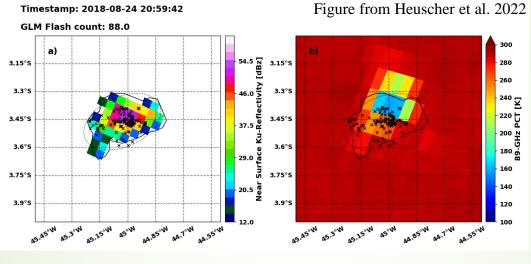
The Convective Nature of the Tropical Cyclone Lifecycle via GLM and GPM Observations

Lena Heuscher¹, Patrick Gatlin², Walter Petersen²

 ^{1:} Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
 ^{2:} NASA Marshall Space Flight Center, Huntsville, Alabama, USA

Paper 5.1

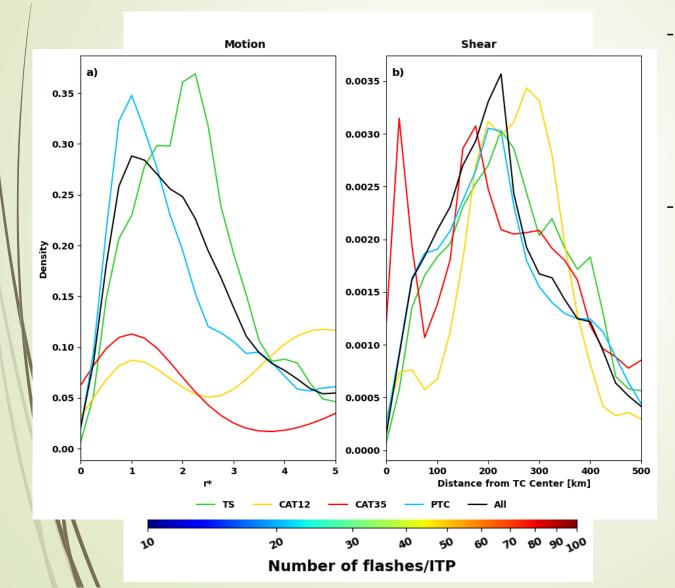
Background: Lightning in Tropical Cyclones (TCs)


- Previous ground-based and satellite-based sensor studies
 - Ground-based (e.g., WWLLN, NLDN)
 - Confined to ~500 km buffer of the US coast
 - Primarily detect cloud-to-ground (CG), which is an incomplete depiction of the total lightning flash rates (CG + IC)
 - Satellite-based (e.g., OTD, TRMM-LIS)
 - Short-duration snapshots; do not allow temporally continuous analysis of electrical activity for an individual tropical cyclone (TC)
 - Insight into vertical structure of TC precipitation; electrical, kinematic, microphysical processes during TC lifecycle equatorward of 35°
- Lightning is frequent in the inner core/eyewall region and can be even more frequent in the outer rainbands (i.e., bimodal distribution; Molinari et al., 1999; Abarca et al., 2011; Stevenson & Corbosiero, 2016; Fierro et al., 2018)
- More lightning during weaker TC phases (e.g., tropical storms) than during more intense TC phases (e.g., major hurricanes) (DeMaria et al., 2012; W. Zhang et al., 2015).
- No observed total lightning trends poleward of 35°, during phases such as the post-tropical cyclone (PTC) phase after extratropical transition
- Relative intensity of lightning-producing convective features seems driven more by the number of lightning producing cells, rather than systematic storm-relative intensity differences between those cells

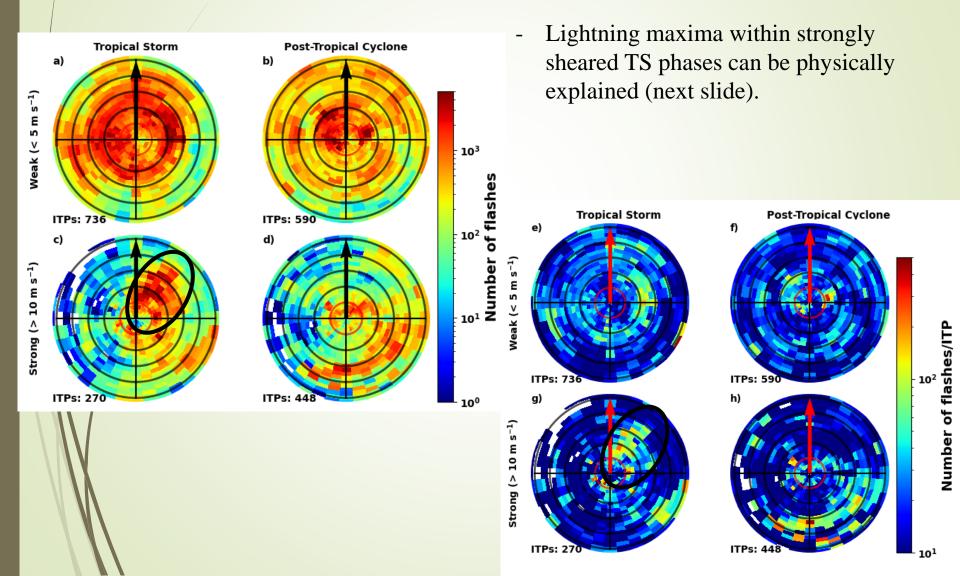
Data & Methodology

- GLM-16 Flashes
- GPM Precipitation Features (Liu et al 2008, Heuscher et al 2022)
 - GPM Core Observatory; GCOMW-1
 - Dual-Frequency Precipitation Radar: rPFs; cPFs;
 - Microwave-radiometer defined: 1CPFs
- ► 2018-2021 Atlantic Basin hurricane seasons
 - Tracks from the International Best Track Archive for Climate Stewardship (IBTrACS); Extended by tracking sea level pressure minimum, vorticity maximum through ERA5 reanalysis
 - TCs divided into life cycle phase; Saffir-Simpson scale used for Tropical Storm (TS), Category 1-2 hurricanes (CAT12), Category 3-5 hurricanes (CAT35); Asymmetry factor (Evans and Hart 2003, Hart 2003) PTC phases
 - Divided into 3-hourly individual time periods (ITPs)

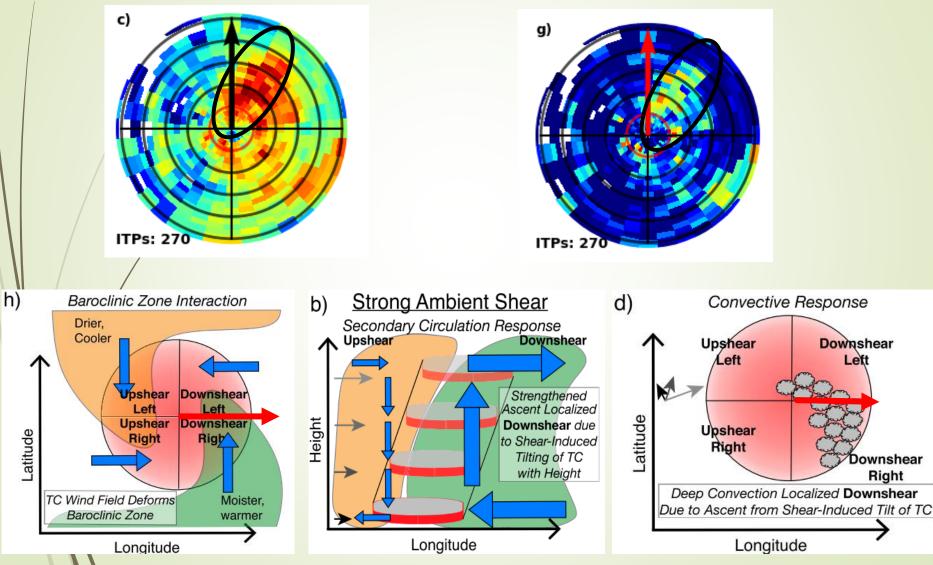
Data & Methodology


GLM lightning flashes matched to PFs

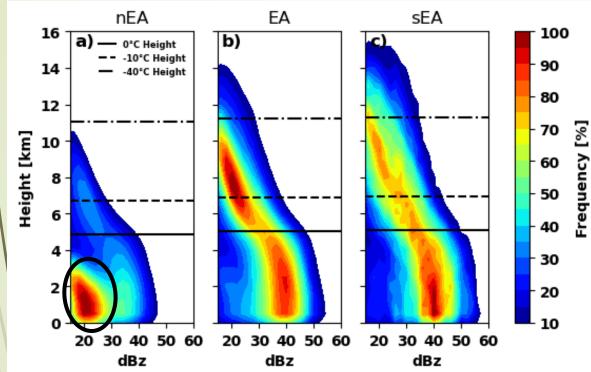
- QC
 - PFs constrained to have all pixels within GLM field of view
 - GLM flashes with a quality flag = 0 used to remove sun glint (over the ocean.
 - Transitional ITPs removed
- Angle relative to motion/shear vector calculated


• RMW-scaled distance:
$$r^* = \frac{r}{RMW}$$

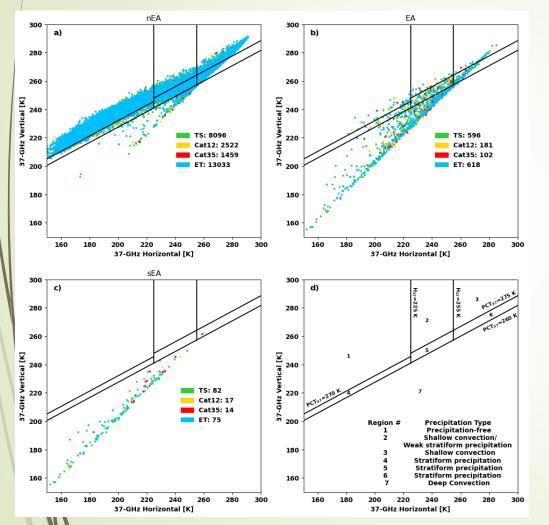
Results – Lightning Distribution


- Bimodal distribution not found as in previous studies; peak near 1-2r* (i.e., the RMW)
- Lightning maxima are
 found downshear and
 in forward flanks
 (Abarca et al 2011;
 Corbosiero and
 Molinari, 2002, 2003;
 Matyas 2010)

Results – Shear


- Strongly sheared TCs in TS and PTC phases have a lower amount of lightning flashes

Results – Strongly sheared TS


Figures modified from Schenkel et al. 2020

Results – cPF Reflectivity

- cPFs divided by electrical activity:
 - Non electrically active (nEA)
 - Electrically active (EA)
 - Super electrically active (sEA); > 100 flashes
 - EA cPFs are deeper, with higher reflectivity in the mixed phase zone for a given height
- Two different convective modes most pronounced within nEA cPFs

Results – PF Passive Microwave

- rPFs, cPFs, and 1CPFs all utilized
- Precipitation type (lower left) determined by methodology in Jiang et al 2018.
- Point is placed at 37_H and 37_V of minimum PCT_{37-GHz}

 Passive microwave precipitation classification at 37 GHz can reveal relative presence of electrical activity (EA or sEA) in TCs, but not necessarily TC phase.

Conclusions

- Storm-relative character of feature lightning occurrence (e.g., downshear etc.): relative intensity of lightning-producing convective features seems driven more by the number of lightning producing cells, rather than systematic storm-relative intensity differences between those cells
- Non electrically active (nEA), electrically active (EA), and super electrically active (> 100 flashes; sEA) cPFs have different reflectivity profiles
 - EA cPFs: larger reflectivity gradient within mixed phase zone; shift towards higher reflectivities at all heights; deeper than nEA cPFs
 - Some differences can be teased out by TC phase
- Passive microwave precipitation classification at 37 GHz can reveal relative presence of electrical activity (EA or sEA) in TCs, but not necessarily TC phase.

Future Work

- Addition of more Atlantic Basin hurricane seasons
- Expansion to Pacific Basin
- Importance of in-situ microphysical, electrical, environmental TC observations

Contact information: lvh0002@uah.edu