

Invited talk at Manchester Metropolitan University, England

Wireless Power Transmission (WPT) Technology Past and Now

Dr. Sang H. Choi

Advanced Materials and Processing Branch Research Directorate NASA Langley Research Center Hampton, Virginia

January 26, 2023

All Image credits: NASA

Why Wireless Power Technology (WPT)?

- Power accessibility in extended distance is readily available by WPT since power-grid system serves limited areas only
- WPT enables power feed for mobile systems and imbedded or implanted devices
- WPT alleviates or reduces the onboard power infrastructure
- WPT can change the conventional power modulators into different and much simpler modulation concepts
- WPT is a proven technology but still requires refinements

Energy and Workable Energy

Energy

- Quantum Energy: Wave and Particle, Quantum Ontology
- Nuclear Energy: Fission and Fusion
- Chemical Energy: Reactive Potential
- Mechanical Energy: Potential and Kinetic

Manipulative Energy \rightarrow Harnessable Energy \rightarrow Power

Grade of Energy is defined by the harnessability

- Low Grade
- Mid Grade
- High Grade
- Extreme High Grade

Customary Band (Wave) Energy and Grade

Ċ	Band	Frequency	Wavelength	Energy	Color Temperature	Grade
	HF	3 ~ 30 MHz	10 ~ 100 m			
	VHF	30 ~ 300 MHz	1 ~ 10 m			
	UHF	0.3 ~ 3 GHz	0.1 ~ 1 m			
	L	1 ~ 2 GHZ	0.15 ~ 0.3 m			
	S C	2 ~ 4 GHz	0.075 ~ 0.15 m			
		4 ~ 8 GHz	0.037 ~ 0.075 m			
	Х	8 ~ 12 GHz	0.025 ~ 0.037 m			
	Ku	12 ~ 18 GHz	0.017 ~ 0.025 m			Extremely Low
	K	18 ~ 27 GHz	0.011 ~ 0.017 m			
	Ka	26.5 ~ 40 GHz	0.0075 ~ 0.0113 m			
	Q	33 ~ 50 GHz	0.006 ~ 0.0091 m			
	U	40 ~ 60 GHz	0.0075 ~ 0.005 m			
	V	50 ~ 75 GHz	0.004 ~ 0.006 m			
	W	75 ~ 110 GHz	0.0027 ~ 0.004 m			
	F	90 ~ 140 GHz	0.00214 ~ 0.00333 m			
	D	110 ~ 170 GHz	0.00176 ~ 0.00273 m			
	Tera (TH)	700 ~ 1700 GHz	42.8 ~ 17.6 μm	0.003 eV ~ 0.007 eV	35 ~ 80 K	Lowest Grade
	Far IR (FIR)	6 ~ 15 THz	50 ~ 20 μm	$0.025 \text{ eV} \sim 0.06 \text{ eV}$	$300 \sim 700 \mathrm{K}$	Low Grade
	Mid IR (MIR)	15 ~ 30 THz	20 ~ 10 μm	$0.06 \text{ eV} \sim 0.12 \text{ eV}$	700 ~ 1400 K	Low Grade
	IR	30 ~ 100 THz	10 ~ 3 µm	0.12 eV ~ 0.3 eV	1400 ~ 3500 K	Low Grade
	Near IR (NIR)	100 ~ 430 THz	3 ~ 0.7 µm	0.3 eV ~ 1 eV	3500 ~ 11600 K	Low Medium Grade
	Visible (Vis)	430 ~ 1000 THz	0.7 ~ 0.3 μm	1 eV ~ 4 eV	11600 ~ 46420 K	Low Medium Grade
	UV (UV)	750 ~ 1000 THz	0.4 ~ 0.3 μm	3 eV ~ 4 eV	34800 ~ 46420 K	Low Medium Grade
	Deep UV (DUV)	850 ~ 1200 THz	0.35 ~ 0.25 μm	4 eV ~ 6 eV	46420 ~ 69600 K	Medium Grade
	Vacuum UV (VUV)	1.2 ~ 3 PHz	0.25 ~ 0.1 μm	6 eV ~ 12 eV	69600 ~ 139200 K	Medium Grade
	Extreme UV (EUV)	3 ~ 300 PHz	100 ~ 1 nm	12 eV ~ 300 eV	139200 ~ 3480000 K	Medium Grade
	Soft X-ray (SXR)	300 ~ 600 PHz	1 ~ 0.5 nm	300 eV ~ 2 keV	3.48 ~ 23.2 MK	High Grade
	Hard X-ray (HXR)	0.6 ~ 24 EHz	0.5 ~ 0.0125 nm	2 keV ~ 100 keV	23.2 ~ 1160 MK	High Grade
	Gamma ray (γ-ray)	> 25 EHz	< 0.0125 nm	> 100 keV	> 1.16 BK	Extreme High Grade

Energy Harvesting and 'Green'

Energy Sources	Technology	Development	Waste/Efficiency	Green	Power Density E	nergy Grade
Nuclear Fusion	ITER or experimental	Long way to go	?	Small Radioactive	Small (~0.05 kW/kg)	Extremely High
Nuclear Fission	Major or stopgap	10 yrs to Build	70% / 30%	Large Radioactive	Small (~0.02 kW/kg)	Extremely High
Nuclear α-Decay	RTG Thermal	2 yrs to Build	40% / 60%	Small Radioactive	Very Small (0.005 kW/kg)	Medium
Nuclear Thermionics	β particles, γ rays	5 yrs R&D	40% / 60%	Small Radioactive	Extra Large (~ 1 kW/kg)	Extremely High
Fossil Fuels	Steam Turbine	3 yrs to Build	70% / 30%	Pollution Gases	Small	Low
Solar Thermal	Sterling/ Rankine	4 yrs to Build	75% / 25%	Green	Small	Low
Solar Photovoltaic	Bandgap Energy	1 yrs to Build	70% / 30%	Green	Small to Medium	Low
Solar Thermoelectric	Seebeck Potential	5 yrs R&D	60% / 40%	Green	Small to Medium	Low
Wind	Wind Turbine	1 yrs to Build	85% / 15%	Green	Small	Low
Wave	Wave Stroke	3 yrs to Build	85% / 15%	Green	Small	Low
Ocean Thermal	Thermal Distribution	5 yrs to Build	80% / 20%	Green	Small	Very Low
Thermal Recovery	Regenerative TE	5 yrs R&D	60% / 40%	Green	Small	Low
Hydro Power	Hydro-Potential	7 yrs to Build	50% / 50%	Green	Small	Low
Space Wireless Power	Wireless Transmission	20 yrs to Build	85% / 15%	Green	Small	Low
Hydrogen	Fuel Cell	5 yrs to Use	70% / 30%	Green	Small to Medium	Medium
Bio-mass	Methane	1 yr to Build	70% / 30%?	Semi Green	Small	Low
Geothermal	Rankine Cycle	5 yrs to Build	70% / 30%	Green	Very Small	Very Low

ITER: International Thermonuclear Experimental Reactor

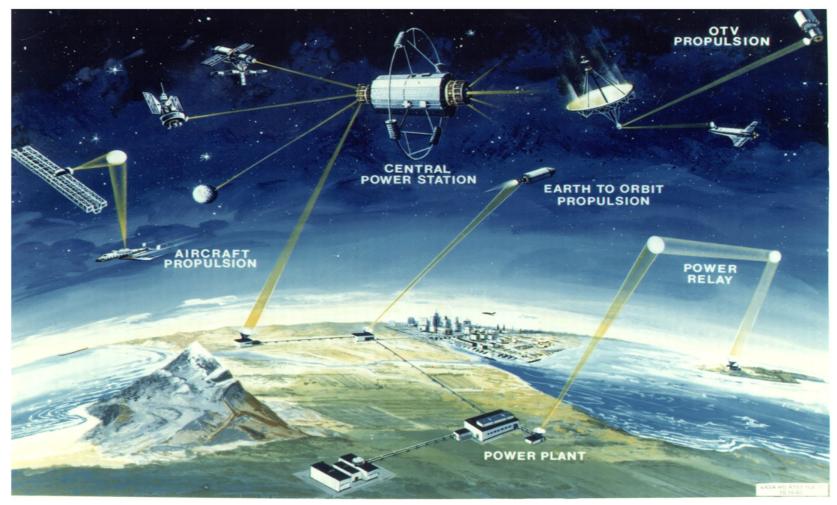
RTG: Radioisotope Thermoelectric Generator

TE: Thermoelectric

Energy-Releasing Reactions

Energy Source	Chemical	Nuclear Fission	Nuclear Fusion	γ-Photoionic
Sample Reaction	$C + O_2 \rightarrow CO_2$	$n + {}^{235}U \rightarrow {}^{143}Ba + {}^{91}Kr + 2n$	^{2}H + ^{3}H \rightarrow ^{4}He + n	X-ray, γ -ray, β
Typical Inputs	Coal or Oil	UO ₂ (3% ²³⁵ U + 97% ²³⁸ U)	Deuterium & Tritium	Photons
Typical Reaction Temp (K)	700	1000	10 ⁸	Any Temp
Energy Released (J/g)	3.3 x 10 ⁴	2.1 x 10 ⁹	3.4 x 10 ¹¹	1.4 x 10 ⁸
Harnessable Efficiency (E/mc ²)	3 x 10 ⁻⁸ %	0.002 %	0.4 %	~ 30 %

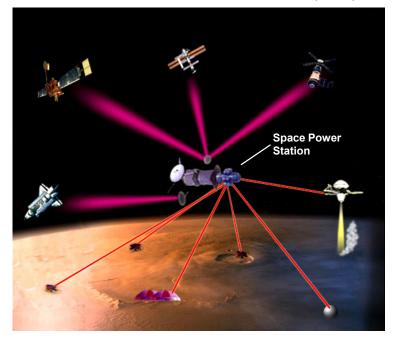
http://electron6.phys.utk.edu/phys250/modules/module%205/nuclear_energy.htm

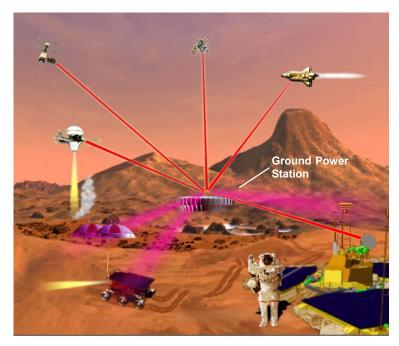

Energy Grade	Poorest	High	Highest	Highest
Specific Power (kW/kg)	< 0.01	< 0.025	> 0.1	> 1
System α (kg/kW)	> 100	> 40	< 10	< 1
Refueling Cycle (years)	Frequently	> 10 years	> 10 years	2.5 ~ 30 years
Challenges & Readiness	Pollution	γ & Neutron Shielding	Plasma Fusion (???)	Radioisotopes

NASA Lunar Power- KRUSTY: A 40 kW_e system with 4-m diameter, 6-m length and > 6,000 kgs weight

(KRUSTY: Kilowatt Reactor Using Sterling TechnologY)

Scenario of Laser Beam Power Transmission

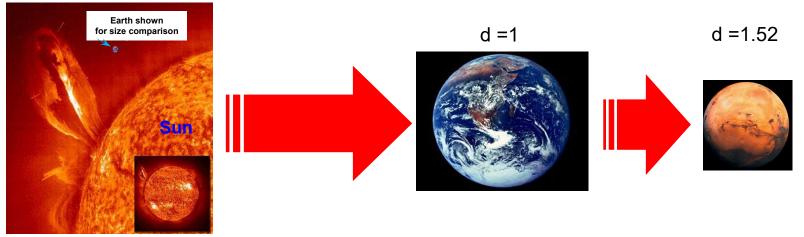

Williams, M. D., R. J. DeYoung, G. L. Schuster, S. H. Choi, J. E. Dagle, E. P. Coomes, Z. I. Antiniak, J. A. Bamberger, J. M. Bates, M. A. Chiu, R. E. Dodge, and J. A. Wise: ``Power Transmission by Laser Beam from Lunar-Synchronous Satellites'', NASA TM-4496, November 1993.


Advanced Thermoelectric Power Generation and Transmission System

Three Subsystems:

- Radioisotope Power (RIP) subsystem
- Advanced Thermoelectric Generator (ATEG) subsystem
- Wireless Power Transmission (WPT) subsystem

Power Satellite System



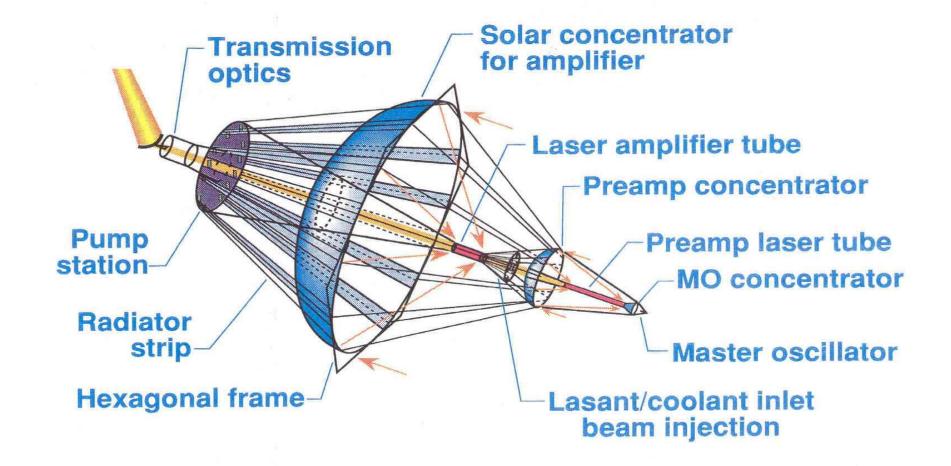
Surface Power System

Energy Sources in Space

Solar Energy

- Burns <u>660 million tons/sec of H₂</u>
- Leaves 600 million tons/sec of He
- Gives off the rest as radiation

174,000 TW of sunlight hit the Earth every day


AM0 = 1370 W/m² AM1 = 1353 W/m² 21,000 TW of sunlight hit the Mars every day

 $AM0 = 593 W/m^2$ $AM1 = 588 W/m^2$

AM0: Air Mass 0 (no air) solar flux AM1: Solar flux on Earth or Mars surface

50-kW Directly Solar-Pumped Iodine Laser (DSPIL) Power Satellite Module

Laser Power Satellite Concept COMBINED DSPIL POWER MODULE SYSTEM Solar flux Each 50-kW DSPIL power module

- 50-kW laser beam

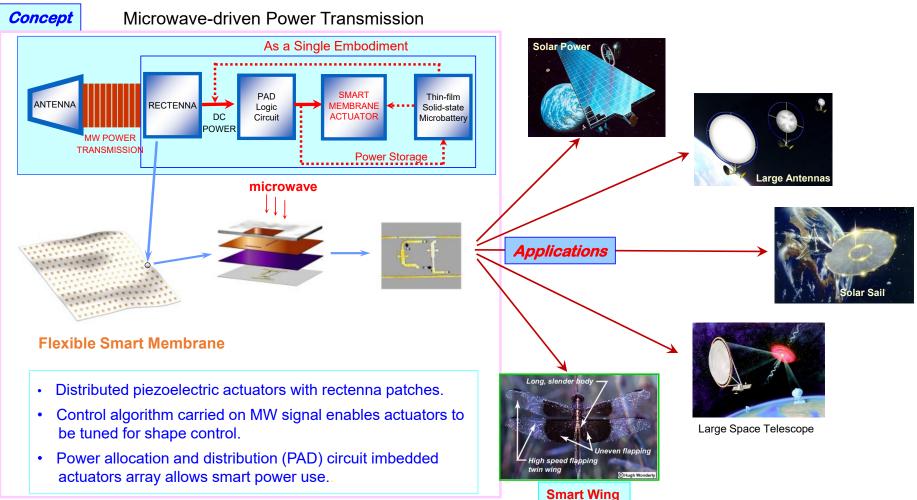
User 1

User 2

Choi, S. H.; Lee, J. H.; Meador, W. E.; and Conway, E. J.: "A 50-kW Module Power Station of Directly Solar Pumped Iodine Laser," Journal of Solar Energy Engineering, ASME, Vol. 119, p.304, Nov. 1995.

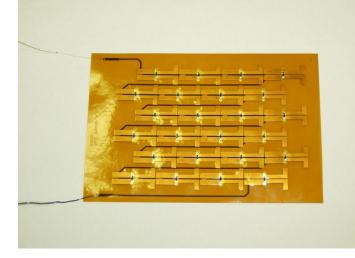
Laser Beam Power Transmission

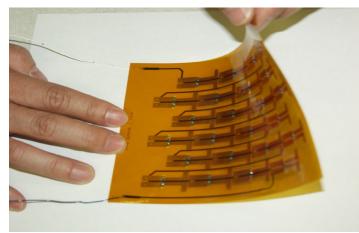
Choi, S. H., M. D. Williams, J. H. Lee, and E. J. Conway: ``Diode Laser Power Module for Beamed Power Transmission, " Proceedings of the 26th IECEC, Boston, MA, Aug. 4-9, 1991.

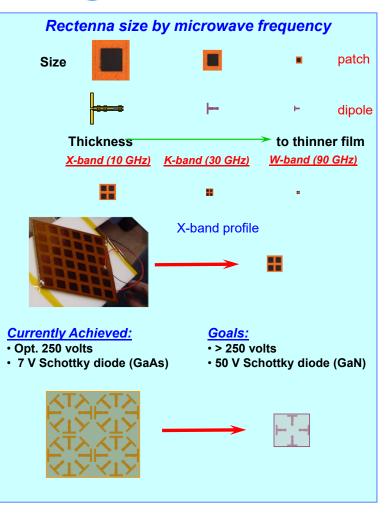

Laser Beam Power Transmission to Rover

Williams, M. D., R. J. DeYoung, G. L. Schuster, S. H. Choi, J. E. Dagle, E. P. Coomes, Z. I. Antiniak, J. A. Bamberger, J. M. Bates, M. A. Chiu, R. E. Dodge, and J. A. Wise: ``Power Transmission by Laser Beam from Lunar-Synchronous Satellites to a Lunar Rover'', Proceedings of the 27th IECEC, Vol. 2, Paper 929437, p2-299, San Diego, CA, Aug. 3-7, 1992.

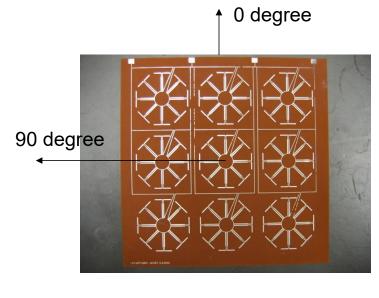
Microwave (MW)-driven Power Feed

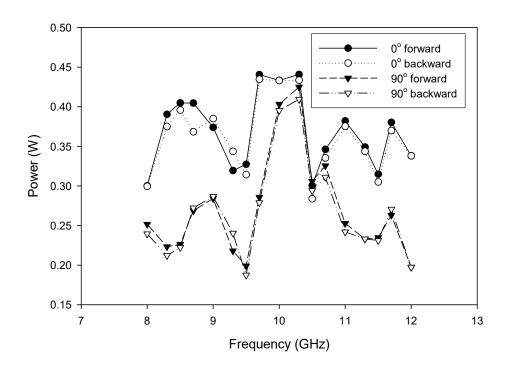

Thin-film Dipole Rectenna Array


Thin-Film Rectenna Dipole Element Circuit of Thin-Film Rectenna Dipole Element Inductance to Resonate **Capacitors for filter Rectifier Circuit** Microwave Power In DC Power Out (Traditional Mode) in Traditional Mode ∞ **DC Power In Microwave Power Out** in Inverse Mode Low-Pass Schottky Diode (Inverse Mode) **Microwave Filter** Half-Wave Schottky-Barrier **Bypass Capacitance Element of Half-Wave Diode Rectifier** and Output Filter **Dipole Antenna Densified Thin-film Membrane**


Dipole Rectenna Array (designed by NASA Langley Research Center)

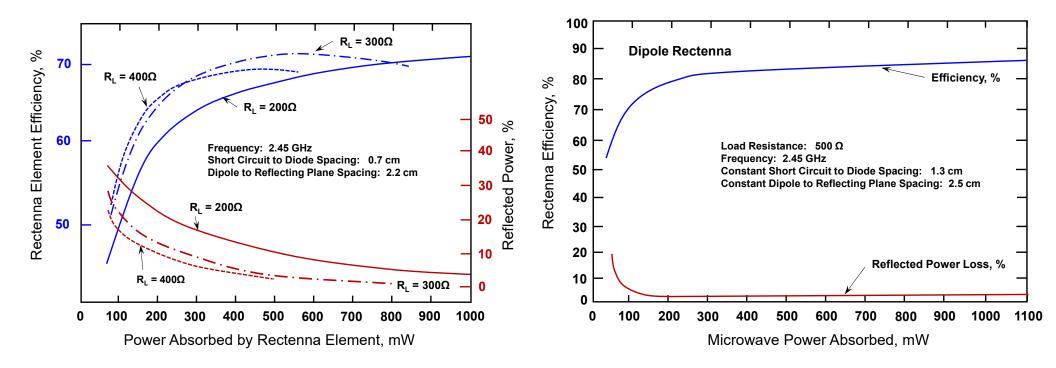
High Density Rectenna Design and Fab





Compact and Polarity-free Enhanced Dipole Rectenna Array

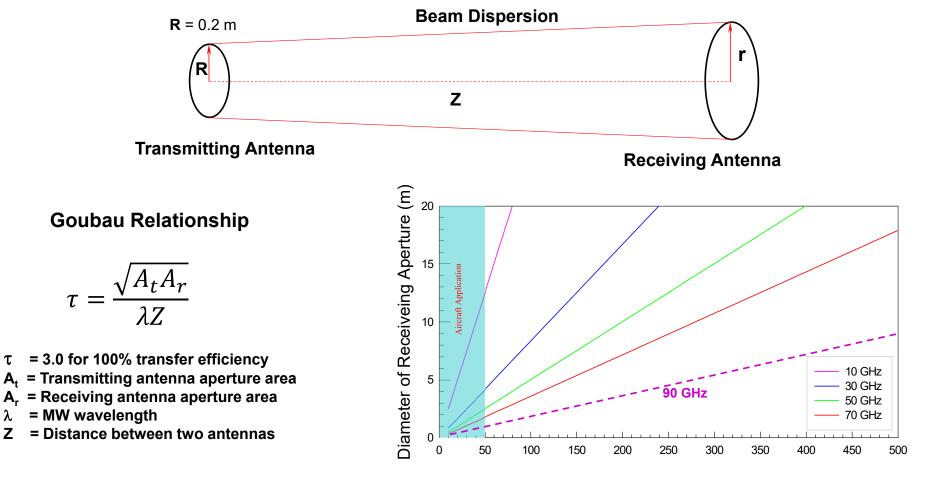
Polarization-free Rectenna



3 x 3 Flexible Rectenna

Rectenna Efficiencies

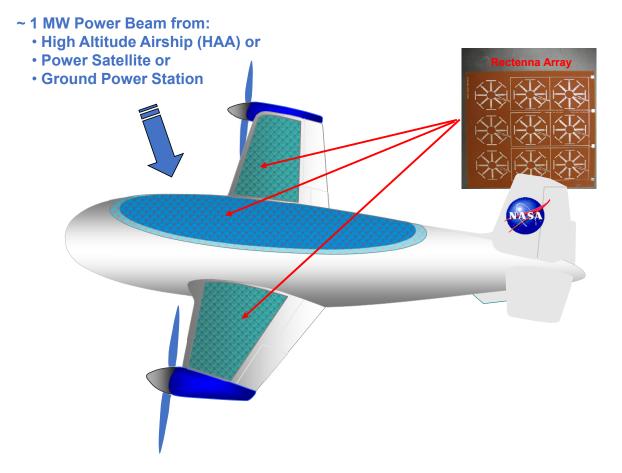
Dipole Rectenna Test Results: reported by William C. Brown, NASA CR179558, March 11, 1987


τ=

τ

λ

Ζ

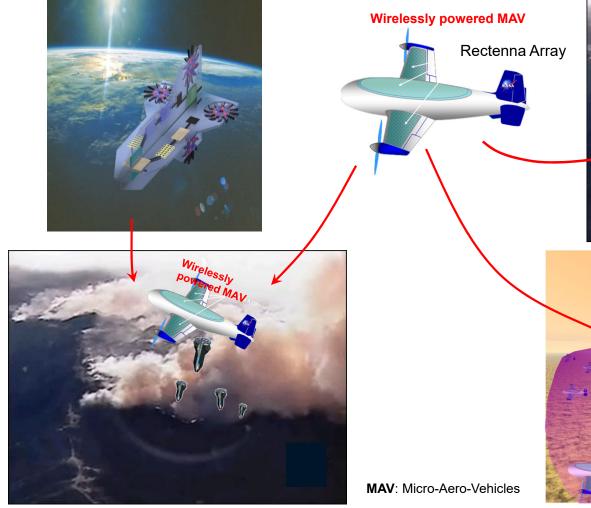

Microwave Receiving Antenna Size

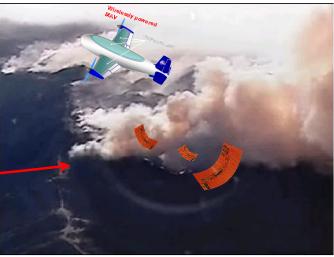
Distance from Transmitting Antenna to Receiving Antenna (m)

Helium-Filled Microwave-Powered Aerial Vehicles (MPAV) – Mars Airplane

- Size: 3-m long by 3-m wide
- Transmission Distance ~ 20 km
- W-band MW ~ 90 GHz
- Power Flux Density ~ 60 mW/cm²
- Power Received ~ 6 kW
- Propulsion ~ 4 kW
- Operation ~ 2 kW

MW-driven Model Aero-vehicle




Wirelessly powered MAV

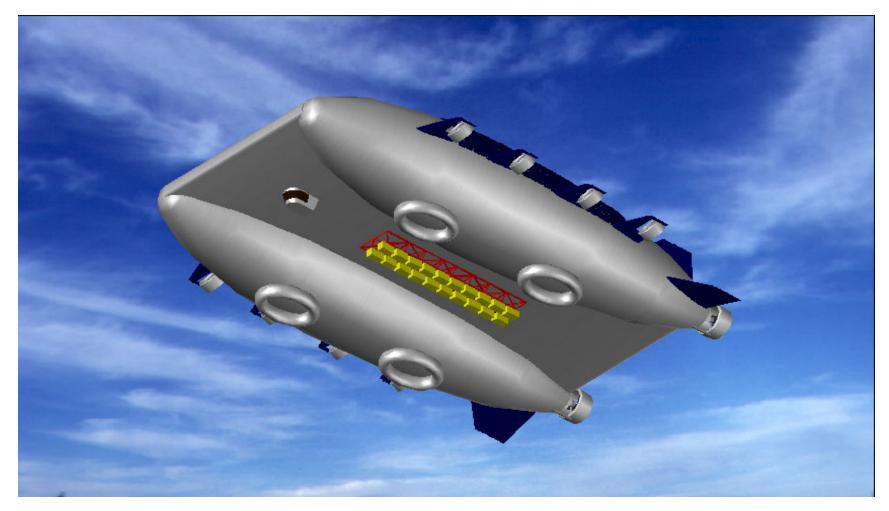
MAV: Micro-Aero-Vehicle PAD: Power Allocation & Distribution

Sensor Deployment by MAV

Power for Airship

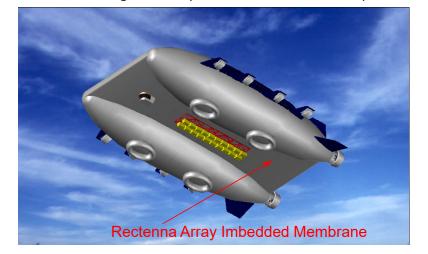
Without onboard power source - "with Green Power"

- Solar Energy:
- Wireless Power Transmission:

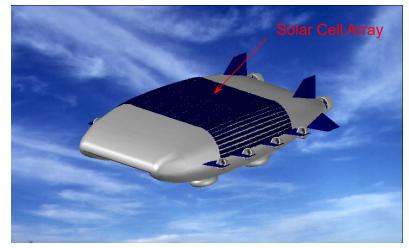

Solar Photo-voltaic (PV) or Solar Thermoelectric (TE) Microwave or laser

Airship Size vs. Power for Propulsion

- Boosted Power:
 - More propulsion power to reduce airship size
 - High power density without conventional fuels (0.1 ~ 1 kW/cm³)
- Nuclear Thermionic Battery:
 - Promising but requires new materials for electron avalanche process and collection
 - Better for space exploration applications



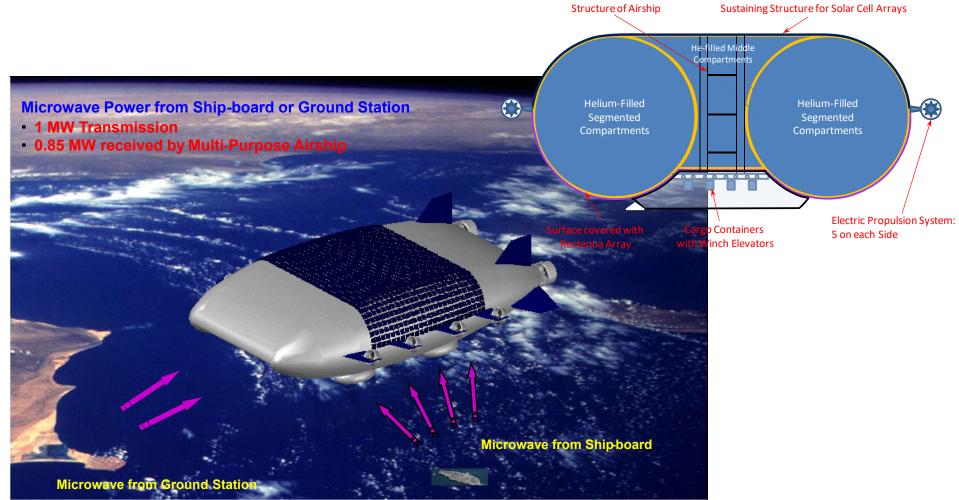
Power Technology Assessment for Wirelessly Powered Airship Transportation


Power Harvesting for Day & Night

Night time (all membrane surface)

Nighttime Power:

- Rectenna arrays imbedded into all membrane structures
- Microwave beamed up from ground station
- · Station-to-station switch while advancing


Daytime (upper surface)

Daytime Power:

- Solar cell arrays covered over upper surface
- + PV efficiency made out of SiGe is 30 ~ 40 %
- Long life of PV cells over 30 years

Night time Power

Key Features of Airship

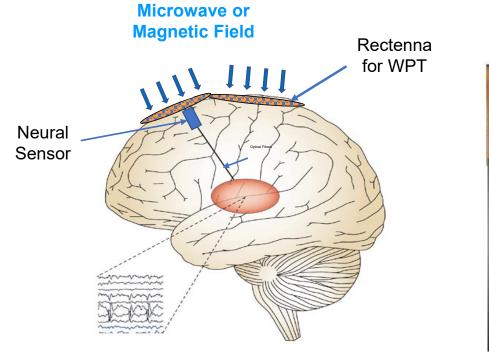
- Worthiness study of advanced thermoelectric generators as a new power conversion device for airship.
- New and high efficient solar cell technology is being developed for daytime power source of airship.
- X-band rectenna technology has been used for demo purpose. A 40-GHz rectenna may be suitable for airship application.
- Size reduction of airship requires a high density power source, such as a nuclear thermionic battery (~1 kW/cm³).
- Helium-filled airship that is currently developed at NASA LaRC will have broad applications on terrestrial applications.

Wireless Power for Implanted Medical Devices

Needs of Wireless Power System in Neural Sensing and Modulation Applications

- Batteryless and long-term operation
- Provide necessary power for neural sensing devices through wireless power transmission
- Analysis of power budget and safety issues in a human body

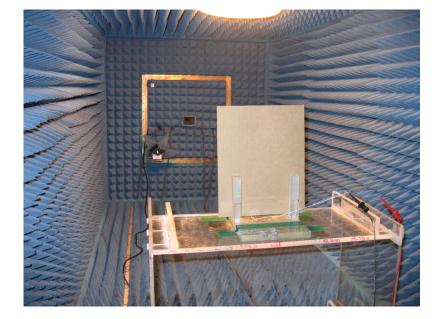
Wireless Power Transmission (WPT) System and Safety Concerns


- Flexible and biocompatible materials and design
- · Implanted electronics in the body
- Power absorption in the human body (The threshold limit value (TLV) should be less than 10 mW/ cm² at 10 GHz)
- Assessment of safety concerns of wireless power transmission system based on IEEE standard of radiofrequency (RF) safety

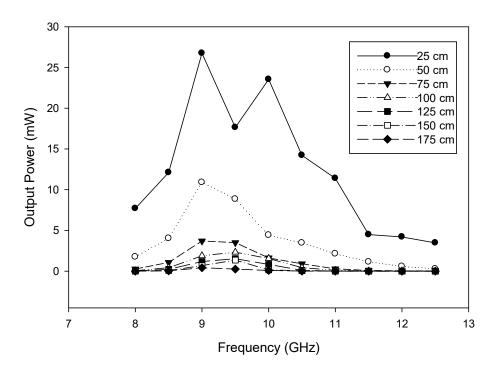
Devices	Power Requirement	Remarks
Wireless, bluetooth	20 mW	Transmission and feedback
Laser Diode (LD)	70 mW	Light source for excitation
Micro-controller	50 mW	Operation
Image Sensor	100 mW	Micro-spectrometer
Total	240 mW	

Flexible and Highly Efficient WPT Device Development and Safety Concerns Assessment

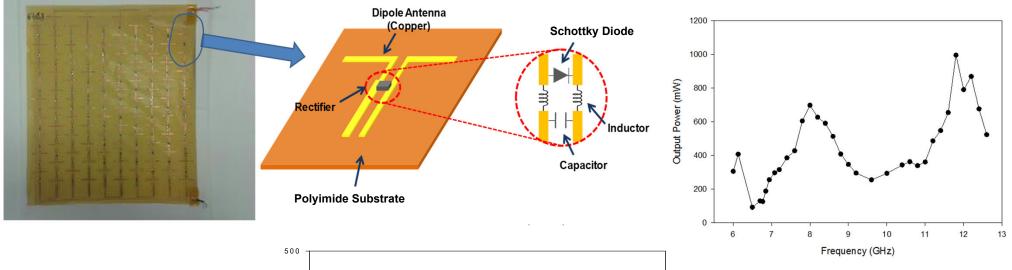
WPT: Development of Various Rectenna Devices for Deep Brain Stimulation (DBS)

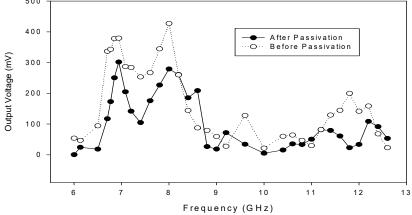


Rectenna Circuits fabricated for WPT



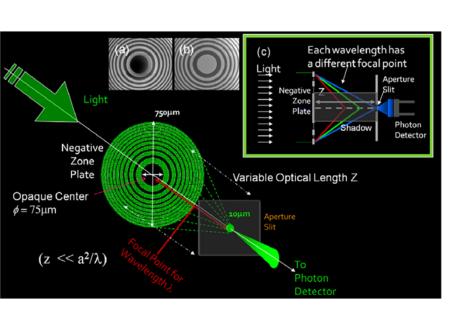
WPT: Rectenna Test

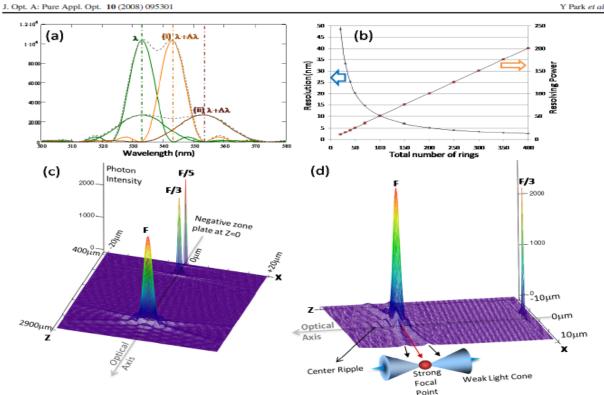



Output Power of Polyimide Rectenna vs Distances

Passivation of Rectenna with Parylene-C and High Density Rectenna Array

Output Power of Rectenna vs Frequency

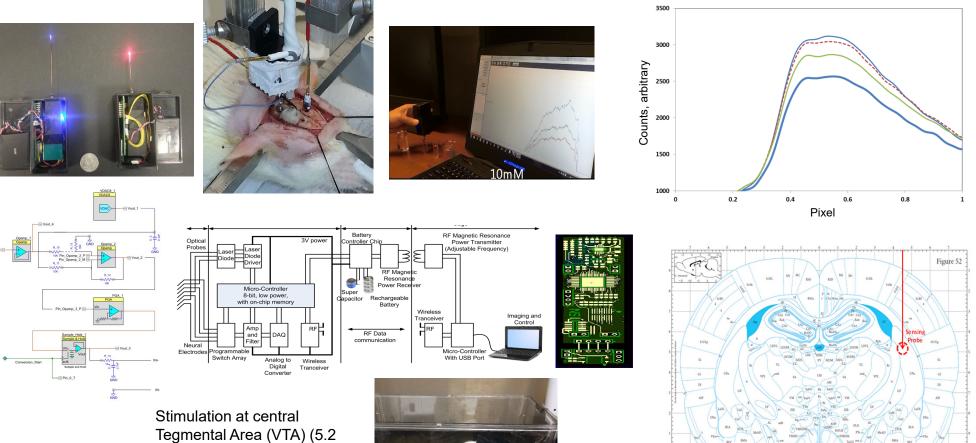




Micro-spectrometer for Neural Probe

For adaptive DBS, Medtronic announced the first implant of a deep brain stimulation (DBS) system that <u>enables the sensing and recording of select</u> <u>brain activity</u> while providing targeted DBS therapy. (Aug. 7, 2013)

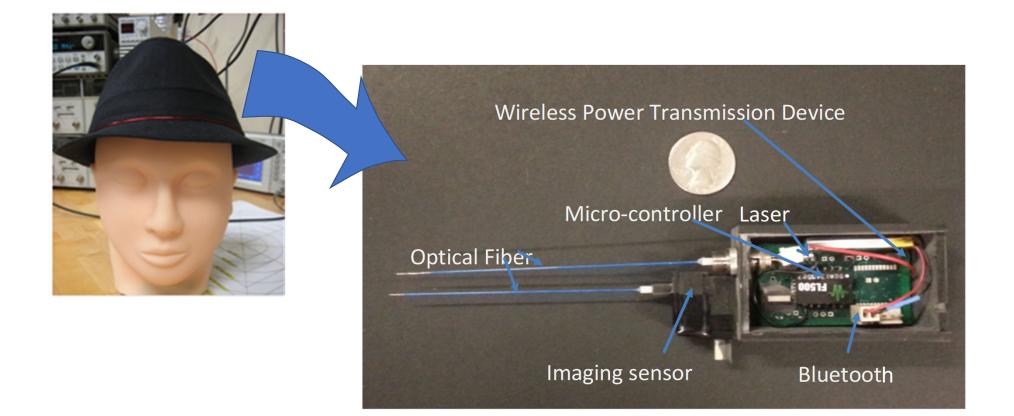
Neural Probe: Probe-Pin Device


by Norfolk State University under NASA Grant (NNX12AH22A)

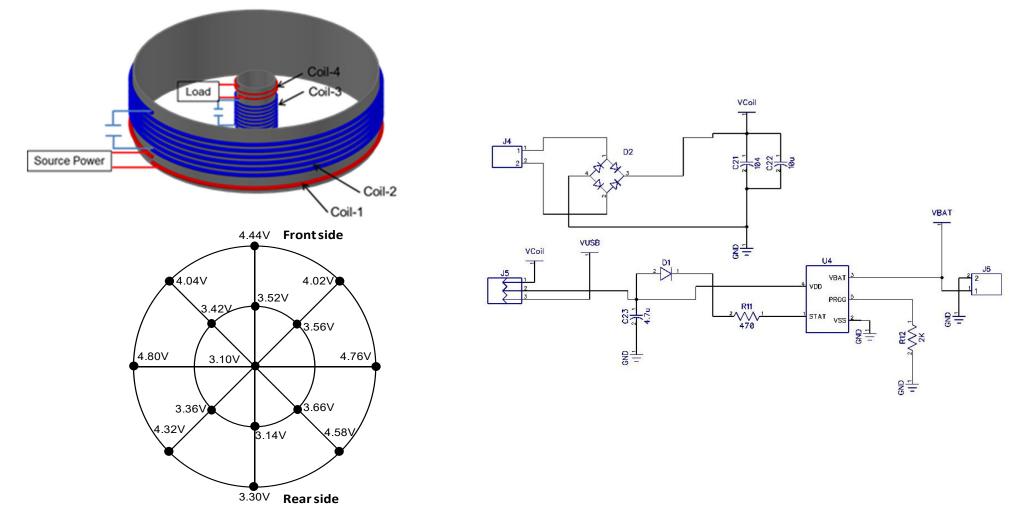
Interaural 6.72 mm

— 1uM 🛛 —

- 10uM


Bregma -2.28 mm

mm posterior, 1.0 mm lateral, 7.5 mm ventral)



NASA

Electronics for Rectification and Voltage Regulation

Concluding Remarks

- Laser and microwave devices for WPT have been under development at NASA LaRC since the late 1970s.
- WPT enables power beaming for short (by microwave) and long-distance (by laser) transmission.
- Wireless power systems are suitable for powering airships and continuous operation of deep brain stimulation systems without implanting batteries.
- Two different types of WPT modules (rectenna and magnetic resonance coupling devices) were developed for micro-spectrometer operation.
- Electronic circuits were developed for a WPT module which can control the high frequency of source signals and optimize power transfer efficiency.
- AC power signal rectification and voltage regulation circuits were also embedded in main system electronics.