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Introduction @

 WRLES code has been used successfully for subsonic jet and
mixing layer simulations

* No real experience at supersonic conditions

* Objective is to explore the capabilities of the numerical
methods at supersonic conditions with shock waves



Wave Resolving Large-Eddy Simulation (WRLES) @

* Block structured grids

— Point matched overlapping interfaces to preserve accuracy
— Limits grid topology
— Domain decomposition for parallelization

* Hybrid parallelization

— MPI parallelization
 Communication between grid blocks
* One grid block per CPU or compute node

— OpenMP parallelization
* Loop level parallelization within a grid block
e Multiple cores per processor



 Temporal Discretization

— 2N low-storage explicit Runge-Kutta
— 6-stage, 4t"-order scheme of Berland et al, Comput Fluids 2006

e Spatial Discretization

— 11-point dispersion relation preserving (DRP) scheme of Bogey and Bailley, J
Comput Phys 2004

— Skewed and/or reduced order stencils near boundaries

* Spatial Filtering
— Provides numerical dissipation for central-difference schemes
— 11-point DRP filter matching the spatial discretization

Numerical Method @



Computational Grid

e Based on supplied grids
* Modified for the WRLES code

— Extruded via rotation around x-axis, resulting in O-grid cross-section

— Increased spacing at viscous walls (not attempting to resolve turbulent
boundary layer)

— Smoothed for stability of high-order numerics
* Rounded sharp corners on external surface
* Added resolution in areas of curvature
* Elliptic smoothing

— 73 million grid points



Problems with the O-grid @

Cylindrical coordinates are a natural choice for the round jet,
but there are 2 major problems

1) Centerline treatment
* O-grid creates collapsed surface on the the centerline of the domain
* A boundary condition or other special treatment must be applied in the
center of the domain

2) Grid spacing
* Azimuthal grid spacing scales with radius, resulting in very small cells near
the centerline
* Small cells severely restrict the time-step



Centerline Boundary Treatment @

* Construct grid with a finite cylindrical
surface around centerline (not
completely collapsed)

— Creates a void around the centerline

— The void is sized to create an evenly spaced stencil
across the void

e Generate an artificial stencil across the
singularity

— Uses points on the opposite side of the void in the
difference stencil

— Removes the boundary condition

— Increases the cell size/time-step



* O-grid topology

— Used in the cross-plane

— Azimuthal spacing scales with the radius

 Small grid spacing near the axis severely
restricts the time step
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e New block interface

— Azimuthal spacing is doubled across the block
interface

— 2" and 4t order interpolation

— Applied at radial locations of r/R,, = 0.5 and 0.25
— Provides more uniform azimuthal spacing with radius
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 Removes spurious oscillations
due to shocks/discontinuities
which lead to numerical
instability

* Bogey et al, J Comput Phys 2009

« 2Mdorder filter applied at shock
location

— Jameson type sensor to detect shocks,
based on pressure gradient
— Threshold parameter to activate filter
* Value determined by trial-and-error

* Set as high as possible to avoid damping
turbulent structures
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Case 2 — Streamwise Velocity
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Case 2 — Radial Profiles of Streamwise Velocity
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Case 4 Wall Boundary Conditions

* Near-wall grid is not sufficient to
resolve turbulence

* Nozzle boundary layers are
essential laminar

* For case 4, the flow separates
downstream of the throat,
resulting in an expansion at the
nozzle exit

* A case with slip walls was run to
keep the flow attached, resulting
in a shock at the nozzle exit
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Case 4 — Turbulence Intensities
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* Both simulation cases exhibit shorter potential cores than the
experiment

— Indicative of under-resolved simulations
— Possibly an effect of the shock capturing filter damping turbulent structures
— Perfectly expanded case is worse than the over-expanded case

* The simulations’ laminar nozzle boundary layer caused an unphysical
separation in the over-expanded nozzle

— The resulting shock structure was not correct
— Indicates that the experimental boundary layer was turbulent
— Asslip wall boundary condition provided better results with the correct shock structure

* The grid blocking structure that reduced azimuthal grid spacing near
the centerline created artifacts in the turbulence intensity profiles
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Potential Future Work NAsA

* Explore grid refinement

* Implement a synthetic eddy method turbulent inflow to
simulate the turbulent nozzle boundary layer

* Explore improvements to the grid blocking scheme near the
centerline

* Compare these finite difference results to Flux
Reconstruction results using the GFR code
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