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Introduction

• Proper Thermal Management 

can increase operational 

safety, efficiency, and overall 

battery life.

• Battery packs are to be used 

in electric airplane X-57 and 

other electric aircraft.

• These packs are intended to 

be put into the wings.
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Requirements:

• 3D Printable

• Specific Gravimetric Energy 

Density

• Built of two or more materials:

• Low density polymer to keep 

weight down.

• High conductivity material 

such as metal or ceramic for 

thermal and structural 

support.
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Materials and Methods

• Materials:

– 6063-O Aluminum

• 2700 kg/m3

• 201 W/m-K

– TC Poly E ins Ice 9 Flex

• 1550 kg/m3

• 2.5 W/m-K through 

plane

• 8 W/m-K in plane.

• The final packs must 

have 12 to 16, 18650 

batteries.

• The pack designs should 

minimize material 

volume and mass.
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SolidWorks software was 

used for battery pack design
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Thermal Modeling Using COMSOL

Simulation variables set 

at a constant for all 

tests:

• Heat flux = 1161.4 W/m2

• Tin = 319.7 K

• Vin = 15 m/s

• All temperature plots 

were from time 

dependent studies 

with 100 sec intervals 

out to 1000 sec.

• All recorded data was 

taken from the 1000 

sec-time plot.

• The “Heat Transfer in 

Solids and Fluids” 

module was utilized 

for all COMSOL 

computations.
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Battery Sheath Testing, 1/3
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• Sheaths aid in reducing linear 

temperature gradient from inlet to outlet.

• Adding fins to sheaths further reduces 

temperature gradient.

• All the modeled sheaths are 65 mm tall.

Cooling Method: Air

Materials: 6063-O Aluminum

Mass Left: 16.465 g

Mass Right: 29.121 g

Change in 

Temperature:

1.59 °C

Change in 

Temperature:

0.90 °C

65 mm
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Battery Sheath Testing, 2/3
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• Increasing the 

number of fins and 

decreasing 

thickness is not very 

effective for straight 

fins

• Wrapping fins 

helically around the 

sheath can 

significantly 

decrease 

temperature gradient

Cooling Method: Air

Materials: 6063-O 

Aluminum

Mass Left: 20.276 g

Mass Right: 29.166 g

Change in 

Temperature:

0.88 °C

Change in 

Temperature:

0.44 °C
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Battery Sheath Testing, 3/3
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• Reducing the fin thickness while 

increasing number of fins is not effective 

for spirally wrapped fins either.

• The best sheath for weight is with no fins, 

however the best sheath for temperature 

gradient is thicker spirally wrapped fins.

Cooling Method: Air

Materials: 6063-O Aluminum

Mass Left: 26.399 g

Mass Middle: 29.166 g

Mass Right: 16.465 g

Lowest Weight

ΔT=1.59 °C

Lowest Temperature Gradient

ΔT=0.44 °C

ΔT~0.80 °C
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Air Flow Test and Modeling
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• The battery pack is 65 mm tall

• The sheaths were kept as simple 

cylindrical to save computation power.

Cooling Method: Air

Materials: 6063-O Aluminum

Total Pack Mass: 0.177 kg

ΔT=6.82 °C

COMSOL Thermal Results

The bottom bar indicates the maximum 

and minimum pack temperatures.

65 mm
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Primary Pack Concept Selection
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• Side air injection can more efficiently add 

batteries to packs.

• Simple cubic pack design was derivative 

of previous work. 

• Both battery packs are 65 mm tall.

Cooling Method: Air

Materials: 6063-O Aluminum

Mass Top: 0.132 kg

Mass Bottom: 0.186 kg

ΔT Top=4.27 °C

ΔT Bottom=4.57 °C

Simple Box 

Pack Structure 

Option

New multi-inlet 

pack structure 

option.

Air Flow

Inlets
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Sheath Pack Testing and Modeling

• Adding fins to a pack design can significantly 

reduce the temperature gradient across the pack 

and should be researched further.

• The battery pack is 114.3 mm wide.
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Cooling Method: Air

Materials: 6063-O Aluminum

Mass: 0.393 kg

ΔT=1.94 °C

114.3mm
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Design Improvements Testing 1/2

• Replacing top and bottom 

plates can significantly 

reduce weight.

• This design has more 

parts however it will 

increase electrical safety.

• Replacing top and bottom 

plates does not 

significantly impact 

temperature gradient.
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Cooling Method: Air

Materials: 6063-O Aluminum,

TC Poly E ins Ice 9 Flex

Mass: 0.298 kg

ΔT=1.88 °C

114.3 mm



National Aeronautics and Space Administration

www.nasa.gov

Design Improvements Testing 2/2
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• Spacing in rows has a big effect on the

pack temperature gradient.

• An Increase in Spacing Increases Mass

Cooling Method: Air

Materials: 6063-O Aluminum

Mass of shown pack: 0.558 kg

Row Spacing65mm
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Exterior Casing Design
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• Making the pack casing out of 

PMC’s will reduce overall 

decrease in Specific  

Gravimetric Energy Density

• More research should be done 

to decrease the number of air 

inlets by rerouting air within 

the pack to conserve space.

• Research into highly 

conductive PMC’s and 

composites can increase the 

viability of the heavier options 

that are more effective.
Cooling Method: Air

Materials: TC Poly E ins Ice 9 Flex

Mass: 0.0952 kg
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Bladeless Fans
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Cooling Method: Air

Materials: TC Poly E ins Ice 9 Flex

Mass: 0.245 kg

Energy Density 207.25 Wh/kg

• Utilize the Coandă effect and air 

entrainment to magnify the input air 

flow by 1500%.

• Bladeless fans allow for the entire 

pack to be additively manufactured 

as one piece.

• Can be manufactured in separate 

pieces if easier.

• Provides a solution that is 

lightweight, fire retardant and 

easy to implement. 

Flow Direction
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Bladeless Fan Proof
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• 2-D cross-section of 

the bladeless fan with 

batteries placed in 

front to test flow 

characteristics.

• Flow appears 

turbulent as 

expected.

• Flow jets create a 

fluidic oscillator that 

has a period of 

roughly 5.85 seconds.
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Flow Results

• From the cut 

line, the average 

velocity was 

found.

• From this data 

the air 

temperature 

required to cool 

the batteries was 

found to be 

roughly 15 to 20 

degrees Celsius.
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Conclusions

• Bladeless fans show signs 

that they can cool battery 

packs without the use of high 

conductivity metals.

• Implementing fluidic 

oscillators makes it possible 

to eliminate dead zones 

behind batteries. 

• Future work should strive to 

obtain a model that also 

describes the thermal 

qualities.

• Fin sheath design is effective at 

decreasing the ΔT across each 

battery and therefore across the 

battery pack. However, it also adds 

additional weight thus driving down 

the energy density.

• The dovetail sheath attachment 

design is an effective way to drop 

pack weight and increase the 

energy density while also 

increasing the replaceability of 

each part.

• Future work should focus on 

evaluation of new materials and 

advanced manufacturing 

technologies to address design 

challenges.
18
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