 2017, Ovenden 1986, Mackay and Burn 2002, Shur and Jorgenson 2007). 704 

For example, willow (Salix spp.) encroached within 30.8% of the former 12 km2 lakebed of 705 

Zelma Lake in Old Crow Flats, Yukon (Turner et al 2022). After a lake drainage event, the 706 
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aquatic environment of the remaining water body can become highly dynamic for several 707 

years following drainage as biogeochemical properties are strongly influenced by weather 708 

and pluvial runoff across the exposed lakebed (Tondu et al 2017). Lake water 709 

biogeochemical properties stabilize as shrubs encroach, which enhances snowpack depth and 710 

snowmelt input (Turner et al 2022). The increasing NDVI in our lake drainage case study 711 

trajectories (Fig. 13) suggests encroachment of shrub vegetation. NDMI likely doesn’t 712 

change because encroaching vegetation at these point locations are inundated with water. 713 

 714 

 715 

Catchment hydrologic and vegetation characteristics typically do not return to pre-716 

drainage conditions (Bandara et al 2020) and can thus exert long-term influence on carbon 717 

cycling. Drained lake basins can effectively sequester atmospheric carbon as peat 718 

accumulates (Fuchs et al 2019), though peat and carbon accumulation may eventually 719 

decrease (Bockheim et al 2004, Jones et al 2012, Fuchs et al 2019). Drained lake basins can 720 

Figure 13. Average (black) and individual (colors) case study trajectories for lake drainage 

disturbance sites in Alaska and the Yukon Territory (n = 5) showing NDVI and NDMI 

normalized to the pre-disturbance average value. 
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remain dry for millennia (Shur and Jorgenson 2007, Hinkel et al 2003), and succession and 721 

ground-ice development may lead to variable species composition depending on local 722 

conditions. 723 

 Changes in the frequency of thermokarst lake drainage events have been highly 724 

variable among permafrost landscapes in Alaska (Jones et al 2011, Swanson 2019, Nitze et al 725 

2020, Jones et al 2020a) and northwestern Canada (Lantz and Turner 2015). However, 726 

increasing temperatures and rainfall and associated increase in energy fluxes to permafrost 727 

will likely increase the vulnerability of thermokarst lakes to drainage (Turetsky et al 2020). 728 

In addition, lake drainage can be accompanied by the formation or expansion of other water 729 

bodies as observed in Siberia (Polishchuk et al 2015, Karlsson et al 2012, Nitze et al 2020), 730 

Alaska (Chen et al 2014), and the Tuktoyaktuk Peninsula (Olthof et al 2015, Marsh et al 731 

2009). While the overall surface water area has remained stable in many of these regions, the 732 

spatial redistribution of water bodies suggests that these lake-rich landscapes are in a state of 733 

climate-driven transition (Rowland et al 2010, Pastick et al 2019). Ongoing research and 734 

monitoring will build our understanding of the short and long-term consequences for ecology, 735 

hydrology, and carbon cycling. 736 

3.3.5. Limitations, data needs, and unknowns 737 

Broadly, the study of permafrost-related disturbances would benefit from remote 738 

sensing studies which leverage higher-resolution sensors. Many of these disturbances at the 739 

individual scale can be quite small (e.g., frost circles, <3 m in diameter), and thus medium 740 

resolution satellites such as Landsat or Sentinel may miss small-scale changes in surface 741 

geology and vegetation driven by thermokarst processes. Additionally, more studies are 742 

needed to understand vegetation colonization and succession on newly available land created 743 

by permafrost-related disturbances. 744 
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Although frost circles are common across the entire Arctic climate gradient, the small 745 

size of individual features makes them difficult to detect, even in imagery with submeter 746 

spatial resolution. As a result, their distribution has not been mapped or constrained except at 747 

local scales. Such mapping of cryoturbated surfaces would be highly desirable, especially in 748 

the Low Arctic, where they are at risk of becoming less active (Aalto et al 2017). At present, 749 

areas that support dense frost circles can only be predicted based on coarse-scale maps of 750 

surficial geology and generalized soil texture. Whereas individual features may be 751 

challenging to identify, it may be possible to distinguish cryoturbated landscapes based on 752 

landscape-scale average spatial features. 753 

There are numerous unknowns regarding the dynamics of ice wedge degradation and 754 

potential re-stabilization, and the extent to which they are occurring. Ice wedges are generally 755 

insulated by a mat of vegetation and accumulating snow in the winter, and it is still unclear 756 

what weather conditions induce ice wedge melting and what might drive heterogeneity in 757 

degradation among ice wedges. It is also unclear what factors drive vegetation succession 758 

following ice wedge degradation and the development of surface water ponds and 759 

troughs. One factor could be the availability of nutrients such as nitrogen and phosphorus 760 

(Beermann et al 2015, Herndon et al 2020), however only a few studies have attempted to 761 

address changes in nutrient concentrations following ice wedge degradation (Norby et al 762 

2019, Kent et al in prep). Finally, the rates of accumulation of organic matter in degraded ice 763 

wedges and their potential for stabilization are still poorly understood. Field studies of ice 764 

wedge dynamics utilize space-for-time substitution, examining ice wedges at different stages 765 

of degradation (Jorgenson et al in press) as opposed to assessing the dynamics of individual 766 

ice wedges over time.   767 

 There has been substantial progress on our capacity to gauge the extent of ice wedge 768 

degradation utilizing high-resolution remote sensing and machine learning techniques 769 
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(Witharana et al 2021, 2020). Whereas these studies and associated applications can map ice 770 

wedge polygon networks across extensive areas of land, and even potentially estimate the 771 

fraction of land that contains ice wedges versus polygon centers, there is still work to be done 772 

to distinguish among the different stages of degradation. 773 

There have been many studies that have documented the detection of cryogenic 774 

landslides (e.g, Balser et al 2014, Swanson and Nolan 2018, Barnhart and Crosby 2013), 775 

however, detection of the frequency of relatively small landslides may be difficult using 776 

medium resolution imagery (e.g., Landsat). Thus, large-scale mapping of these disturbances 777 

is difficult because the size of individual thaw slumps can be characteristically different 778 

depending on the region, and because high-resolution imagery at large scales is both cost 779 

prohibitive and difficult to work with. 780 

 Lake drainage events and associated impacts are complex and require additional 781 

research, especially where drainage frequency is increasing. Our ability to identify where and 782 

when thermokarst lake drainage will occur in the future must be refined. Existing data 783 

archives (e.g., Landsat 5 - 8, Sentinel-2) provide resources needed for identifying locations of 784 

past drainage and associated changes in land cover of larger lakes. While many studies have 785 

successfully utilized products from these sensors, the availability of scenes can be limited for 786 

any given year according to the timing of cloud-free conditions and the spatial resolution may 787 

not be adequate for detection of small-scale surface area change (e.g., < 30 m resolution) or 788 

for smaller water bodies. Broader coverage of high-resolution (optical, radar and elevation) 789 

products will improve these analyses and enhance detection of landscape responses to 790 

drainage and geomorphological characteristics (e.g., the proximity of lakes to low-lying 791 

areas) that make lakes vulnerable to drainage. 792 

3.4. Anthropogenic disturbances 793 
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 The North American ABZ has experienced extensive industrial activity and 794 

development in the last half-century (Schneider 2002, Pasher et al 2013). These disturbances 795 

include flooding for hydroelectricity, timber harvest and other natural resource development 796 

(e.g., mining, oil, and natural gas), including associated infrastructure such as pipelines, 797 

roads, and seismic lines for resource exploration. Additional highly localized disturbances in 798 

this region include landfills and dumps for disposal of domestic and industrial waste. These 799 

disturbances do not always fully remove or eliminate vegetation and soil, but often result in 800 

highly fragmented landscapes, leading to significant changes in ecosystem composition, 801 

structure, and function (Pasher et al 2013). As climate continues to change, northward 802 

expansion of agricultural areas is expected in southern regions of the ABZ, resulting in 803 

lasting removals of natural vegetative cover (King et al 2018). Although the cumulative area 804 

disturbed by the combined activities is vast, the impact of past and present natural resource 805 

development on ABZ ecosystem function (e.g. carbon cycling; Strack et al 2019, Schmidt et 806 

al 2022) and services (Pickell et al 2014) has often been overshadowed by fire and insect 807 

outbreak due in part to data limitations.  808 

3.4.1. Logging 809 

 Forest harvest activities are major disturbances in Canadian forests (Gauthier et al 810 

2015), with 35 to 40% of the Canadian boreal forest under industrial harvest and management 811 

(Burton et al 2003, Venier et al 2014). Industrial-scale forest management and economic 812 

activity have been an important component of the southern and eastern Canadian boreal 813 

forest since the 1800’s (Venier et al 2014). For example, the Canadian forest products 814 

industry harvested over 710,000 hectares (~143 million m3) of forest in 2020 (National 815 

Forestry Database 2020). In these higher productivity and more easily accessible southern 816 

and eastern regions, coniferous evergreen species (e.g., spruce, fir and pine) and aspen 817 

dominate the landscape and are utilized for lumber, pulp, and paper (Burton et al 2003, 818 
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Venier et al 2014). In comparison, timber harvest is less extensive in the Alaskan boreal 819 

forest (Potapov et al 2008), where managed forests are generally concentrated in areas with 820 

high-value sawtimber species, adequate road access, and proximity to milling facilities – 821 

mostly in southeastern Alaska (Morimoto and Juday 2018) and episodically within the 822 

interior.  823 

 Clear-cutting is the most common silvicultural method used in the boreal forest 824 

(Haggstrom and Kelleyhouse 1996, Burton et al 2003, Cyr et al 2009). It was initially 825 

justified as an adequate replication of stand-replacing natural wildfire (Bergeron et al 2002); 826 

however, post-treatment belowground conditions (e.g., soil depth, nutrient content) can 827 

substantially differ from those following wildfire (Simard et al 2001), ultimately impacting 828 

post-disturbance successional trajectories in unique ways (Nguyen-Xuan et al 2000). 829 

Additionally, the coarse woody debris left after wildfire generates habitat for songbirds and 830 

other species, but is largely absent from post-harvest landscapes (Morissette et al 2002). 831 

Finally, post-treatment planting can increase regrowth compared to post-fire regrowth 832 

(Dieleman et al 2020). This is evident in the NDVI and NDMI time series for our logging 833 

case studies (Fig. 14), which in general show a faster initial recovery than those for fire (Fig. 834 

4), and aligns with prior research (White et al 2017). However, it should be noted that other 835 

work has found the opposite result wherein post-fire forests recover slightly more quickly 836 

than harvested areas (Bartels et al 2016). 837 
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 838 

 839 

 Traditional clear-cutting results in even-aged forest stands, as all trees are either 840 

harvested or disturbed due to harvesting activity, with only a small fraction left to stand as a 841 

seed source. Consequently, intensively managed landscapes often yield an even distribution 842 

of tree ages across the managed area, with no or few stands older than the harvest rotation 843 

time (Bergeron et al 2002). When the rotation time is shorter than the fire frequency, the 844 

resulting stands will be less diverse in terms of stand structure and species composition than 845 

stands that grow for longer periods and allow tree replacement or fires to kill a population of 846 

trees. Long fire intervals (e.g., 200+ years) allow for shifts in canopy dominance and forest 847 

age structure as a result of forest successional processes (Bergeron et al 2002). Thus, 848 

Figure 14. Average (black) and individual (colors) case study trajectories for logging 

disturbance sites in Saskatchewan (n = 14) showing NDVI and NDMI normalized to the pre-

disturbance average value. 
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biodiversity concerns for highly managed areas have arisen, particularly in southern and 849 

eastern Canada (Venier et al 2014, Boucher et al 2009).  850 

While clear-cut or group selection harvests predominate areas with high value stands 851 

or in areas where managers are attempting to mimic fire, approaches such as partial harvest 852 

and individual tree selection in mixed or deciduous stands often allow for individuals with a 853 

range of ages to coexist and the promotion of certain forest types (Gauthier et al 2009). Such 854 

harvesting practices can help increase diverse forest structural attributes, particularly in 855 

stands that are even-aged following prior harvest practices (Bose et al 2015). Comparatively, 856 

selective harvest is less impactful on total stand biomass than even-aged selection or fire, and 857 

thus has a more nuanced signal from remotely sensed data. Notably, many selective harvest 858 

practices, particularly those which promote specific species or are considered variable 859 

retention that retain structural elements of the stand, have been examined for impacts on 860 

avian (Schieck et al 2000), vertebrate (Vanderwel et al 2009), understory plant (Macdonald 861 

and Fenniak 2007), and beetle (Wu et al 2020) communities. While group selection and 862 

clear-cutting are most common throughout the boreal forests of the North American ABZ, 863 

harvest for the purpose of maintaining biodiversity or transitioning forest types for fire 864 

management (Astrup et al 2018) also occurs throughout the region. These different 865 

harvesting techniques and the degree to which outcomes can vary from technique to 866 

technique are an important component of the impact of forest management on boreal 867 

vegetation and soils, and warrants further study, especially in the context of ongoing shifts in 868 

climate and fire regimes that impact regeneration patterns.  869 

3.4.2. Oil and gas well production 870 

 Oil and gas well production in the North American ABZ can be traced back a century 871 

to the still-active Norman Wells drilled in the 1920s in the Northwest Territories (Bone and 872 

Mahnic 1984). In British Columbia, the first commercial gas well was drilled along the Peace 873 
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River in 1947 and the first discovery of oil in Alaska occurred in 1957. The density of wells 874 

in the ABZ is typically less than 1 per km2, however some locations can be as dense as 3 per 875 

km2  or higher (Warrack et al 2021).  876 

Over its long history, oil and gas exploration and the associated production 877 

technology, practices, and regulations have evolved (King and King 2013, Kang et al 2016). 878 

Depending on the type of well (e.g., conventional oil, unconventional gas), intent of the well 879 

(e.g., production, exploration, injection), geology (including depth and formation properties), 880 

and other factors, the resulting disturbance to the surrounding vegetation can be highly 881 

variable in terms of size, shape, and form, with the area of influence ranging from tens to 882 

hundreds of square meters. The disturbance also varies temporally throughout the life cycle 883 

of the well from site preparation to plug and abandonment (Burnham et al 2012, Allen et al 884 

2013).  885 

For both exploratory and development (or production) wells, well site preparation 886 

includes constructing a well pad and access roads. The lengths of new access roads for well 887 

sites in the Wayne National Forest in Ohio are 8 - 30 km (USFS 2004), but the lengths of new 888 

access roads needed in the ABZ may be much longer (Wilkinson et al 2021, Pasher et al 889 

2013). The well pad involves clearing land so that the drill rigs can be brought in. Wells 890 

meant for producing oil and gas are first cased with steel piping and cemented, and then the 891 

inside of the innermost casing is connected with the host rock containing oil and/or gas. 892 

These activities remove vegetation, degrade soils, result in loss of seed and bud stores 893 

(Pickell et al 2015), and lead to overall biodiversity and habitat loss (McDaniel and Borton 894 

2002, Butt et al 2013, Northrup and Wittemyer 2013). Due to the impacts of well production 895 

on soil nutrients, hydrology, and seed sources, regeneration on well sites is slower than that 896 

following fire or forest harvest (Osko and MacFarlane 2001). Forest succession and regrowth 897 

and overall landscape recovery can thus take decades following oil and gas activity (Powers 898 
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et al 2015, Chowdhury et al 2017). NDVI and NDMI responses to oil and gas wells (Fig. 15) 899 

show a clear decline in both vegetation moisture and greenness, with recovery lasting longer 900 

than 10 years.  901 

 902 

 903 

The production life of a well is highly variable, with some wells remaining in 904 

production for decades and others being abandoned after only a few years. Nevertheless, all 905 

wells are eventually abandoned and, according to modern regulations, must be plugged and 906 

the well site restored (Kang et al 2019). In Alberta and British Columbia, site restoration 907 

involves removing surface infrastructure and re-vegetating the land to pre-development 908 

conditions (Kang et al 2021). However, some wells have not been plugged and abandoned 909 

according to these regulations and have not had the surface restored. 910 

3.4.3. Seismic lines 911 

Figure 15. Average (black) and individual (colors) case study trajectories for oil and gas 

well sites (n = 10) showing NDVI and NDMI normalized to the pre-disturbance average 

value. 
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 The largest anthropogenic disturbance across much of boreal and Arctic North 912 

America are seismic lines (Strack et al 2019, Jorgensen et al 2010), which are long linear 913 

clearings cut across forests and wetlands for oil and gas exploration (Fig. 1d, 16a,b). Seismic 914 

exploration for underground sources of oil and natural gas involves drilling a series of holes 915 

6-20 m deep along the lines and analyzing the reflection of sound waves generated from 916 

either explosives detonated at the site or truck-mounted surface vibrators (EMR 2006). 917 

Originally, these lines (previously known as legacy or 2D lines) were cleared using heavy 918 

machinery to cut through heavily forested areas (Dabros et al 2018), creating lines up to 10 m 919 

wide. Individual length varies but combined create a vast network; Strack et al (2019) 920 

estimated 345,000 km of seismic lines crossing peatlands in Alberta alone. This type of 921 

clearing results in the complete removal of the aboveground woody vegetation (Filicetti et al 922 

2019) and significant soil and peat compaction, causing the water table to be much closer to 923 

the ground surface (Davidson et al 2020b). These changes in soil characteristics and 924 

hydrological conditions can alter understory vegetation composition, including shifts from 925 

feather moss-shrub dominated understories to complete cover by sedges (e.g., Carex 926 

aquatilis) in fen peatlands, or sphagnum moss (Sphagnum spp.) in bog peatlands (Deane et al 927 

2020, Davidson et al 2021). In recent decades, there has been a move towards a method 928 

called ‘low-impact’ seismic lines, created using lighter-weight machinery and by hand and 929 

allowing for minimal disturbance to the ground-surface (Dabros et al 2018). These lines are 930 

narrower (1 - 5 m) than legacy lines but they are far more abundant on the landscape, creating 931 

a dense grid-like network of disturbances and can still create substantial changes to both tree 932 

cover (van Rensen et al 2015) and understory vegetation communities (Davidson et al 2021). 933 
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  934 

 935 

Although the creation of some seismic lines occurred almost 40-50 years ago, tree 936 

recovery and regeneration in many of these locations is slow and often fails. For example, 937 

Figure 16. a, b) Seismic lines crossing upland boreal forest and c, d) peatland sites in 

northern Alberta, Canada. Note limited tree recovery on seismic lines crossing peatland 

ecosystems. All lines shown in these photos were cleared between 20-40 years ago; e) case 

study trajectories for average (n = 4) and two individual seismic line locations in Alberta, 

Canada showing NDVI and NDMI normalized to the pre-disturbance average value. 
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Lee and Boutin (2006) estimated that after 35 years, approximately 65% of seismic lines 938 

crossing forests in Canada’s boreal plains remained free of woody vegetation. Yet, our 939 

mechanistic understanding of how seismic testing influences vegetation recovery is limited. 940 

For example, in wetland locations, mechanical flattening of localized topography can result in 941 

a water table closer to the ground surface, leading to unfavorable conditions for black spruce 942 

(Picea mariana) seedlings to regenerate (Lee and Boutin 2006, Caners and Lieffers 2014). 943 

Furthermore, the post-disturbance understory vegetation communities, often dominated by 944 

hydrophilic species such as sedges and sphagnum mosses, may outcompete slow growing 945 

tree saplings (Davidson et al 2020b). In addition to the initial disturbance, continued use of 946 

these linear features for hunting, recreational sports, and further resource extraction activities 947 

can hinder tree recovery (van Rensen et al 2015). This poor recovery can be seen in our 948 

Landsat case studies of vegetation response to seismic lines (Fig. 16). There is a substantial 949 

drop in NDVI and NDMI at both upland and peatland seismic line sites following disturbance 950 

given trees are actively removed, and NDMI recovery is slow.  951 

3.4.4. Limitations, data needs, and unknowns 952 

 Recent progress has been made to identify and map annual forest disturbance from 953 

logging across the North American ABZ based on the Landsat data archive spanning 1984 to 954 

2014 (Zhang et al 2022). Between 1987 and 2012, 10.8% of the Alaska and western Canada 955 

experienced disturbance, with 1.4% attributed to logging. However, state and provincial 956 

forestry records are still an essential data source for understanding the scale and impact of 957 

logging and validating satellite detection of forest management, especially for lower-impact 958 

forestry practices that may be challenging for remote sensing approaches to detect. Such 959 

long-term data (e.g., polygons dating back to the 1960s, and GeoPDFs dating back to the 960 

1800s in Saskatchewan, Canada) are crucial for studies of the impact of forest management 961 

on the North American boreal forest. However, many of these records are difficult to obtain. 962 
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Similarly, data and records of seismic lines are not readily available across all Canadian 963 

provinces. 964 

There are limited studies on land disturbances caused by oil and gas well production 965 

and exploration with only a few recent studies that are based in the contiguous U.S. (Nallur et 966 

al 2020, Chomphosy et al 2021, Raynolds et al 2014). Though databases with information on 967 

wells (i.e., intent, type, age, etc.) are developed and maintained by numerous state, provincial, 968 

and territorial governments as well as the U.S. Bureau of Land Management for wells on 969 

federal lands, they can be incomplete (e.g., completely missing wells or incomplete 970 

information on well depth and age, etc.). Nevertheless, these databases have been compiled 971 

for Canada and the U.S. to understand oil and gas well distribution, methane emissions, and 972 

other environmental impacts (Kang et al 2021, Williams et al 2021). Commercial databases 973 

are also available (e.g., GeoScout), however, they are not likely to contain information on the 974 

size of well pads and land disturbances. There is research on using machine learning and 975 

high-resolution imagery to detect active oil and gas well pads, which may provide data on 976 

well pad sizes and shapes (Bartsch et al 2020). Overall, there is a need for improved oil and 977 

gas well databases and information on well pads to understand the full extent of impacts. 978 

3.5. Weather-related disturbances 979 

 Though anthropogenic-driven climate change is likely to have longer-term “press” 980 

disturbance effects on ABZ vegetation, a handful of weather-related disturbances can affect 981 

vegetation markedly in the short-term, including rain-on-snow events, heat waves and 982 

extreme drought, and windthrow. Such disturbances can impact boreal and tundra vegetation, 983 

nutrient, and hydrology dynamics. 984 

3.5.1. Rain-on-snow 985 

 Rain-on-snow events, or more broadly wet surface snow conditions (Pan et al 2018), 986 

are driven by a range of physical processes, though most often are caused by wintertime rain 987 
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events that result in a wet snow surface (Singh et al 2000). Wet snow conditions can cause 988 

flooding and paludification in ABZ ecosystems, accelerate permafrost thawing, and decrease 989 

vegetation productivity (Rennert et al 2009, Bjerke et al 2014, Jeong and Sishama 2018). In 990 

mountainous regions rain-on-snow can destabilize the snowpack and trigger avalanches 991 

(Conway and Benedict 1994). 992 

 Most notably, re-freezing of melted snow creates ice barriers between the soil surface 993 

and the snowpack, making it difficult for ungulates such as caribou (Rangifer tarandus) and 994 

musk oxen (Ovibos moschatus) to forage for lichen during the winter (Putkonen et al 2009, 995 

Rennert et al 2009). These water and ice layers also facilitate the growth of toxic fungi, 996 

which can spoil lichens, further lowering wintertime food sources for ungulates, increasing 997 

foraging efforts and negatively impacting fat and protein reserves. In some cases, this can 998 

lead to movement of herds outside of their normal ranges, or even starvation and death, as 999 

occurred in 2003 on Banks Island, Canada (Putkonen et al 2009), when a severe rain-on-1000 

snow event resulted in the death of ~20,000 musk oxen, reducing the island’s population by 1001 

25%.  1002 

Along with direct impacts of rain-on-snow on vegetation freezing and flooding 1003 

damage (Bjerke et al 2015), such severe impacts on ABZ ungulates can have cascading 1004 

impacts on vegetation, predators, and the human populations that depend on the herds 1005 

(Serreze et al 2021, Sokolov et al 2016). A significant decline in ungulates in one region can 1006 

potentially release that vegetation from grazing and trampling pressure, whereas a movement 1007 

of ungulates into a new area driven by rain-on-snow may cause significant vegetation damage 1008 

(Vors and Boyce 2009).  1009 

 Occurrence of rain-on-snow events depends on several factors, including air 1010 

temperature, precipitation type, and extent and thickness of the snowpack (McCabe et al 1011 

2007, Freudiger et al 2014). Increases in energy flux to the snow surface, either through 1012 
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increasing temperature or increases in latent heat from rainwater, cause snowmelt as well as 1013 

subsequent disruption of the insulative effect of the snowpack on the soil through increased 1014 

liquid water content and increased energy flux to the soil (Rennert et al 2009, Kim et al 2015, 1015 

Pan et al 2018). While an individual rain-on-snow event is generally short-lived – on the 1016 

order of days – the subsequent impacts on soil hydrologic and thermal conditions can last 1017 

months. The frequency of rain-on-snow is predicted to increase in the future in the ABZ due 1018 

to rising temperatures (Ye et al 2008, Jeong and Sishama 2018, Pan et al 2018), with 1019 

potential cascading impacts on hydrology, thermal conditions, ecosystem function, and 1020 

ecosystem services. 1021 

3.5.2. Heat waves and extreme drought 1022 

 Heat waves and extreme drought can damage ABZ vegetation, lower productivity, 1023 

and cause vegetation mortality (Hogg et al 2008, Allen et al 2010, Michaelian et al 2011). 1024 

Heat waves can occur both during the growing season and in winter, with differing impacts 1025 

on vegetation. Wintertime heat waves occur when temperatures rise above freezing for 1026 

several days (Phoenix and Lee 2004, Bokhorst et al 2011). As a result, snow melts across 1027 

large regions (Bokhorst et al 2008, 2009), initiating spring-like physiological responses in 1028 

plants such as de-hardening and loss of frost tolerance, increases in photosynthesis, and bud 1029 

swelling (Crawford 2008, Bokhorst et al 2010). Once temperatures return to freezing or 1030 

below, plants are exposed to extreme cold due to reduction of snow’s insulating capacity and 1031 

buds can be damaged by frost (Bokhorst et al 2008, Girardin et al 2022). When the warming 1032 

event is accompanied by little or no soil thaw, plant damage can be worsened by plant 1033 

transpiration in frozen soil, leading to cavitation and desiccation of leaves, i.e., “frost 1034 

drought” (Bokhorst et al 2008, Bjerke et al 2017, Comeau et al 2019). This plant damage can 1035 

decrease productivity and lead to mortality. For example, an experimental manipulation study 1036 

of a sub-Arctic heathland found a 50% reduction in GPP after multiple extreme winter 1037 
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1038 

1039 

warming events (Bokhorst et al 2011). Such extreme warming events are predicted to 1040 

increase in the future as temperatures rise (Meehl and Tebaldi 2004). In Utqiagvik, Alaska, 1041 

the number of winter days with maximum temperatures above freezing has steadily increased 1042 

since 1960, and several record-high days occurred in 2020 (as compared to the previous 20 1043 

years) (Fig. 17). Such temperature anomalies will continue to impact ABZ vegetation, 1044 

potentially leading to plant damage and decreased productivity if wintertime extremes 1045 

continue to increase (Richardson et al 2018). 1046 

Figure 17. Climate data and temperature anomalies at Utqiagvik, AK (formerly Barrow, 

AK). Top: mean annual differences from 1960-2020 mean. Bottom: number of winter 

(Oct. – Mar) days above 0ºC each year from 1960-2020. Weather station data are from the 

NOAA Global Historical Climatology Network. 
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 1047 

 1048 

During the growing season, heat waves and severe droughts (either from increased 1049 

temperatures or decreased precipitation) can lead to water deficits that increase vegetation 1050 

stress, lower productivity, and can cause widespread mortality under severe conditions (Fig. 1051 

18a; Hogg et al 2008, Allen et al 2010, Michaelian et al 2011, Peng et al 2011, Girardin et al 1052 

Figure 18. a) Massive mortality of quaking aspen in Saskatchewan, Canada, from a 

drought in 2001-2002, photo credit M. Michaelian 2004 (Michaelian et al 2011); b) 

browning of tundra vegetation; c) Landsat-derived NDVI and NDMI over vegetation in 

response to drought in the Northwest Territories in 2018. 
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2021, Refsland and Cushman 2021). Such drought stress disrupts plant cell membrane 1053 

function and can lead to xylem cavitation, with susceptibility to cavitation increasing with 1054 

canopy height and varying by plant species due to differences in stomatal regulation 1055 

(McDowell and Allen 2015, Allen et al 2010). Species-specific differences in drought 1056 

response can alter stand structure and species composition if previously dominant species die 1057 

off and are replaced by more drought-tolerant ones (Anderegg et al 2012). Drought can also 1058 

cause regeneration failure and conversion of forests to woodland or grassland, particularly if 1059 

compounded by other disturbances like fire (Baltzer et al 2021, Whitman et al 2019). Such 1060 

drought and heat wave events can also trigger disease and insect outbreaks within already 1061 

stressed vegetation (Raffa et al 2008, Boyd et al 2021, Ruess et al 2021). The impact of 1062 

drought on vegetation greenness and moisture can be seen in a case study in the Northwest 1063 

Territories for a drought that occurred in 2018 (Fig. 18c). Both NDVI and NDMI drop 1064 

immediately following the drought, with slow recovery in vegetation moisture and more 1065 

moderate recovery in NDVI. 1066 

 Severe droughts and heat wave events are increasing within the North American 1067 

ABZ, particularly in the southern boreal zone (Michaelian et al 2011, Berner and Goetz 2022, 1068 

Perkins-Kirkpatrick and Lewis 2020). An extreme drought in 2001-2002 in southwestern 1069 

Canada resulted in a severe aspen mortality event, with 45 Mt of biomass lost, resembling the 1070 

carbon impacts from a severe wildfire (Michaelian et al 2011). Drought and heat wave events 1071 

impact water quality, nutrient availability, and biogeochemistry (Tiwari et al 2018, Houle et 1072 

al 2016) They also have the capacity to feed back to climate change through loss of carbon 1073 

stocks and subsequent emissions from decomposition (Michaelian et al 2011, Ma et al 2012), 1074 

as well as changes to energy and water cycling due to changes in surface roughness, 1075 

transpiration rates, and latent heat fluxes (Bonan 2008). 1076 

3.5.3. Windthrow 1077 



 

 54  
 

 

 Windthrow, or tree blowdown events from high wind, are important disturbance 1078 

agents within the North American boreal zone that act primarily at the stand-scale (Ruel 1079 

2000, Bouchard et al 2009). While extreme wind events resulting in stand-replacement are 1080 

rare in the boreal zone, partial windthrow where some individuals survive is more common, 1081 

with return intervals ranging from 40 to 450 years in eastern Canada (De Grandpré et al 1082 

2018, Ruel 2000).  1083 

 Damage to trees depends on individual tree and stand factors, including tree size, 1084 

species, canopy position, and previous stem damage, as well as soil depth and moisture, stand 1085 

density, fragmentation, and angle with respect to wind direction (Peterson 2004). Tree size 1086 

and species are the most reliable predictor of windthrow survival – some tree species are 1087 

more “wind firm” than others, and damage susceptibility increases with increasing tree size 1088 

(Peterson 2004, Rich et al 2007). Because of the differential impact of partial windthrow on 1089 

tree size and species, these events can cause shifts in the species composition and stand 1090 

structure of impacted stands (Veblen et al 2001, Girard et al 2014). Windthrow can also act 1091 

as a trigger for subsequent bark beetle outbreaks, as beetle populations are able to colonize 1092 

and grow within downed stems (Wichmann and Ravn 2001). 1093 

3.5.4. Limitations, data needs, and unknowns 1094 

 Some of the main challenges of studying extreme weather events like rain-on-snow, 1095 

winter warming, and windthrow include the sparsity of weather stations in northern regions, 1096 

the lack of routinely deployed weather equipment (Putkonen et al 2009), and the 1097 

unpredictable occurrence of events such as severe blowdown (Bouchard et al 2009). 1098 

Detection of rain-on-snow events with satellite measurements is possible using radar, 1099 

microwave, and multispectral imagery (Serreze et al 2000, Pan et al 2018, Bartsch et al 1100 

2010). Accurate detection of windthrow depends on the spatial resolution of remotely sensed 1101 

measurements compared to the scale of the blowdown (Schwarz et al 2003). An enhanced 1102 
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monitoring network of weather conditions and snowpack, such as those present in the 1103 

SNOTEL network (Schaefer and Paetzold 2001) would help better characterize and identify 1104 

the occurrence of these events. 1105 

 With respect to extreme drought and heat waves, while the physiological mechanisms 1106 

underlying plant drought response and vulnerability are well established and emerging 1107 

remote sensing techniques offer promise (Rogers et al 2018), it is still difficult to predict 1108 

which individuals will die from such drought stress (Trugman et al 2021). Critical needs 1109 

include further understanding of plant physiological and site characteristics that influence 1110 

drought exposure and susceptibility and better information about how biotic agents interact 1111 

with drought to cause plant mortality (Trugman et al 2021). 1112 

3.6. Riverine processes 1113 

3.6.1. Background 1114 

 Despite their relatively small footprint in ABZ landscapes, riparian zones are 1115 

disproportionately important for ecological disturbance (Scrimgeour et al 1994), hydrological 1116 

processes (Ploum et al 2021), biogeochemical cycling (Blackburn et al 2017), species 1117 

diversity (Johansson et al 1996, Andersson et al 2000, Johnson and Almlöf 2016), and 1118 

wildlife (Tape et al 2016, Cooke and Tauzer 2020). In recent decades, substantial hydrologic 1119 

changes have been observed on ABZ rivers, including changes to seasonal flow-regimes 1120 

(Peterson 2002, McClelland et al 2006, Smith et al 2007, Rawlins et al 2010, Holmes et al 1121 

2021), groundwater relations (Okkonen et al 2010), river-ice breakup (Prowse and Beltaos 1122 

2002, Beltaos et al 2006), biogeochemistry and water quality (Tiwari et al 2022), and beaver 1123 

colonization (Tape et al 2018, 2022). In addition, there have been widespread changes 1124 

observed in permafrost extent both on floodplains and within their catchments (St. Jacques 1125 

and Sauchyn 2009, Jones and Rinehart 2010, Quinton et al 2011, Tananaev and Lotsari 1126 

2022). It has been hypothesized that these processes will lead to a reduction in the areal 1127 
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extent of active floodplains in ABZ landscapes due to increased river channelization, smaller 1128 

peak flows, and reduced riparian disturbance intensity (Ström et al 2011, 2012, Nilsson et al 1129 

2013, Jansson et al 2019).  1130 

 Streams and rivers in the ABZ are strongly influenced by geology and topographic 1131 

relief as well as hydroclimate, ice cover, and the permafrost regime (Ashmore and Church 1132 

2001, Rokaya et al 2018), with high variability in river morphology (Nilsson et al 2015). 1133 

Streamflow rates can range from slow-moving tundra streams to large flowing rivers that 1134 

span Arctic-boreal ecotones (e.g., the Mackenzie and Yukon rivers) (Nilsson et al 2015). 1135 

Riparian ecosystems are especially dynamic because they experience frequent erosion, 1136 

flooding, and sedimentation (Wiens 2002). Channel migration and flooding can be seen as 1137 

similar to fire disturbance, both creating short-term destruction to vegetation with the 1138 

capacity for regeneration following the event (Rood et al 2007). Channel migration in 1139 

particular can “reset” vegetation succession at any successional stage through floodplain 1140 

erosion and simultaneous sedimentation and creation of new land for vegetation 1141 

establishment (Walker and Chapin 1986, Viereck et al 1993, Van Cleve et al 1996, Helm and 1142 

Collins 1997, Lininger et al 2017).  1143 

In addition to channel migration, ice-jam flooding is also an important disturbance in 1144 

ABZ riparian zones. Ice-jams occur when ice floes in rivers are impeded by stationary ice 1145 

covers, bridges, islands, or river width constrictions, leading to flooding (Rokaya et al 2018). 1146 

Ice-jam flooding can occur during any river ice freeze-up or breakup period but are most 1147 

common during the spring breakup period (Rokaya et al 2018, Beltaos and Prowse 2009). 1148 

Ice-jam flooding causes significant economic and structural damage, and can result in loss of 1149 

human life, made more prevalent by their unpredictable nature (Massie et al 2002, Mahabir et 1150 

al 2008, Rokaya et al 2018). These floods also disrupt aquatic and riparian habitat through 1151 

decreased fish habitat, and damage to and even removal of vegetation adjacent to the stream 1152 
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(Lindenschmidt et al 2016, Lind et al 2014). Ice-jam flooding also exerts a strong influence 1153 

on the water balance of lakes within river floodplains and deltas, and the floodwaters supply 1154 

sediment, nutrients, and contaminants. These processes have been investigated in the Slave 1155 

River and Peace-Athabasca Deltas where floodwaters replenish nearby basins and offset 1156 

evaporative water loss (e.g., Brock et al 2009, Wolfe et al 2012) while also increasing 1157 

concentrations of suspended sediment (and turbidity of the lake water), major nutrients, and 1158 

contaminants such as polycyclic aromatic compounds and metals (Wiklund et al 2012, Hall et 1159 

al 2012, Elmes et al 2016, MacDonald et al 2016, Kay et al 2020). Reductions in the 1160 

frequency of flooding leave lakes across these landscapes at risk of drying (Wolfe et al 2012). 1161 

Sustainable management of ice-jam flooding thus includes balancing both the detrimental and 1162 

beneficial aspects of these events on socio-economic and ecological systems (Das et al 2018).  1163 

Beavers are important ecosystem engineers in the North American ABZ through their 1164 

dam-building and hydrologic engineering of rivers, streams, sloughs, and lakes. Previously 1165 

considered only a sub-Arctic species, recent observations show beaver colonization into low 1166 

arctic tundra regions of Alaska and Canada in recent decades (Jones et al 2020b, Tape et al 1167 

2018, 2022) due to climate-change driven landscape change as well as population recovery 1168 

from historical over-trapping (Tape et al 2018). Beaver dams trap water on the landscape, 1169 

turning streams and sloughs into connected ponds, widening riparian zones and altering 1170 

groundwater flow (Tape et al 2022, Westbrook et al 2006). Jones et al (2020b) found that 1171 

beavers preferentially targeted thermokarst landforms in their dam-building activities within 1172 

the Baldwin Peninsula, Alaska, accounting for 60% of the increase in surface water in the 1173 

region between 2002 and 2019. Increases in surface and groundwater due to beaver dams 1174 

transfers additional heat to the ground and thaws permafrost surrounding and beneath beaver 1175 

ponds (Tape et al 2022). In permafrost-affected regions, beavers have the capacity to initiate 1176 

and affect lake formation and drainage, ice-wedge degradation, cryogenic landslides, and 1177 
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other thermokarst events (Jones et al 2018, 2021). These physical changes to waterways and 1178 

the surrounding permafrost effectively create warmer patches of mixed aquatic and terrestrial 1179 

ecosystems that likely act as oases. 1180 

3.6.2. Limitations, data needs, and unknowns 1181 

Given the role of climate and extreme events on floodplains, spatiotemporal 1182 

properties of disturbance, succession, and floodplain evolution are likely to be influenced by 1183 

recent climatic warming at high latitudes, leading to important changes in the structure and 1184 

function of riparian ecosystems in the ABZ. However, most ecosystem change studies to date 1185 

have focused on upland and lowland ecosystems, whereas the observational record for 1186 

riparian zones is comparatively sparse. There is thus substantial uncertainty concerning recent 1187 

changes and future trajectories on floodplains across gradients of climate, stream order, 1188 

catchment size, and floodplain morphology. For example, the pace of vegetation succession 1189 

may increase in a warming climate due to longer, more productive growing seasons and 1190 

changes in permafrost properties on or near riparian zones, particularly in forest-tundra 1191 

ecotones (Wilmking and Juday 2005, Kharuk et al 2006, Beck et al 2011), while altered 1192 

flow-regimes may influence the frequency and intensity of disturbance regimes. In Alaska, 1193 

several studies have documented conspicuous, long-term increases in the extent and canopy 1194 

height of tall shrublands in subarctic and Arctic riparian zones (Tape et al 2011, Brodie et al 1195 

2019, Liljedahl et al 2020). Understanding the interactions between biological and physical 1196 

processes in the context of climate warning is important for assessing long-term impacts of 1197 

continued warming on ABZ floodplains. 1198 

Beaver activity may be an important disturbance within permafrost regions, 1199 

potentially causing widespread changes to the hydrologic and biotic environment, and 1200 

initiating permafrost degradation (Tape et al 2022). Current research is exploring how these 1201 

newly constructed oases affect carbon cycling, aquatic and terrestrial biodiversity, fish, and 1202 
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other ecosystem attributes. Further investigation is needed to understand the spatial extent 1203 

and implications of beaver activity within the North American and circumpolar ABZ (Tape et 1204 

al 2022). 1205 

3.7. Mammalian herbivore activity 1206 

3.7.1. Background 1207 

 Mammalian herbivores like moose (Alces alces), caribou (Rangifer tarandus), and 1208 

snowshoe and arctic hares (Lepus americanus, L. arcticus) impact ABZ ecosystems through 1209 

coupled herbivore-vegetation feedbacks. For example, selective foraging, trampling, and 1210 

inputs of excreta, urine, and decomposing carcasses can directly alter plant community 1211 

composition or indirectly affect ecosystem properties through changes to soil characteristics 1212 

and nutrient cycling (Leroux et al 2020, Olofsson et al 2004, Schmitz et al 2018, Väisänen et 1213 

al 2014). These species are also a crucial subsistence resource for indigenous communities 1214 

(Rexstad and Kielland 2006). Caribou in particular occur in high abundance across much of 1215 

the North American ABZ, numbering in the millions, and are one of the Arctic’s most 1216 

ecologically, culturally, and economically important species (Gagnon et al 2020, Hummel 1217 

and Ray 2008, Parlee et al 2018). These large herbivores also make some of the longest 1218 

terrestrial animal migrations in the world, with some herds traveling over 1,000 km from 1219 

boreal wintering grounds to Arctic tundra breeding grounds (Gurarie et al 2019, Joly et al 1220 

2019). During calving and migratory periods, caribou herds aggregate in dense groups and 1221 

can alter landscapes as they pass through, impacting vegetation cover and structure, soils, and 1222 

ecosystem carbon storage (Olofsson and Post 2018).  1223 

 The distribution and intensity of caribou impacts are driven primarily by grazing and 1224 

trampling associated with fluctuations in population sizes, which occur on a multi-decadal 1225 

basis (Gunn 2003, Joly et al 2011, Vors and Boyce 2009). These fluctuations are influenced 1226 

by snow conditions and forage availability (Gunn 2003, Joly et al 2011, Post and 1227 
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Forchhammer 2002). A meta-analysis of caribou impacts on vegetation cover across the 1228 

Eurasian and North American ABZ showed a clear negative effect on lichen (Bernes et al 1229 

2015). Because lichens are slow to recover from disturbance, this impact is both acute and 1230 

long-lasting (Joly et al 2009, Macander et al 2020, Suominen and Olofsson 2000). 1231 

Reductions in lichens in turn drive density-dependent feedbacks on caribou, causing 1232 

population declines and influencing population cycles (Gunn 2003, Manseau et al 1996). 1233 

Impacts of caribou trampling and grazing on vegetation can also include transitions to 1234 

graminoid dominated communities (van der Wal 2006), and constraints on deciduous shrub 1235 

expansion (Bråthen et al 2017, Christie et al 2015, Olofsson et al 2009) or treeline advance 1236 

(Bryant et al 2014, Munier et al 2010).  Caribou impacts are most pronounced in arctic 1237 

environments where population densities are highest. In the boreal zone, low caribou density 1238 

likely minimizes impacts. 1239 

 In contrast, herbivores like hares and moose in the boreal forest can shift the age 1240 

distribution of the foraged species towards younger age classes (Butler 2003, Kielland et al 1241 

2006). Selective feeding can also shift species composition. For example, moose herbivory 1242 

can cause a shift from palatable deciduous species towards unpalatable evergreen species 1243 

(Kielland et al 2006, Pastor et al 1988). Recent work suggests that moose alter their behavior 1244 

to favor dense canopy areas during increased summer temperatures, suggesting shifts in areas 1245 

vulnerable to browsing under warmer conditions (Jennewein et al 2020). Whereas moose 1246 

generally avoid evergreen species like white spruce (Picea glauca), snowshoe hares browse 1247 

heavily on white spruce seedlings, especially during periods of high hare abundance (Rexstad 1248 

and Kielland 2006, Angell and Kielland 2009, Hollingsworth et al 2010, Sharam and 1249 

Turkington 2009). Snowshoe hare populations in Alaska and Canada exhibit cyclic dynamics, 1250 

driven by predator population size and herbivore-vegetation feedbacks (Krebs et al 2018). 1251 

During peaks that occur about every ten years, snowshoe hare browsing can alter vegetation 1252 
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composition and plant chemical defenses (Fox and Bryant 1984), suppress the succession of 1253 

white spruce (Olnes and Kielland 2016), and curb treeline advance (Olnes et al 2018). 1254 

3.7.2. Limitations, data needs, and unknowns 1255 

 Most studies of herbivore impacts on vegetation use exclosures to assess what 1256 

happens when herbivores are removed from a system. However, responses of vegetation to 1257 

increasing vs. decreasing grazing pressure are not equal (Olofsson 2006). For example, 1258 

studies that examine the impact of increasing caribou herd size (typically observational) often 1259 

report stronger impacts than experiments that exclude caribou and examine the impact of 1260 

decreasing herd size (typically manipulative) (Olofsson 2006). Geographic disparities in 1261 

research can also influence conclusions. For example, studies of caribou impacts on 1262 

vegetation primarily come from Fennoscandia (Soininen et al 2021). This raises issues of 1263 

transferability of results because ecological conditions are different. Most caribou in 1264 

Fennoscandia are managed in domesticated or semi-domesticated herds that often occur at 1265 

higher densities than wild herds in North America (Bernes et al 2015). 1266 

 Results from remote sensing and modeling studies which attempt to capture the 1267 

relationship between caribou population density and vegetation productivity have produced 1268 

mixed results, with some studies reporting significant negative relationships (Campeau et al 1269 

2019, Yu et al 2017, Rickbeil et al 2015) and others reporting weak or non-significant 1270 

relationships (Fauchald et al 2017). Recent work by Davidson et al (2020a) provides and 1271 

extensive collection of animal tracking datasets that can be used to analyze climate-driven 1272 

variation in animal movement and foraging activity. As remote sensing technologies 1273 

improve, increasing spectral and spatial resolution of satellite imagery might bolster the 1274 

ability to quantify herbivore impacts across space and time. 1275 

 4. Temporal and spatial scale of disturbances 1276 
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 Disturbances in the North American ABZ notably occur across a wide range of spatial 1277 

and temporal scales (Table 1). The spatial grain of individual disturbance events ranges from 1278 

on the order of meters for individual patterned-ground features such as frost circles (Frost et 1279 

al 2013) to 1,000s of square kilometers for large boreal “megafires” (Stephens et al 2014). 1280 

Temporally, ABZ disturbances occur over the course of hours or days, such as windthrow, or 1281 

over years, such as with drought (Michaelian et al 2011). Their return frequency for the same 1282 

location also varies from a general one-time event, such as with lake drainage (Shur and 1283 

Jorgenson 2007), to an annual occurrence, such as with cryoturbation (Frost et al 2018b). 1284 

Post-disturbance vegetation recovery times also vary, on the order of years (e.g. rain-on-1285 

snow; Bokhorst et al 2011), to decades (e.g. wildfire; Amiro et al 2010, Kurz et al 2013), or 1286 

not at all (e.g., oil and gas wells; Kang et al 2021). Finally, the intensity of the impact on 1287 

ABZ vegetation varies from productivity changes (e.g., cryoturbation, pathogens; Frost et al 1288 

2013, Holsten et al 2008) to complete vegetation loss (e.g. wildfire; Rogers et al 2015). 1289 

 The temporal and spatial scale of disturbance occurrence and recovery as well as the 1290 

overall intensity of impact can also vary within disturbance and landscape types. For 1291 

example, high severity boreal wildfires tend to be stand-replacing large-scale events lasting 1292 

weeks or months (Sedano and Randerson 2014, Rogers et al 2015, Veraverbeke et al 2017), 1293 

in contrast to smoldering fires, which can burn year-round and survive the winter (Scholten et 1294 

al 2021). Spatially, the resolution of individual disturbance events can be quite small but can 1295 

cover large extents in their overall scale of impact. For example, insect infestations occur at 1296 

the individual tree scale, but can then spread to whole stands and landscapes (Raffa et al 1297 

2008). Similarly, though individual seismic lines cover only a few meters in area, their 1298 

combined extent is vast across the North American ABZ (Jorgensen et al 2010). 1299 

 1300 
Table 1. Spatial, temporal, and intensity characteristics of ABZ disturbances. 
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Disturbance 

Group 

Disturbance Spatial 

Grain 

Return 

Interval 

Occurrence 

Timeline 

Recovery 

Timeline 

Impact/Intensity 

Wildfire 

Wildfire 100s of 

km2 

Decadal to 

centennial 

Weeks to 

months 

Decades 

to 

centuries 

Some to complete 

vegetation loss 

Insects and 

pathogens 

Bark beetles Meters to 

hectares 

Decadal to 

centennial 

Months to 

years 

Decades Some to complete 

vegetation loss 

Defoliators 

and leaf 

miners 

Meters to 

hectares 

Annual to 

decadal 

Months to 

years 

Years to 

decades 

Vegetation loss; 

productivity decline 

Pathogens Meters to 

hectares 

Annual to 

decadal 

Months to 

years 

Years to 

decades 

Some vegetation 

mortality; 

productivity decline 

Permafrost 

Cryoturbation Meters Annual Months  Years Stress 

Ice-wedge 

degradation 

Meters Annual Years  Years Partial mortality 

Cryogenic 

landslides 

Meters to 

hectares 

Decadal to 

centennial 

Days to 

years 

Decades Vegetation loss 

Lake 

drainage 

Meters to 

hectares 

Generally 

one-time 

event 

Days to 

years 

Years to 

decades, if 

at all 

Vegetation 

encroachment 

Anthropogenic 

Logging Hectares Decadal to 

centennial 

Months Decades 

to 

centuries 

Vegetation loss 

Oil and gas 

wells 

Meters One-time 

event 

Years None Vegetation loss 

Seismic lines 

and pipelines 

Meters to 

hectares 

One-time 

event 

Weeks to 

months 

Decades Vegetation loss; 

vegetation change 

Weather-

related 

Windthrow Hectares Decadal to 

centennial 

Days Decades Some to complete 

vegetation loss 

Rain-on-

snow 

100s of 

km2 

Annual Days Years Productivity decline; 

flooding; loss of 

grazing animals 

Extreme 

drought and 

heat waves 

100s of 

km2 

Annual to 

decadal 

Months to 

years 

Years to 

decades 

Vegetation loss; 

productivity decline 

Riverine 

Channel 

migration 

Meters to 

hectares 

Annual to 

decadal 

Days to 

months 

Years to 

decades 

Some to complete 

vegetation loss 

Ice-jam 

flooding 

Hectares Centennial Days Decades Vegetation loss 

Beaver 

engineering 

Meters to 

hectares 

Decadal Months Years to 

decades 

Some to complete 

vegetation loss 
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Herbivore 

activity 

Herbivore 

activity 

Hectares 

to 100s 

of km2 

Annual to 

centennial 

Months to 

years 

Years to 

centuries 

Vegetation stress; 

vegetation loss 

 1301 

 We compiled these spatiotemporal characteristics across disturbance types (Table 1) 1302 

and analyzed how they vary using a principal component analysis (PCA). The results from 1303 

our PCA analysis (Fig. 19) indicate the broad spread in the spatiotemporal characteristics 1304 

associated with ABZ disturbances. The loadings for frequency and intensity and size and 1305 

occurrence/recovery timeline are opposite one another, indicating negative correlation. In 1306 

general, high-intensity events occur at a lower frequency than lower severity disturbances 1307 

which only impact productivity (but not necessarily mortality) (Table 1; Fig. 19). Some of the 1308 

overarching groups are clustered together in the PCA (e.g., anthropogenic, pests and 1309 

pathogens, weather), whereas the permafrost-related disturbances span the entire range of the 1310 

first two principal components. 1311 

 Understanding spatiotemporal differences is crucial when detecting and studying 1312 

these disturbances via remote sensing, or when including them in process-based models. 1313 

Advances in Earth observation sensor resolution have improved the capability to characterize 1314 

and monitor disturbances and their interactions. However, in the context of detection and 1315 

monitoring of multi-disturbance landscapes, an integrative approach is necessary to extend 1316 

knowledge about disturbance (or multi-disturbance) recovery processes across high-latitude 1317 

landscapes. Integration with remote sensing typically implies validation against pre-and post-1318 

disturbance in situ data across whole landscapes, and often involves cross-sensor 1319 

harmonization to extend temporal or spatial ranges. Synthesis of disturbance-related studies 1320 

toward understanding disturbance processes and their interactions across such a broad and 1321 

heterogeneous domain requires bridging of temporal and spatial scales across scientific 1322 

disciplines (i.e., ecology, geology, hydrology, etc.) (Cavender-Bares et al 2022). The 1323 

disturbance spatial grain and extent are particularly important, and should match the spatial 1324 
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resolution of the sensor (Senf et al 2017b, Duncan et al 2020). Sensor pixel size is known to 1325 

affect the measurement magnitude, location, and geospatial congruence of disturbance 1326 

hotspots and the characterization of the effects of disturbances on ecosystems (Cavender-1327 

Bares et al 2022). While some of the mid-resolution sensors like Landsat have long records 1328 

and are capable of tracking trajectories, they may be limited to tracking only larger-scale 1329 

disturbances because their pixel size (e.g., 30 m) is large relative to the sub-pixel of 1330 

disturbances such as cryoturbation (~1-5 m) or the early stages of insect outbreaks.  1331 

 1332 

 1333 

Scale is also crucial for the prediction of future disturbance effects, interactions, and 1334 

feedbacks using process-based modeling. Models that do not consider individual plant 1335 

species, such as many global climate models, will not fully capture species-specific effects of 1336 

biotic disturbances, herbivory, and windthrow, or accurately capture successional dynamics 1337 

Figure 19. PCA derived from disturbance spatiotemporal characteristics (Table 1). 

Qualitative characteristics were modified to numeric scalar values (Table S2). 
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following disturbances (Foster et al 2019, Shugart et al 2020). Ecosystem demographics 1338 

represented in a modeling framework should interact with vegetation dynamically and be 1339 

represented at scales that correspond to the frequency and extent of the disturbances that the 1340 

model framework includes (Seidl et al 2011, Albrich et al 2020). For example, fine temporal 1341 

scales (e.g., daily, Table 1) may be required to accurately model the disturbance interactions 1342 

of a wildfire leading to a cryogenic landslide. It is also crucial to consider gridcell-to-gridcell 1343 

spread of “contagious” disturbances like fire or insect infestation, as well as the temporal and 1344 

spatial scales at which this spread occurs (Johnstone et al 2011). Representing the spatial and 1345 

temporal complexities of multi-disturbance interactions in these systems accurately is an 1346 

emerging area of high-resolution forest and tundra modeling. As remote sensing and 1347 

modeling technologies improve, and more accurate and spatially continuous occurrence data 1348 

are acquired, we will be better able to detect and predict ongoing ABZ disturbances, as well 1349 

as their future trajectories. 1350 

5. Disturbance interactions 1351 

 Disturbances within the ABZ can interact with one another, often with positive 1352 

feedbacks that amplify the impact of subsequent events, such as wildfire and subsequent 1353 

abrupt permafrost thaw (Gibson et al 2018). Other interactions may have a negative or 1354 

dampening effect on subsequent disturbances, such as cryogenic landslides and subsequent 1355 

reduction in wildfire potential (Fig. 20, 21). Broadly, disturbances may interact by altering 1356 

the resistance of an ecosystem to subsequent disturbances, altering the probability of future 1357 

disturbances, or by altering an ecosystem’s resilience, or its ability to recover from a 1358 

subsequent disturbance and its overall impact and severity (Buma 2015). As most of these 1359 

disturbances are predicted to increase in frequency, severity, and/or extent with climate 1360 

change (Veraverbeke et al 2017, Chen et al 2016, Pureswaran et al 2018, Turetsky et al 2020, 1361 

Pan et al 2018, Berner and Goetz 2022), the opportunity for interactions among these 1362 
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disturbances will likewise increase, leading to potentially nonlinear and cascading impacts on 1363 

ABZ ecosystems and vegetation (Buma 2015, Seidl et al 2017). Typically, studies of 1364 

disturbances, in the ABZ or otherwise, only focus on a single disturbance type, and thus do 1365 

not capture the true potential impact of a disturbance that includes its downstream effects on 1366 

other disturbance regimes (Seidl and Turner 2022). Here, we discuss some of the interactions 1367 

between ABZ disturbances and present our findings in Figures 20 and 21 but note that there 1368 

are many complex interactions which are still the subject of further study. 1369 

Due to the ubiquitous nature of wildfire across the North American ABZ, fire 1370 

interacts with most other disturbances within these regions (Fig. 20, 21). Drought and 1371 

wildfire are often linked, with low moisture conditions increasing fuel flammability (i.e., 1372 

decreasing resistance), and post-fire impacts on soil conditions often leading to moisture 1373 

stress (i.e., decreasing resilience) (Whitman et al 2019, Baltzer et al 2021). In general, fire 1374 

probability increases in the initial stages following bark beetle outbreaks as needles dry and 1375 

thus become more flammable (Jenkins et al 2012, 2014). However, once the needles fall, the 1376 

ground-to-canopy continuity is lost, thus lowering the probability of high severity crown 1377 

fires. Low severity fires that damage trees but do not kill them can increase susceptibility to 1378 

insect and pathogen attack and subsequent mortality (Hood and Bentz 2007), however stand-1379 

replacing wildfire removes host availability and thus decreases the risk for outbreak (Veblen 1380 

et al 1994). Fire in permafrost areas can lead to thermokarst features, permafrost degradation, 1381 

and changes to hydrology (Holloway et al 2020). Research indicates that tundra fires are 1382 

becoming more frequent (French et al 2015, Hu et al 2015) and that post-fire deciduous shrub 1383 

expansion may, in turn, further facilitate fire (Gaglioti et al 2021, Higuera et al 2008, Bret-1384 

Harte et al 2013, Lantz et al 2010a). However, herbivory and trampling of expanding 1385 

deciduous shrubs has the potential to provide a negative feedback effect that lengthens fire 1386 

return intervals in the Arctic (Christie et al 2015, Olofsson et al 2009, Bråthen et al 2017). 1387 
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Beavers have also been shown to prevent fire spread and provide fire refugia (Fairfax and 1388 

Whittle 2020). 1389 

Aside from fire, windthrow is often a precursor to bark beetle infestation through 1390 

facilitation of beetle population growth within downed logs (Christiansen et al 1987, 1391 

Malmstrom and Raffa 2000). Defoliators and bark beetles influence one another, where 1392 

defoliators can weaken hosts and increase susceptibility to subsequent attacks by bark beetles 1393 

(Cole et al 2022). Likewise, drought and biotic disturbances can enhance one another through 1394 

decreased vegetation resilience (Malmstrom and Raffa 2000, Ruess et al 2021, Boyd et al 1395 

2021). 1396 

 1397 

 1398 

Figure 20. Interactions between disturbances in the North American boreal forest. Driver (x-

axis) disturbances are the initiating disturbance, whereas response disturbances (y-axis) are 

the potential subsequent disturbances. Negative interactions correspond to a dampening 

effect of the driver on the response disturbance. Positive interactions correspond to an 

enhancing effect of the driver on the response disturbance. 
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Many disturbances are linked with cryoturbation, ice wedge degradation, and 1399 

cryogenic landslides (Fig. 20, 21). For example, a physical disturbance to the landscape, such 1400 

as a fire or seismic line placement, can reactivate cryoturbation features and local permafrost 1401 

degradation by removing live vegetation and surface organic material (Frost et al 2013). 1402 

Thaw slumps can also trigger catastrophic drainage of adjacent thermokarst lakes (Marsh et 1403 

al 2009). 1404 

 1405 

 1406 

Anthropogenic features such as roads, seismic lines, and logging affect the landscape 1407 

and can result in additional disturbance; roads can lead to additional wildfires by opening 1408 

access to human ignitions. Across Canada, the majority of human-caused ignitions are within 1409 

Figure 21. Interactions between disturbances in the North American Arctic tundra. Driver 

(x-axis) disturbances are the initiating disturbance, whereas response disturbances (y-axis) 

are the potential subsequent disturbances. Negative interactions correspond to a dampening 

effect of the driver on the response disturbance. Positive interactions correspond to an 

enhancing effect of the driver on the response disturbance. 
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10 km of communities (Parisien et al 2020). These fires then have the potential to destroy 1410 

human infrastructure. However, roads and infrastructure can also act as fire breaks and 1411 

prevent fire spread (Cochrane et al 2012, Narayanaraj and Wimberly 2011). Some salvage 1412 

logging can take place after a fire event, but fires can also destroy stands designated for 1413 

harvest, or previously harvested stands. Insect outbreaks and pathogens have destroyed 1414 

merchantable timber across Canada (Volney and Fleming 2000, Hennigar et al 2007), 1415 

reducing the area available for harvest. The large network of seismic lines associated with oil 1416 

and gas exploration has also negatively impacted habitat quality for boreal woodland caribou 1417 

across Canada, with many populations in decline (Hebblewhite 2017, Nagy-Reis et al 2021). 1418 

This type of habitat fragmentation has been shown to alter animal behavior and reduce 1419 

mammalian movements globally (Tucker et al 2018, Finnegan et al 2018). 1420 

Many of the disturbances have no or unknown interactions (Fig. 20, 21), either 1421 

because of lack of study (e.g., insect outbreaks and pathogens and subsequent thaw slumps) 1422 

or because the disturbances are not generally co-located (e.g., cryoturbation and logging). 1423 

These unknowns present both an opportunity and need for further study as well as the 1424 

potential for previously geographically separate disturbances to interact as climate change 1425 

continues to modify their extent and range. Disturbance interactions in particular should be a 1426 

priority for further field, remote sensing, and modeling studies in the ABZ. 1427 

6. Conclusions 1428 

Present in all these disturbances is the amplifying effect of climate change, as this 1429 

region is warming much faster than other areas of the globe (Price et al 2013, Smith et al 1430 

2019, Chylek et al 2022). The direction and magnitude of precipitation change is of growing 1431 

concern, and this shift will feed back to changes in disturbance trajectories – a drier landscape 1432 

will lead to larger and more severe wildfires, whereas abrupt permafrost thaw may increase in 1433 

a wetter environment that dampens wildfire risk. Ultimately, disturbances are pivotal in 1434 
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creating local hotspots of change against the backdrop of long-term climate change. These 1435 

disturbances create the potential for persistent shifts in vegetation composition (e.g., shift 1436 

towards deciduous dominance post-fire) and biomass and extent (e.g., tall shrub and tree 1437 

migration at treeline) (Foster et al 2022, Mack et al 2021, Maher et al 2021).  1438 

Disturbances also have the capacity to increase colonization and spread of non-native 1439 

and invasive plant species (Kelly et al 2020, Sanderson et al 2012, Kent et al 2018). 1440 

Previously, boreal and Arctic ecosystems were seen as too hostile and remote to facilitate 1441 

invasion of non-native species (Sanderson et al 2012), however increasing temperatures and 1442 

longer growing seasons are facilitating the northward migration of species in response to 1443 

climate change (Chen et al 2011). Many studies have begun to document non-native and 1444 

invasive plant species within the ABZ (Kent et al 2018, Wasowicz et al 2020, Leostrin and 1445 

Pergl 2021), and show increasing establishment of these species following disturbances like 1446 

fire (e.g., narrowleaf hawksbeard, Crepis tectorum, Carlson et al 2008) or harvest (e.g., bull 1447 

thistle, Cirisum vulgare, Randall and Rejmánek 1993). Increasing anthropogenic presence 1448 

and activities such as oil and gas exploration and production will also increase invasion of 1449 

non-native plants, particularly in the Arctic (Wasowicz et al 2020). Through rapid growth, 1450 

shading, and altered nutrient cycling (especially for N2-fixing species) invasive plants can 1451 

reduce growth of native plants, potentially leading to cascading impacts on biogeochemical 1452 

cycling (Carlson et al 2008, Sanderson et al 2012). Though non-native and invasive species 1453 

are gaining more attention in the ABZ, further studies are still needed to determine the 1454 

potential pace of future colonization as well as how these species will interact with native 1455 

flora in conjunction with climate change. 1456 

 1457 

Disturbance Group Disturbance Type Data Needs and Research Opportunities 

Wildfire Wildfire 
• More accurate, comprehensive, and finer scale 

burned area mapping 

Table 2. Data needs and research opportunities for ABZ disturbances. 
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• More combustion estimates 

• Post-fire vegetation trajectories and 

colonization of invasive/non-native species 

• Influence of forest and fire management 

• Future fire regime shifts 

Insect outbreaks and 

pathogens 

Insect outbreaks 

and pathogens 

• Earlier outbreak detection 

• Accurate and spatially/temporally consistent 

datasets 

• Potential insect range shifts 

Permafrost 

Cryoturbation • More accurate and finer-scale mapping 

Ice-wedge 

degradation 

• Data distinguishing between different stages of 

degradation 

• Drivers of heterogeneity in degradation 

• Driver of vegetation succession following 

degradation 

Cryogenic 

landslides 
• More accurate and finer-scale mapping 

Lake drainage 

• More accurate and finer-scale mapping of 

drainage and associated impacts 

• Prediction of where and when lake drainage 

will occur in future 

Anthropogenic 

Logging • More accurate and comprehensive records 

Seismic lines • More accurate and comprehensive records 

Oil & gas well 

production 

• More accurate and comprehensive records 

• Long-term impacts to vegetation and 

surrounding landscape 

Weather-related 

Rain-on-snow 
• Enhanced monitoring networks 

• Cascading impacts on vegetation 

Windthrow • Enhanced monitoring networks 

Drought and heat 

waves 

• Better prediction of where, when, and which 

plants will succumb to drought mortality 

• Drivers of drought exposure and susceptibility 

Riverine 

Channel migration 

and ice-jam 

flooding 

• More studies on riparian ecosystems in general 

• Vegetation succession in riparian ecosystems 

under climate change 

Beavers 
• More beaver studies in general, especially in 

the Arctic 

Mammalian 

herbivores 
Ungulates 

• More studies in North America on wild herds 

• Better data linkages between population size 

and satellite-derived vegetation response 
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 1458 

Disturbances also interact with human society in fundamental and profound ways. 1459 

Smoke from large fires in the ABZ can substantially reduce air quality (Trainor et al 2009, 1460 

Johnson et al 2021), and fires themselves cause significant destruction of human property and 1461 

resources (de Groot et al 2013, Thomas et al 2017). Many disturbances (e.g., insects, 1462 

pathogens, windthrow, drought) reduce timber resources (Volney and Fleming 2000, 1463 

Hennigar et al 2007, Anderegg et al 2012, Boucher et al 2018). Permafrost thaw and 1464 

subsequent ground subsidence is hazardous for travel and can damage critical infrastructure 1465 

(e.g., roads, airports, homes), with impacts across Alaska estimated to exceed $5 billion by 1466 

2099 (Melvin et al 2017a, Daanen et al 2012). Many indigenous communities depend on 1467 

healthy caribou and other herbivore populations for subsistence, and these animals are central 1468 

to many indigenous cultures (Gagnon et al 2020, Lamb et al 2022, Rexstad and Kielland 1469 

2006). Understanding how disturbance regimes and their interactions are changing is crucial 1470 

for adapting human society to climate change in the rapidly warming far north. 1471 

These disturbances also have the capacity to feed back to further climate change 1472 

through direct release of carbon dioxide and other greenhouse gases (Ueyama et al 2019), as 1473 

well as aerosols and black carbon in the case of wildfire. Post-disturbance impacts on soil 1474 

moisture, decomposition, and vegetation regrowth can feed back to climate through impacts 1475 

on above- and belowground carbon stores, permafrost dynamics, and energy and water 1476 

budgets (Randerson et al 2006, Ward et al 2012, Bonan 2008, Holloway et al 2020). Most of 1477 

the ABZ disturbances discussed here are expected to intensify with a warmer climate 1478 

(Veraverbeke et al 2017, Chen et al 2016, Pureswaran et al 2018, Turetsky et al 2020, Pan et 1479 

al 2018, Berner and Goetz 2022), with a few exceptions: diminished cryoturbation is 1480 

predicted as permafrost thaws and vegetation increases (Aalto et al 2017, 2021), and 1481 

diminished fluvial disturbance is predicted along with diminished extent of active floodplain 1482 
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surfaces (Jansson et al 2019). Though most of these disturbances are natural and integral 1483 

components of the ABZ system, anthropogenic climate change is pushing their extent, 1484 

frequency, and severity outside of historical regimes. Continued study and data acquisition is 1485 

crucial for projecting the future magnitude and direction of these disturbance trajectories and 1486 

how they may interact (Table 2). 1487 
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