

Selected Studies in High Temperature Chemistry at the NASA Glenn Research Center

Nathan Jacobson NASA Glenn Research Center/HX5 Cleveland, OH

> Arizona State University Geo/Environmental Seminar January 23, 2023

National Aeronautics and Space Administration

Glenn Research Center

Lewis Field

(Cleveland)

- 350 acres
- 1626 civil servants and 1511 contractors

Plum Brook Station Test Site

- (Sandusky)
- 6500 acres
- 11 civil servants and 102 contractors

as of 1/2013

www.nasa.gov 3

Structures and Materials Research Supports a Wide Range of NASA Missions

Space Nuclear Propulsion

Selected Studies of High Temperature Chemistry Related to NASA Missions

- Space Shuttle Orbiter Wing Leading Edge
- Environmental Barrier coatings for Ceramic Turbine parts I
- Chemistry on other worlds: Exoplanets
- K/Ar dating of minerals
- Teams and collaborations for all studies

Knudsen Effusion Mass Spectrometry

Re-entry: Orbiter's Nose Cap and Wing Leading Edges Take the Heat

- Temperatures: To 1650°C
- Atmosphere: O₂, N₂ as atoms and molecules
- Pressures: 0.005-0.010 atm
- Material: SiC Coated Reinforced Carbon/Carbon Composite (RCC)
- Leading Edge Sub-System Problem Resolution Team (LESS-PRT) ~50 members from NASA Centers, Lockheed-Martin, Southern Research Institute, University Consultants, etc.

Composite of Carbon Fibers in a Carbon Matrix → "Carbon/Carbon"^{CD-97-76505}
 Remarkably effective > 130 flights

Coated Reinforced Carbon/Carbon Composite

SiC/C-C Coefficient of thermal expansion mismatch leads to cracking in SiC

Is there Oxidation below cracks?

GRC asked by LESS-PRT to Model Oxidation below these Cracks Start with machined slot (articial crack) in SiC

1200°C/2.5 hr/air

Optical Image (bar is 1 mm) Symmetric Slot indicates **Diffusion Controlled Reaction**

Image Analysis: Approximate as semi-circle and extract radius

Jacobson et al., "Oxidation through coating cracks of SiC-protected carbon/carbon," Surf. Coat. Tech. (2008) 203, 372-383 (2008).

Model of Diffusion Controlled Oxidation

- Two step oxidation of carbon
 - Can't have direct oxidation:

 $C + \frac{1}{2}O_2(g) = CO(g)$

- Based on
 - Thermodynamic incompatibility of CO/O₂
 - Experimental observations of carbon burning (flame front)
- Two steps
 - CO₂(g) + C(s) = 2CO(g) At the carbon surface
 - $CO(g) + \frac{1}{2}O_2(g) = CO_2(g)$ At a position x_f away from the surface
 - Net reaction
 - $C + \frac{1}{2} O_2(g) = CO(g)$

Diffusive and Convective Flux

B.C.
$$At \ x = 0$$
: $c_{CO} = c_{CO}^0$ $c_{CO_2} = c_{CO_2}^0$ $CO_2 + C = 2CO$
 $At \ x = x_f$: $c_{CO_2} = c_{CO_2}^*$ $c_{O_2} = c_{CO} = 0$ $CO + \frac{1}{2}O_2 = CO_2$
 $At \ x = L$: $c_{O_2} = c_{O_2}^L$ $c_{CO_2} = 0$

• Diffusion in growing 'trough' (polar coordinates)

$$J_{CO_2}^{tr} A' = -D_{CO_2} A' \left(\frac{\partial c_{CO_2}}{\partial r}\right) - \frac{A' c_{CO_2} J_{CO_2}^{tr}}{c_T}$$

Solutions: Express Oxidation as Cavity Growth or Weight Loss

Growth in terms of radii

$$t = \frac{M_{CO_2}}{M_C} \frac{\rho}{D_{CO_2} c_{CO_2}^*} \left[\frac{r_2^2}{2} ln(r_2) - \frac{r_2^2}{4} - \frac{r_2^2}{2} lnr_l + \frac{r_2^2}{2} \left(\frac{\pi x_f (c_T + c_{CO_2}^*)}{r_l c_T} \right) + \frac{r_l^2}{4} - \frac{r_l^2}{2} \left(\frac{\pi x_f (c_T + c_{CO_2}^*)}{r_l c_T} \right) \right]$$

• Growth in terms of weight loss

$$t = \frac{M_{co_2}}{M_c} \frac{\rho}{D_{co_2} c_{co_2}^*} \left[\frac{\left(\sqrt{\frac{2W}{\pi\rho l}} + r_l\right)^2}{2} ln \left(\sqrt{\frac{2W}{\pi\rho l}} + r_l\right) - \frac{\left(\sqrt{\frac{2W}{\pi\rho l}} + r_l\right)^2}{4} - \frac{\left(\sqrt{\frac{2W}{\pi\rho l}} + r_l\right)^2}{2} ln r_l \right] + \frac{\left(\sqrt{\frac{2W}{\pi\rho l}} + r_l\right)^2}{2} \left(\frac{\pi x_f (c_T + c_{co_2}^*)}{r_l c_T}\right) + \frac{r_l^2}{4} - \frac{r_l^2}{2} \left(\frac{\pi x_f (c_T + c_{co_2}^*)}{r_l c_T}\right) \right]$$

Results: Using Oxidation Trough Radius as Indicator of Oxidation

Oxidation through Natural Craze Cracks

"Craze Crack" from shrinkage of SiC Pathway for oxygen in and CO outward

Actual Cracking in SiC

- On cooling from processing temperature, SiC (CTE = 5 ppm/K) shrinks faster than C/C (CTE = 1 ppm/K)
 - Tensile stresses develop in SiC
 - At some temperature stresses are enough to develop cracks to relieve stresses
 - Ideally would close on heating, but do not
 - Use Room temperature dimensions
- Oxidation films on walls of cracks
 - Thin enough to ignore

SiC crack mouth 1200°C/0.5 hr/air

Characterize Craze Cracks

(a) Surface of disc, polished to reveal cracks(b) 'Skeleton' trace of cracks

Crack Parameters for Model— From Cross Sections & Image Analysis

Coating thickness, mm	0.78 ± 0.14
Crack length/unit area, mm ⁻¹	0.33 ± 0.04
Crack spacing, mm	$\textbf{3.4}\pm\textbf{0.9}$
Crack width, μm	12.8 ± 1.41
Crack area/unit area	4.2 x 10 ⁻³

Oxidation cavity 1300°C/2.5 h/air

X-ray CT Shows irregular Oxidation Cavities below Cracks

Roth et al, "Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon," Int. J. Appl. Ceram. Tech. 7 [5], 652-661 (2010).

Slice 2

Use Continuous Recording Balance to Obtain Weight Loss Rates

Dashed lines: Fits to extract linear and parabolic rate constants

Measured and calcu	lated rates of RCC oxidation	hrough craze cracks						
Sample temperature, °C	Geometrical surface area, mm ²	Total crack length, ^a mm	Area of carbon exposed by craze cracks, ^b mm ²	/	Calculated linear rate, ^c mg/mm ² ·h	Measured linear rate, ^d mg/mm ² ·h	\backslash	Measured paraboli rate, ^e mg²/mm ⁴ ·h
1000	850.2±10	281±34	3.60±0.8	1	14.7	26±7		-
1100	935.5±10	309±37	3.96±0.8		13.6	21±6		3.94×10 ⁻³
1200	946.8±10	312±37	3.99±0.6		16.1	30±8		2.79×10^{-2}
1300	940.2 ± 10	310±37	3.97±0.5		16.8	41±9		3.25×10^{-2}
^a Equal to geometric	al area× (crack length/unit a	rea).				/		
^b Equal to (total crac	k length)×(12.8 μm).							
^c From Eq. (49).								
dArea is exposed ar	as of carbon/carbon							

^eArea is exposed area of carbon/carbon. ^eArea is geometrical surface area.

Summary: Oxidation of RCC below Cracks in SiC Coating

- Oxidation study of SiC-protected carbon/carbon (1000-1300°C)
 - Well-characterized samples with machined slots and/or natural craze cracks
 - Compare to model developed from diffusion equation
 - Very good agreement with model for machined slots
 - Reasonable agreement with natural craze cracks. Weight
 loss from other sources
- Oxidation very limited by fume of CO(g) oxidation product
 - Limited damage seen in flown hardware

National Aeronautics and Space Administration

The Columbia Disaster: February 1, 2003 Shedding from External Fuel Tank Damaged Left Wing *Tragically Showed How Important RCC is to the Orbiter*

The Columbia Disaster

- Many large teams at NASA and other organizations involved in determining cause of accident
- Impact damage of RCC panel led to entry of hot re-entry gases, melted wing structure, and brought vehicle down

Recovered Pieces of RCC Provided Clues to Cause of Accident

Brought to hanger at Kennedy Space Center

Pattern of solidified droplets defined location of breach

Alloy	Use	Maximum Service Temperature (°C)	~MP (°C)
AI 2024	Wing spar	NA	650
A286	Spar attachment fitting	815	1370
IN718	Clevis, spanner beam	980	1370
IN601	Spar insulation foil	1090	1370

Proposed Breach Location and Plasma Flow Based on Results of Deposit Analysis

Opila, Jacobson, Jerman, "Columbia Tragedy: High-Temperature Materials Chemistry and Thermodynamic Considerations of the Breached Wing Leading Edge," J. Fail. Anal. Prev. 6 [1], 86-94 (2006).

Oxidation Morphology helped with interpretation of fragments Unique appearance of remaining Fibers

Laboratory oxidation of uncoated carbon/carbon
Oxidation Morphology: Fibers thinner and pointed

- Edge of recovered fragment from Columbia
- Pointed fibers indicated burning when vehicle broke-up
- Flat fracture surfaces indicated fracture on impact with ground

In Memoriam . . .

Selected Studies of High Temperature Chemistry Related to NASA Missions

- Space Shuttle Orbiter Wing Leading Edge
- Environmental Barrier coatings for Ceramic Turbine parts
- Chemistry on other Worlds: Exoplanets
- K/Ar dating of minerals

Knudsen Effusion Mass Spectrometry

Rare Earth Silicate Coatings (with G. Costa, B. Kowalski)

- High-Temperature Materials: Silicate Coatings

- Hot section: Currently advanced Co-Ni based superalloys.
- Always a push to higher temperature, lighter materials: better fuel efficiency
- Future silicon-based ceramics and composites: combustion chambers, static parts in turbine
- Need 1000s of hours reliable operation

Weight Loss of SiC in High Pressure Jet Fuel Burner (6 atm, 20 m/s)

Use Activities as an Index of Reactivity

- Lower activity of silica \Rightarrow less reaction
- Corrosion: Water vapor enhanced volatilization
 - $\begin{aligned} &-\operatorname{SiC} + 3/2 \text{ O}_2(g) = \operatorname{SiO}_2 + \operatorname{CO}(g) \\ &\underline{\operatorname{SiO}}_2 + 2 \text{ H}_2 \text{O}(g) = \operatorname{Si}(\text{OH})_4(g) \\ &- \text{P}[\operatorname{Si}(\text{OH})_4] = \text{K a}(\operatorname{SiO}_2) [\text{P}(\text{H}_2\text{O})]^2 \end{aligned}$

$$H_{2}O(g) \xrightarrow{Si(OH)_{4}(g) \downarrow, MOH(g) \downarrow} \underbrace{\underbrace{SiO_{2}, MO}}_{SiO_{2}, MO}$$

(Underline indicates in solution)

Meschter, Opila, Jacobson, Ann Rev Mater Res 43, 559 (2013) Jacobson, J Am Ceram Soc 97, 1959 (2014)

- $Si(OH)_4(g)$ vapor flux $\propto a(SiO_2)$
- Need to measure a(SiO₂) in candidate coating materials

Measure Activities National Aeronautics and Space Administration Work in two Phase Regions (Constant activity) Lose a little SiO₂ on heating—still good measurements Y_2O_3 -SiO₂ Yb_2O_3 -SiO₂ 2300 2800 2200° Liquid 2600 LEWBEKYLOKE KELAIN 00 00 00 00 00 00 00 00 2100 Yb₂O₃ + Liq. Yb₂SiO₅ + Liq. Yb₄Si₃O₁₂ + Liq Two Liquids 을 1900 년 1880° 1850^o Yb₂Si₂O₇ 33 1825 Yb_SiO_ + Yb_Si_O_, 1750° 1700° Yb_O_ + Yb_SiO 1700 2:3 SiO2 + Liq. 1650⁰ 1800 Yb,SiO, + Yb,Si,O, Yb₂Si₂O₇ + SiO₂ 1600 1500 20 60 80 0 40 100 Yb₂O₃ Mol % SiO₂ 0 0 1.0 **MOLE_FRACTION SIO2** Toropov et. al. (1962) Fabrichinaya, Seifert calculated

Measure Thermodynamic Activities "Escaping Tendency" Knudsen Cell Method to Measure Partial Pressure

- Obtain near equilibrium between condensed phase/vapr
- First developed by Knudsen (Denmark), 1909: Measure Hg vapor pressures
- Vapor effusing from orifice leads to a weight loss rate which relates to pressure; vapor can also be analyzed with spectrometer
 - First developed by Inghram (Chicago) 1950s
 - Knudsen effusion mass spectrometry (KEMS) Remarkably versatile method
- Major issues: temperature measurement and sample/cell interactions

Methods of Measuring Vapor Pressure based on Knudsen Cell (Low Ambient Pressure)

Recording Electrobalance

Hangwire

Water-Cooled Shell

-Thermocouple

and Door

Mass spectrometry: direct molecular beam from K-cell to spectrometer

$$P_i = \frac{kI_iT}{\sigma_i}$$

Vacuum Weight loss: Measure vapor flux

Tare Weight

Pumped by

6" Diffusion

Sample

Tungsten Mesh

Heating Element

Pump

$$J = \frac{P}{\sqrt{2\pi MRT}}$$

National Aeronautics and Space Administration

Procedure for Measuring Thermodynamic Activities

- Ion intensity measurements of relevant species for:
 - 1. Pure compound
 - 2. Solution... $a_i = \frac{I_i}{I_i^o}$ (for alloys; more complex for oxides)
- Best to have *in-situ* pure compound and solution: Use multiple cell furnace

Monosilicate + Disilicate: Constant Activity SiO(g) relates to a(SiO₂) **Mo (reducing agent) added to boost SiO(g) Signal**

Three cells:

- Cell (1) Au (reference: temperature calibration)
- Cell (2) 3Mo + $Yb_2O_3 \cdot 2SiO_2 + Yb_2O_3 \cdot SiO_2$
- Cell (3) 3Mo + SiO₂
- Mo as powder and cell material

Note that cell is part of the thermodynamic system: Best way to overcome container issue!

Cell 2: SiO₂ in silicate

$$Mo + 3\underline{SiO_2} = 3SiO + MoO_3$$
$$a(SiO_2) = \left\{\frac{\left[P(SiO)\right]^3 P(MoO_3)}{K}\right\}^{0.33}$$

 $a(SiO_{2}) = \left\{ \frac{[I(SiO)]^{3}I(MoO_{3})}{[I^{\circ}(SiO)]^{3}I^{\circ}(MoO_{3})} \right\}^{0.33}$

Activity across phase diagram 1600K

Jacobson (2014). JACerS, 97(6), 1959-1965. Costa and Jacobson (2015) J Eur Ceram Soc 35, 4259-67.

Enthalpies of Formation from Thermodynamic Cycles

$\operatorname{RE}_{2}O_{3(s,\ 1600\ \mathrm{K})} + \operatorname{SiO}_{2(s,\ 1600\ \mathrm{K})} \rightarrow \operatorname{RE}_{2}$	₂ SiO _{5(s, 1600 K)}	ΔH_1 = measured in this work
$\operatorname{RE}_2\operatorname{SiO}_{5(s,\ 1600\ \mathrm{K})} \to \operatorname{RE}_2\operatorname{SiO}_{5(s,\ 298\ \mathrm{K})}$		$\Delta H_2 = H_{1600 \text{ K}} - H_{298 \text{ K}}$
$\operatorname{RE}_{2}\operatorname{O}_{3(s, 298 \mathrm{K})} \rightarrow \operatorname{RE}_{2}\operatorname{O}_{3(s, 1600 \mathrm{K})}$		ΔH_3
$SiO_{2(s, 298 \text{ K})} \rightarrow SiO_{2(s, 1600 \text{ K})}$		ΔH_4
$2 \operatorname{RE}_{(s, 298 \text{ K})} + 3/2 \operatorname{O}_{2(g, 298 \text{ K})} \rightarrow \operatorname{RE}_{2}$	2O _{3(s, 298 K)}	ΔH_5
$Si_{(s, 298 K)} + O_{2(g, 298 K)} \rightarrow SiO_{2(s, 298 K)}$	ζ)	ΔH_6
$2 \text{ RE}_{(s, 298 \text{ K})} + \text{Si}_{(s, 298 \text{ K})} + 5/2 \text{ O}_{2(g, 2)}$	$298 \text{ K} \rightarrow \text{RE}_2 \text{SiO}_{5(s, 298 \text{ K})}$	$\Delta \mathbf{H}_{7=} \Delta \boldsymbol{H}_{f,RE_2SiO_5,298} K$
$2 \text{ RE}_{(s, 298 \text{ K})} + \text{Si}_{(s, 298 \text{ K})} + 5/2 \text{ O}_{2(g, 288 \text{ K})}$	$298 \text{ K} \rightarrow \text{RE}_2 \text{SiO}_{5(8, 298 \text{ K})}$	$\Delta \mathbf{H}_{7} = \Delta \boldsymbol{H}_{f,RE_2SiO_5,298} \boldsymbol{K}$
$2 \operatorname{RE}_{(s, 298 \text{ K})} + \operatorname{Si}_{(s, 298 \text{ K})} + \frac{5}{2} \operatorname{O}_{2(g, 2)}$	$\Delta H_{f, RE silicate, 298 K} (kJ/mol)$	$\Delta \mathbf{H}_{7} = \Delta \mathbf{H}_{f,RE_2SiO_5,298} K$
$2 \operatorname{RE}_{(s, 298 \text{ K})} + \operatorname{Si}_{(s, 298 \text{ K})} + \frac{5}{2} \operatorname{O}_{2(g, 2)}$	$298 \text{ K} \rightarrow \text{RE}_2 \text{SiO}_{5(s, 298 \text{ K})}$ $\Delta H_{f, \text{ RE silicate, } 298 \text{ K}} \text{ (kJ/mol)}$ $\text{KEMS} \qquad \text{Calorimetry}^*$	$\Delta \mathbf{H}_{7} = \Delta \boldsymbol{H}_{f,RE_2SiO_5,298} \boldsymbol{K}$
$2 \operatorname{RE}_{(s, 298 \text{ K})} + \operatorname{Si}_{(s, 298 \text{ K})} + 5/2 \operatorname{O}_{2(g, 2)}$ $Y_2 \operatorname{O}_3.(\operatorname{SiO}_2)$	$\Delta H_{f, RE silicate, 298 K} (kJ/mol)$ $KEMS Calorimetry^*$ $-2907 \pm 16 -2868.54 \pm 5.34$	$\Delta \mathbf{H}_{7} = \Delta \boldsymbol{H}_{f,RE_2SiO_5,298} \boldsymbol{K}$

*Liang et al. "Enthalpy of formation of rare-earth silicates Y_2SiO_5 and Yb_2SiO_5 and N-containing silicate $Y_{10}(SiO_4)_6N_2$ ", J. Mater. Res. 14 [4], 1181-1185.

Silica activity in Rare Earth Silicates

- Candidate Environmental Barrier Coatings for SiC ceramics and coatings: Achieve water vapor resistance with low (< 1) silica activity
- Examined Y₂O₃-SiO₂, Yb₂O₃-SiO₂ (Costa), and Lu₂O₃-SiO₂ (Kowalski) systems
- Similar behavior with the monosilicate showing lowest silica activity
- Other problems with RE monosilicates: CTE mismatch to SiC composite

National Aeronautics and Space Administration

Hot Stage Static Components in Gas Turbines

HPT CMC Shrouds

- HPT (High Pressure Turbine) Shrouds on CFM International LEAP engine since 2016—Airbus A320Neo, Boeing 737 Max; GE9X Combustor Liners, HPT Shrouds, HPT stage 1 and 2 Vanes on Boeing 777X
- Optimize protective coating for maximum corrosion protection
 - Thermomechanical testing and modeling
 - Basic thermochemistry: critical tool

Selected Studies of High Temperature Chemistry Related to NASA Missions

- Space Shuttle Orbiter Wing Leading Edge
- Environmental Barrier coatings for Ceramic Turbine parts₁
- Chemistry on other Worlds: Exoplanets
- K/Ar dating of minerals

Knudsen Effusion Mass Spectrometry

Exoplanets: Planets outside our Solar System

- Confirmed discoveries:
 - 1988—First discovery, confirmed 2002
 - 2009-300
 - 2010-453
 - exoplanets.org (2023)-3262
 - Kepler Candidates—2584
- Most commonly found by transit method
- Hot, rocky Exoplanets
 - Short orbital periods
 - Tidally locked/strongly irradiated
 - CoRoT-7b, Kepler 10b, 55 Cnc e
 - 2000 C and above!

National Aeronautics and Space Administration

Atmospheres of Hot, Rocky Exoplanets CoRoT-7b, Kepler 10b, 55 Cnc e

- Estimated densities suggest BSE (basic silicate earth: SiO₂-MgO-FeO-CaO) or moon-like compositions
- Inorganic vapors above lava oceans—molten silicates (Fegley)
- Major species are Fe(g), SiO(g), Mg(g) above olivine
 - Can also form silicate 'clouds'
- Grant with MSU (Reed, Cornelison), Wash U (Fegley), and NASA (Jacobson, Costa).

Use Knudsen Effusion Mass Spectrometry (KEMS)

- Single Cell—can reach T >2000C
- Simulation of hot, rocky exoplanet??

Psuedo-Binary Forserite (Fo)-Fayalite (Fa) (Mg₂SiO₄-Fe₂SiO₄) System (with G. Costa)

Temperature dependence of ion intensity ratios of Mg⁺, Fe⁺, SiO⁺, O⁺ and O₂⁺ in the olivine sample.

Fegley and Osborne, <u>Practical Chemical Thermodynamics</u> <u>For Geoscientists</u>, Elsevier 2013, Fig. 12-11.

Measurements show good agreement with the phase diagram calculated by Bowen and Shairer.

Bowen and Schairer, Am. J. Sci. 29, 151-171 (1935).

Pseudo Binary Forsterite-Fayalite (Mg₂SiO₄-Fe₂SiO₄) System

• Derive from equilibrium constants for Fo, Fa constituents of solution

$$- ln\left(\frac{P(Fe)}{P(Mg)}\right)_{gas} = ln\left(\frac{a_{Fa}}{a_{Fo}}\right)_{Olv} - ln\left(\frac{-\Delta G^{o}_{vap}(Fo)/RT}{-\Delta G^{o}_{vap}(Fa)/RT}\right)$$

- Ideal Solution $\frac{a_{Fa}}{a_{Fo}} = \text{constant}$, $ln\left(\frac{P(Fe)}{P(Mg)}\right)_{gas}$ vs 1/T linear

Psuedo-Ternary: MgO-'FeO'-SiO₂

Nafziger & Muan (1967)

Composition of Interest: Fo_{0.93}Fa_{0.07}

Activity gradient across olivine line

Ideally work in three phase regions to fix P_i

- Excess SiO₂: Olivine + Pyroxene
- Excess MgO: Olivine + Magnesiowustite

Solutions: Measure Partial Thermodynamic Quantities

Olivine: $(FeO)_{2-\alpha}(MgO)_{2-\beta}(SiO_2)_{1-\gamma}$

Pure Compound :
FeO(s) = Fe(g) + 1/2 O₂(g)

$$K_{p} = \frac{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}}{a_{FeO}} = \frac{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}}{1}$$

Solution :
FeO(solution, a < 1) = Fe(g) + 1/2 O₂(g)
 $K_{p} = \frac{P_{Fe} [P_{O_{2}}]^{1/2}}{a_{FeO}}$
 $a_{FeO} = \frac{P_{Fe} [P_{O_{2}}]^{1/2}}{P_{Fe}^{o} [P_{O_{2}}^{o}]^{1/2}} = \frac{I_{Fe} [I_{O_{2}}]^{1/2}}{I_{Fe}^{o} [I_{O_{2}}^{o}]^{1/2}}$

 $ln(a_{FeO}) vs 1/T - -partial molar enthalpy$ Apply to SiO₂ = SiO(g) + 1/2 O₂, MgO = Mg(g) + 1/2 O₂

Thermodynamic Activities in Olivine – $(Fe_2SiO_4)_{0.07}(Mg_2SiO_4)_{0.93}$ SiO₂ Side: Qualitative Comparison

Hot, Rocky Exoplanets

- Lava oceans, inorganic vapors as atmosphere
 - Olivine-like: Mg, Fe, SiO, O, O₂ Vapors
 - Lunar Basalt-like: SiO, Fe, Na, K, O, O₂, Mg, SiO₂, TiO₂, TiO, Ca, Al Vapors (DeMaria et al., Apollo 12 Sample Vaporization)
- When we can view exoplanet atmospheres spectroscopically—look for these vapors

Selected Studies of High Temperature Chemistry Related to NASA Missions

- Space Shuttle Orbiter Wing Leading Edge
- Environmental Barrier coatings for Ceramic Turbine parts₁
- Chemistry on other Worlds: Exoplanets
- K/Ar dating of minerals

Knudsen Effusion Mass Spectrometry

K-Ar Dating of Minerals with K. Farley/Caltech and J. Hurowitz/NASA JPL

- Decay sequence ${}^{40}K \rightarrow {}^{40}Ar {}^{40}Ar {}^{1/2} = 1.25$ billion years
- Determine when rock was molten—all ⁴⁰Ar escaped and process reset

$$t = \frac{1}{\lambda} \ln \left(\frac{{}^{40}Ar}{{}^{40}K_u} \left(\frac{\lambda}{\lambda_e} \right) + 1 \right)$$

 $\lambda = \text{total decay constant } \lambda_e = \text{decay constant of } {}^{40}\text{K} \rightarrow {}^{40}\text{Ar}$

 $^{40}Ar^* =$ in situ radiogenic Ar from sample

 ${}^{40}K_u$ = amount of K in sample

- Difficult to measure these quantities
 - ⁴⁰K -- 0.012%

$$\frac{140}{40}K_u$$

 ${}^{40}Ar^{*}$

• ⁴⁰Ar*--want radiogenic component, need to separate from ⁴⁰Ar in air

³⁶ Ar—0.327
³⁸ Ar—0.063
⁴⁰ Ar—99.600

Unique Features of this Approach

- Isotope dilution method:
 - Add a known amount of 41 K to an unknown amount 39 K
 - Measure R = ${}^{41}K/{}^{39}K$
 - ${}^{39}K = {}^{41}K/R$
 - Know total moles of K in mineral $[^{39}K + {}^{41}K]$ —multiply by 0.00013 to get ${}^{40}K$
 - Many modifications:
 - · Works if some of the added isotope already in unknown
 - Double isotope dilution for several isotopes

³⁶ Ar—0.327
³⁸ Ar—0.063
⁴⁰ Ar—99.600

• Low melting borate flux to make homogeneous mixture

Sample Preparation

- Mo Knudsen cell
 - 10 mg basalt
 - 150 mg LiBO₂-Li₂B₄O₇ flux
 - 179 μg Spike albite-like glass
 - Enriched in ⁴¹K (>95%)

- Enriched in ³⁹Ar (from neutron irradiation of traces ³⁹K)
- Required Ar isotope ratios measured with inert gas methods (Caltech)
 Very clean vacuum system—high capacity getters
- Required K isotope ratios measured with KEMS (NASA GRC)
 - Flux creates homogeneous mixture with near unit activity of K \Rightarrow high vapor pressure

Determine $\frac{{}^{40}Ar^*}{{}^{40}K_u}$ from Double Spiked Glass + Unknown

•
$${}^{40}\text{Ar}_{m} = {}^{40}\text{Ar}^{*} + {}^{40}\text{Ar}_{air} + {}^{40}\text{Ar}_{spk}$$

•
$${}^{36}\text{Ar}_{m} = {}^{36}\text{Ar}_{air}$$

•
$${}^{39}\text{Ar}_{m} = {}^{39}\text{Ar}_{spk}$$

$${}^{39}K_{m} = {}^{39}K_{u} + {}^{39}K_{spk}$$

•
$${}^{41}K_m = {}^{41}K_u + {}^{41}K_{spk}$$

•
$${}^{40}K_u = r_{40} \, {}^{39}K_u$$

* Radiogenic

m = measured spk = spike u = unknown in sample r_{40} = natural ${}^{40}K/{}^{39}K$ $R_m = ({}^{40}Ar/{}^{39}Ar)_m$ $R_{spk} = ({}^{40}Ar/{}^{39}Ar)_{spk}$ $r_m = ({}^{39}K/{}^{41}K)_m$ $r_{spk} = ({}^{39}K/{}^{41}K)_{spk}$ $r_{nat} = ({}^{39}K/{}^{41}K)_{nat}$

Need only measure circled quantities

Calculation of Age

Sample	Ratio	Measurement	Method
10 mg Basalt + 179 μg Spike	⁴⁰ Ar/ ³⁹ Ar	44300 ± 740	Inert Gas Mass Spec
10 mg Basalt + 179 μg Spike	³⁶ Ar/ ³⁹ Ar	102 ± 1.8	Inert Gas Mass Spec
Spike Glass	³⁹ K/ ⁴¹ K	0.0390 ± 0.0006	Preparation of Spike
10 mg Basalt + 179 μg Spike	³⁹ K/ ⁴¹ K	4.71 ± 0.07	KEMS
Spike Glass	³⁹ Ar/ ⁴¹ K	1.453 ± 0.037	Preparation of Spike

$$t = \frac{1}{\lambda} \ln \left(\frac{{}^{40}Ar^*}{{}^{40}K_u} \left(\frac{\lambda}{\lambda_e} \right) + 1 \right)$$

Basalt from Viluy traps (lava coated region), Eastern Siberia $t = 347 \pm 19$ Ma (million years) Only $\pm 5\%$!

Compare to: 351.4 ± 5 Ma (K-Ar) and 354.3 ± 5 Ma (⁴⁰Ar/³⁹Ar) (Courtillot et al. (2010), Earth Planet Sci Let 300, 239)

K. A. Farley, et al. (2013), Geochimica et Cosmochimica Acta 110, 1-12.

K-Ar Dating of Minerals for Mars or other Planetary Probes

Advantages:

• Do not need to weigh sample; Only need a known amount of spike glass

- Li Borate flux lowers temperature to achieve homogeneous mixture and strong K signal (~1000°C)
- Single instrument
- High accuracy ~5%
- Future probes

Summary: Selected Studies in High Temperature Chemistry

NASA

- Space Shuttle Orbiter Wing Leading Edge
 - With NASA's LESS-PRT
 - Model damage due to SiC cracks
 - Accident investigation
- Coatings for ceramic turbine parts
 - Part of larger project with GRC colleagues and engine companies
 - Measure activities in rare earth silicates to determine resistance to water vapor attack
- Chemistry on other worlds
 - GRC colleagues and Universities (Fegley/WUSTL, Harvey/CWRU)
 - Hot, Rocky exoplanets: High temperature vapors
- K-Ar dating of minerals
 - With JPL and Caltech (Farley)
 - Unique method using double isotope dilution and borate flux

NASA Glenn Research Center Cleveland, OH

NASA Glenn Research 🤣 🔰 @NASAglenn

An extraordinary career opportunity could be a few clicks away—we're hiring. Monitor @USAJOBS for openings @NASAGlenn in #Cleveland, Ohio. Positions are available in both engineering and administrative fields: nasai.usajobs.gov.