Understanding thermal stability in doped zirconia aerogels for high temperature applications

Nathaniel Olson¹, Jordan Meyer^{1†}, Dr. Haiquan Guo³, Dr. Frances Hurwitz^{2*}, Dr. Jamesa Stokes², Dr. Jessica Krogstad¹

¹University of Illinois at Urbana-Champaign, Department of Materials Science and Engineering, Urbana, IL ²NASA Glenn Research Center, Cleveland, OH ³Universities Space Research Association, Cleveland, OH [†] Current: MIT, Department of Materials Science and Engineering, Cambridge, MA * Retired

47th International Conference on Advanced Ceramics and Composites Porous Ceramics: Novel Developments and Applications Structure and Properties of Porous Ceramics January 26th, 2023

This work is supported by a NASA Space Technology Research Fellowship

Developing lightweight, high-performance aerospace thermal protection systems (TPS)

<u>TPS Needs:</u> Manage heat loads Withstand mechanical loads Lightweight Reusable when possible

<u>Our Aims:</u>

Reduce thermal conductivity to improve performance.

Reduce mass/volume to lower costs.

Aerogels are highly insulating and lightweight materials

High SSA: 200 to 1000 m²/g High Porosity: 90 to 99.9% Low Density: 0.2 to 0.05 g/cm³

Low thermal conductivity: 0.009 W/(m•K) in atmosphere and 0.003 W/(m•K) under vacuum

Highly porous structure of aerogel is responsible for its extremely low thermal conductivity.

Low density = Low solid conductivity

Pore sizes ≤ mean free path of gas = Low gas convection

Collapse of pore structure and loss of favorable properties occurs upon thermal exposure

High yttria concentration improves thermal stability in yttria-stabilized zirconia (YSZ) aerogels

Doping ZrO_2 with > 30 mol% YO_{1.5} improved the stability of the pore structure to 1200 °C.

Improved thermal stability in context of thermodynamic (γ) and kinetic (D_{Zr}) factors

Reduced diffusivity with increased yttria content may <u>slow kinetics</u> of densification & crystallite growth²⁻⁴

Expanded dopant study (Y, Yb, Gd, Ca, Ce) didn't lead to improved stability

<u>Best Performers*</u> 1000 °C: 30Y, 30Gd, 30Ce 1200 °C: 30Y, 30Gd With 10 samples at 4 different conditions, becomes difficult to discern differences in behavior

Olson, N.S., et al. (2023). Journal of the American Ceramic Society, in preparation.

With available material properties, difficult to establish new property-stability relationships

% Change in SSA from AD to 1000°C

How do weighted cation properties relate to **SSA** and **pore volume** (**V**_{BIH}) at **1000** °**C**?

Wider availability of material property data (such as surface energy, cation diffusivity, etc.) would enable more thorough analysis of property-stability relationships.

Radius		0.54
Charge	Specific Surface Area (SSA)	0.50
Mass		0.44
Radius		0.04
i la Ciuo		0.04
Charge	Pore Volume (Vpuu)	0.47

In general, scatter predominates for these relationships and for others not depicted here.

Surface modification of aerogels have shown promise in inhibiting coarsening & densification

Wu et al. Capping Approach

Zu et al. Coating Approach

Prepared MO_x/(MO_x-SiO₂)/SiO₂ core-shell metal oxide aerogels produced via alkoxide chemical liquid deposition

> Applied to Al_2O_3 , ZrO_2 , and TiO_2 aerogels

Formation of SiO_2 particles on the aerogel surface prevent particle growth and phase transformation

Application of SiO_2 coatings to best YSZ compositions show excellent stability to 1000 °C

Apply simplified Zu coating approach to 0, 10 and 30 mol%YO_{1.5} ZrO₂ aerogel

According to EDS, the molar ratio for 30YSZ is:

Zr	Y	Si
1.00	0.55	3.01

More Si than Zr and Y!

Olson, N.S., and Stokes, J.L., et al. (2023). Journal of the American Ceramic Society, in preparation.

Application of SiO_2 coatings to best YSZ compositions show excellent stability to 1000 °C

From 1000 to 1200 °C, SiO_2 coating enables viscous sintering and *enhances* densification.

Olson, N.S., and Stokes, J.L., et al. (2023). Journal of the American Ceramic Society, in preparation.

Thanks to Nachiket Shah (UIUC MatSE) for TEM of aerogel samples.

Application of SiO_2 coatings to best YSZ compositions show excellent stability to 1000 °C

SiO₂ coating delays crystallization of YSZ and strongly inhibits crystallite growth.

	Sample	T (°C)	Crystallite Size (nm)	a (Å)
	30YSZ	600	5.8	5.163
	30YSZ-SiO ₂	600	-	-
,	30YSZ	1000	21.7	5.163
	30YSZ-SiO ₂	1000	3.2	5.162
	30YSZ	1200	55.3	5.163
	30YSZ-SiO ₂	1200	13.9	5.153

Summary

Looking Forward

- I. Aerogels are promising candidates for lightweight, highly insulating materials, but the pore structure must be preserved to $T \ge 1200$ °C
- 2. Reduced surface energy and cation diffusivity are hypothesized to improve aerogel thermal stability.
- Increased dopant concentration from 15 to 30 mol% M/(M+Zr) reduces densification of the pore structure (Gd,Y perform best).
- Post-synthetic modification of YSZ aerogels with SiO₂ coatings significantly improves thermal stability to 1000 °C but promotes viscous sintering beyond this temperature.

. Wider availability of <u>material property data</u> (surface energy, cation diffusivity, etc.) may help understand source(s) of variability in aerogel thermal stability.

2. The source of thermal stability and instability in SiO_2 -coated YSZ aerogels needs to be identified via evaluation of the chemistry and structure of the aerogel and coating.

Thank you for your attention! Special thanks to...

- <u>Advisor</u>: Dr. Jessica Krogstad (UIUC)
- <u>Technical Collaborator</u>: Dr. Jamesa Stokes (NASA GRC)
- Dr. Frances Hurwitz (NASA GRC, retired)
- Jordan Meyer (UIUC MatSE U-Grad)
- Krogstad Group members
- Others at NASA GRC: Dr. Haiquan (Heidi) Guo, Dr. Richard Rogers, Jessica Cashman

Funding:

- NASA Space Technology Research Fellowship (80NSSC18K1189)
- ACerS Engineering Ceramics Division Student Travel Grant

Facilities:

- Materials Research Laboratory, UIUC
- SCS Microanalysis Laboratory, UIUC
- NASA Glenn Research Center

Summary

Looking Forward

- I. Aerogels are promising candidates for lightweight, highly insulating materials, but the pore structure must be preserved to $T \ge 1200$ °C
- 2. Reduced surface energy and cation diffusivity are hypothesized to improve aerogel thermal stability.
- 3. Increased dopant concentration from 15 to 30 mol% M/(M+Zr) reduces densification of the pore structure (Gd,Y perform best).
- Post-synthetic modification of YSZ aerogels with SiO₂ coatings significantly improves thermal stability to 1000 °C but promotes viscous sintering beyond this temperature.

. Wider availability of <u>material property data</u> (surface energy, cation diffusivity, etc.) may help understand source(s) of variability in aerogel thermal stability.

2. The source of thermal stability and instability in SiO_2 -coated YSZ aerogels needs to be identified via evaluation of the chemistry and structure of the aerogel and coating.

