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1. Present a new application of forecasting (evolving) estimation
error covariances during data assimilation,

2. Introduce a new correlation function that generalizes the
Gaspari-Cohn compactly-supported approximation to a

Gaussian,

3. Apply this generalized correlation function for evolving

covariances.



Motivation: Covariance Evolution in Data Assimilation

At the heart of modern data assimilation is covariance
evolution, e.g.,

Pis1 =M1 PcML + Qu.

Common Issues with Covariance Evolution:

e Computational Expense

e Variance Loss



Covariance Evolution in Data Assimilation

At the heart of modern data assimilation is covariance

evolution, e.g.,

.
Pii1 = Mii1 kPiMq .

Common Issues with Covariance Evolution:

o Computational-Expense — Computationally efficient
o VMarianeetoss — Evolves variance directly

Alternative: evolve the variance and correlation length, then
reconstruct P using a parametric correlation function.




Local Covariance Evolution

Consider covariances P = P(xy, x2, t) associated with states g = q(x, t)
on the unit circle (S}),

g + vgx +viq =0, Pt+V1'DX1+V2P><2+(VX1+V><2)’D:O’
q(x, to) = qo(x) P(x1, X2, to) = Po(x1,x2)
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Local Covariance Evolution

Consider covariances P = P(xy, x2, t) associated with states g = q(x, t)
on the unit circle (S}),

g + vgx + vxqg =0, Pt+V1Px1+V2P><2+(VX1+V><2)'D:Oa
q(x, to) = qo(x) P(x1, %2, to) = Po(x1,x2)
Variance Equation: Correlation Length Equation:
Jf + vai + 2v0? = 0, Li + vl — v L =0,
a%(x, to) = a5(x) L(x, to) = Lo(x)

1. Evolve o2 and L from initial condition
Po(Xl,X2) = UO(X]_)CO(X]_7X2)O'0(X2),

2. Approximate P(x1, %, t) = o(xy, t)C(x1, x2, t)o(x, t) with evolved
0% and L using a parametric correlation function.



The Gaspari and Cohn (1999) Correlation Function
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Figure 7. The function Co(z, a, c) of the example in section 4(c) for ¢ = 1000 km and various values of a. See
text for explanation.

Figure 1: Figure 7 from Gaspari and Cohn (1999). The function Co(z, a, ¢) is
the general form of the compactly-supported, fifth-order, piecewise rational
correlation function derived in Sec. 4(c). Typically, a = 1/2 (solid black). 5



The Generalized Gaspari-Cohn (GenGC) Correlation Function

Correlation length for the compactly-supported, piecewise rational:

3(222% + 32+ 1)\ /?
L= —1/2=>L=+03c (1
C<40(8a2—2a+1))  2=12= c

Need to generalize this correlation function to allow for variable L.



The Generalized Gaspari-Cohn (GenGC) Correlation Function

Correlation length for the compactly-supported, piecewise rational:

3(222% + 32+ 1)\ /?
L= —1/2=>L=+03c (1
C<40(8a2—2a+1))  2=12= c

Need to generalize this correlation function to allow for variable L.

Generalized Gaspari-Cohn

Allow a = ax and ¢ = ¢, to vary over the spatial index k.
Now L = Lk can vary!




The GenGC Correlation Function, cont.




The GenGC Correlation Function, cont.
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The GenGC Correlation Function, cont.
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For r € Qg, s € Qy, and each fixed k,£ =1,2,..., m,
GenGC: Cy(r, s; ak, as, ck, cr)

Generalized Gaspari Cohn on 511 for Continuous a(r), c(r) (200 grid points, Chordal Distance Norm)
a(r) = 0.5sin(3r) +0.25

c(r) = 0.251 — 0.15ncos(r — 0.2m) o Correlation Matrix 10 Select 1D Correlations (rows)
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Figure 2: GenGC on the unit circle (S}) for continuous a and c (left), correlation
matrix (middle), and selected correlations (right). White regions in the correlation
matrix correspond to correlations between —0.003 and 0.003. 7



GenGC in 2D
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Figure 3:
Background a and ¢

Top:

fields as functions of
longitude and lati-
tude over Colorado.
Bottom: 2D corre-
lations with respect
to % for the given
a and c fields, plot-
ted using a Merca-
tor projection.



Local Covariance Evolution: Correlation Reconstruction with

GenGC

Methodology:

1. Define the initial correlation length from standard
Gaspari-Cohn correlation (ap = 1/2, ¢ = ), Lo(x) = V0.3
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2. Evolve L(x, t) forward in time by solving its PDE



Local Covariance Evolution: Correlation Reconstruction with

GenGC

Methodology:

1. Define the initial correlation length from standard
Gaspari-Cohn correlation (ap = 1/2, ¢ = ), Lo(x) = V0.3

2. Evolve L(x, t) forward in time by solving its PDE

3. At fixed time t, use L(x,t) and a = ag fixed to compute
c(x, t), then reconstruct the correlations with GenGC:
for x1 € Qi,x0 € Q

C(x1, %2, t) = Cre(x1, x2; a0, a0, c(x1, t), c(x2, )



Correlation Reconstruction with GenGC: Preliminary Results

LCE Correlation Test at t = 1/2T, T=2n/V3: GenGC with a = 0.5 (constant),
evolved L, Lo = 0.137, ¢ = 0.25

GenGC Approx Correlation Exact Correlation
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Figure 3: Comparisons of the correlation matrix approximated with GenGC using evolved
correlation lengths L and a = 1/2 constant (left) with the exact correlation matrix (right). 1D
experiments on SI with v(x) =sin(x) + 2 and ¢y = 0.25. Errors in the GenGC approximation are
between -0.0125 and 0.0125. 10



In Summary

The added flexibility of GenGC while remaining compactly
supported can be a useful tool for the data assimilation

community.

Applications of GenGC in Data Assimilation:

e Local covariance evolution, an alternative means of mitigating

problems associated with covariance evolution,

e Covariance modeling and tapering (localization) in current

data assimilation schemes.
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Extra slides
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1D Example

Generalized Gaspari Cohn on 511 for Continuous a(r), c(r) (200 grid points, Chordal Distance Norm)
a(r) = 0.25sin(r) + 0.5

c(r) = 0.25m - 0.15nsin(r) o Correlation Matrix 10 Select 1D Correlations (rows)
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Figure 4: GenGC on the unit circle for continuous a and ¢ (left), correlation
matrix (middle), and selected correlations (right). White regions in the
correlation matrix correspond to correlations between —0.003 and 0.003.
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Correlation Reconstruction with GenGC: Preliminary Results 2

LCE Correlation Test at t = 1/2T, T=2n/V3: GenGC with a = 0.5 (constant),
evolved L, Lo = 0.274,¢co = 0.5
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Figure 5: Comparisons of the correlation matrix approximated with GenGC using evolved
correlation lengths L and a = 1/2 constant (left) with the exact correlation matrix (right). 1D
experiments on SI with v(x) =sin(x) + 2 and ¢y = 0.5. Errors in the GenGC approximation are
between -0.05 and 0.05. 15



Continuity

Generalized Gaspari Cohn on (0, 1) (201 grid points, Euclidean Norm)
a(r) = 0.5tanh(25(r - 0.5))

c(r) = 0.5 - 0.25tanh(25(r - 0.5)) Correlation Matrix Select 1D Correlations (rows)
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Figure 6: Example of GenGC on (0, 1) comparing when each grid cell is its own
subregion vs. the case where (0, 1) is split into two subregions (0,1/2),(1/2,1)

(bottom row) 16



