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Glenn Research Center

Plum Brook Station Test Site
(Sandusky)

» 6500 acres
* 11 civil servants and
102 contractors

Lewis Field

(Cleveland)

» 350 acres

» 1626 civil servants and
1511 contractors

www.nasa.gov
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Structures and Materials Research
Supports a Wide Range of NASA Missions
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Selected Studies of High Temperature
Chemistry Related to NASA Missions

« Space Shuttle Orbiter Wing Leading Edge

« Environmental Barrier coatings for Ceramic Turbine parts
« Chemistry on other worlds: Exoplanets

« K/Ar dating of minerals

« Teams and collaborations for all studies

Knudsen

| Effusion

Mass
Spectrometry

www.nasa.gov s
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Re-entry: Orbiter’s Nose Cap and Wing Leading Edges
Take the Heat

» Temperatures: To 1650°C

* Atmosphere: O,, N, as atoms and molecules

* Pressures: 0.005-0.010 atm

» Material: SiC Coated Reinforced Carbon/Carbon Composite (RCC)

» Leading Edge Sub-System Problem Resolution Team (LESS-PRT)
~50 members from NASA Centers, Lockheed-Martin, Southern Research Institute,
University Consultants, etc.

www.nasa.gov s



Reinforced Carbon/Carbon (RCC) @
in the Shuttle

» Composite of Carbon Fibers in a Carbon Matrix — “Carbon/Carbon™"* 7%
» Remarkably effective > 130 flights

www.nasa.gov 7
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Coated Reinforced Carbon/Carbon Composite

.~ Cracks - some through thickness

_~—Sodium Silicate Glass

/" +-—Short SiC fibers, particles

--—S8iC (~1.5 mm)

—-Vacuum infiltrate with
Tetra Ethyl Orthosilicate (TEQS)

- Fills cracks with SiO,

" Carbon/Carbon - 2 dimensional lay-up

SiC/C-C Coefficient
of thermal expansion mismatch leads
to cracking in SiC

Is there Oxidation below cracks?

WWw.nasa.gov



National Aeronautics and Space Administration

GRC asked by LESS-PRT to Model Oxidation below these Cracks
Start with machined slot (articial crack) in SiC

1200°C/2.5 hr/air

Optical Image (baris 1 mm) Image Analysis:
Symmetric Slot indicates Approximate as semi-circle
Diffusion Controlled Reaction and extract radius

Jacobson et al., “Oxidation through coating cracks of SiC-protected
carbon/carbon,” Surf. Coat. Tech. (2008) 203, 372-383 (2008).

WWw.nasa.gov
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Model of Diffusion Controlled Oxidation

« Two step oxidation of carbon
— Can’t have direct oxidation:
CO+%0,=CO, C + % 0O,(g) = CO(g)
— Based on
« Thermodynamic
incompatibility of CO/O,
— » Experimental

d . r observations of carbon
(@) i .
burning (flame front)
N,

‘ _—_I;:gzionll Region | - TWO Steps

L « CO,(g) + C(s) = 2C0O(g)
Tco._ o0 _o " At the carbon surface

! * s « CO(g) + /2 0,(g) = CO,(9)

) At a position x; away from

the surface

* Net reaction
— C +720,(g) = CO(9)

CO,+C=2CO

c/C SiC

i i
Jeo ~—Jog

=

Il ; |
. Jdco, 1 Jeo,_|

SiC

WWW.Nnasa.gov o



National Aeronautics and Space Administration

Rectangular Coordinates
. ~ T ~ = = = = = x=L
Equations sc || sc S
VAN, B X =
Cc/C Cc/C
——————————————————————— X=ry

- Oc.
_ eff i ave
Ji - Di (ﬁx v, ¢ Polar Coordinates

» Diffusion in SiC slot/crack (rectangular coordinates)
Diffusive and Convective Flux

BC. Atx=0: cqy=cly e, =Ccy, ~ COp+C=2CO

Atx=Xx,: Ceo =Cco, Co, =Ccp =0 CO+%0,=CO0,

Atx=L: ¢, =cé2 Cco, =0
» Diffusion in growing ‘trough’ (polar coordinates)

' tr
Jtr A'=-D A accoz _ A4 CCOz JCOz
co - co
’ ’ or Cr

www.nasa.gov
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Solutions: Express Oxidation as
Cavity Growth or Weight Loss

* Growth in terms of radii

2 2 2
ry I &
——=——=Inr,+—=

2

M 2
= P * riln( vy
M. Dc02 Cco, 2

» Growth in terms of weight loss

rCr

[ﬂ'xf (CT + CC02 )

2
Fpoor

4 2

.
(CT +Ceo, )

[ﬂxf

rCr

2
"

4

}__

2
"

2

_{mf

(e +cio, )

rCr

)
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Results: Using Oxidation Trough Radius as Indicator of
Oxidation

5
12OOOC/a|r/O53 mm S|Ot o Diffusion in slot .
, ///////
£ g
T2 /// - Diffusion in slot and void
LA
ol @ .
0 1 2 3 4 5
Time, hr
8
1200°C/air/1.05 mm slot ol

Diffusion in slot

Time, hr

Figure 9

www.nasa.gov 13
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Oxidation through Natural Craze Cracks

“Craze Crack” from shrinkage of SiC
Pathway for oxygen in and CO outward

www.nasa.gov 14



National Aeronautics and Space Administration

Actual Cracking in SIiC

* On cooling from processing
temperature, SiC (CTE =5
ppm/K) shrinks faster than
C/C (CTE =1 ppm/K)

— Tensile stresses develop
in SiC

— At some temperature
stresses are enough to
develop cracks to relieve
stresses

— Ideally would close on
heating, but do not

— Use Room temperature
dimensions

— Oxidation films on walls of
cracks

— Thin enough to ignore

> <& 2 &£ 2> <€

SiC SiC SiC

Carbon/Carbon

SiC crack mouth 1200°C/0.5 hr/air

-]

WWw.nasa.gov
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Characterize Craze Cracks

Crack Parameters for Model—
From Cross Sections & Image Analysis

Coating thickness, mm 0.78 £0.14
Crack length/unit area, mm-? 0.33+0.04
Crack spacing, mm 34+0.9
Crack width, um 12.8 + 1.41
Crack area/unit area 4.2 x103

Ve

(b) \\

(a) Surface of disc, polished to reveal cracks
(b) ‘Skeleton’ trace of cracks Oxidation cavity 1300°C/2.5 h/air

i f—
AN -+100 ym

WWww.nasa.gov
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X-ray CT Shows irregular Oxidation Cavities
below Cracks

A
Slice 1 ——
Slice 2 mommas

19.5 mm

(a)

Slice 1

Roth et al, “Nondestructive Evaluation

(NDE) for Characterizing Oxidation Damage

in Cracked Reinforced Carbon-Carbon,”

Int. J. Appl. Ceram. Tech. 7 [5], 652-661 (2010).

(b) Slice 2

www.nasa.gov 17
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Use Continuous Recording Balance to Obtain Weight Loss Rates

Measured and calculated rates of RCC oxidation through craze cracks

|
[$)]

Weight/geometrical area, mg/cm2
|
o
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|
N

1000°C/air"
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&
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0.5 1.0 1.5 2.0 25
Time, hr

Parabolic region: SiC oxidation + C/C weight loss
Linear region: C/C weight loss
Dashed lines: Fits to extract linear and parabolic rate constants

Sample Geometrical surface Total crack Area of carbon exposed Calculated linear Measured linear Measured paraboli
temperature, °C area, mm? length,® mm by craze cracks,” mm? rate, mg/mm>h rate,® mg/mm>h rate,® mgZ/mm®*h
1000 850.2+10 281134 3.60£0.8 14.7 26+7 -

1100 935.5+10 309+37 3.96+0.8 13.6 2116 3.94x1073

1200 946.8+10 312+37 3.99+0.6 16.1 30+8 2.79x1072

1300 940.2+10 310£37 3.97£0.5 16.8 419 3.25x 1072

“Equal to geometrical areax (crack length/unit area).

PEqual to (total crack length)x(12.8 um).

“From Eq. (49).

dArea is exposed area of carbon/carbon.

“Area is geometrical surface area.

~_

g
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Summary: Oxidation of RCC below Cracks in SiC Coating

« Oxidation study of SiC-protected carbon/carbon (1000-1300°C)

— Well-characterized samples with machined slots and/or natural
craze cracks

— Compare to model developed from diffusion equation
» Very good agreement with model for machined slots

 Reasonable agreement with natural craze cracks. Weight
loss from other sources

« Oxidation very limited by fume of CO(g) oxidation product
— Limited damage seen in flown hardware

www.nasa.gov s
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The Columbia Disaster: February 1, 2003
Shedding from External Fuel Tank Damaged Left Wing
Tragically Showed How Important RCC is to the Orbiter

Shower of particies
D bowr (L) O LM Wi
after debwis struck

Ll

Wwww.nasa.gov 2o



National Aeronautics and Space Administration @
The Columbia Disaster

« Many large teams at NASA and other organizations involved in
determining cause of accident

* Impact damage of RCC panel led to entry of hot re-entry gases,
melted wing structure, and brought vehicle down

ROC Panel #8, Upper

WWww.nasa.gov 21
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Recovered Pieces of RCC Provided Clues to Cause
of Accident

Brought to hanger
at Kennedy Space Center
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Attachment Hardware in Wing Leading Edge Structure @

Pattern of solidified droplets
Leading Edge Cross-Section defined location of breach

CJLI2200 [JInconel 718 M RCC B Inconel 601
EELI900 I A-286 steel [ Aluminum 2024

Alloy Use Maximum Service | _\p (°C)
Temperature (°C)

Al 2024 Wing spar NA 650

A286 Spar attachment fitting 815 1370

IN718 Clevis, spanner beam 980 1370

INGO1 Spar insulation foil 1090 1370

WWWw.nasa.gov 23
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Proposed Breach Location and Plasma Flow Based on @
Results of Deposit Analysis

‘erachrome
Tears

Inconel

B RCC [ Inconel-
[ 1 Aluminum Dyriaflex

[ lvuzz00 M Inconel T18
) L1s00 B A-286 steel

[
Flow Exiting through RCC 8 lower on to
Carrier Panel 9 tiles

Plasma

Opila, Jacobson, Jerman, “Columbia Tragedy: High-Temperature Materials
Chemistry and Thermodynamic Considerations of the Breached Wing Leading
Edge,” J. Fail. Anal. Prev. 6 [1], 86-94 (2006).

www.nasa.gov 2
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Oxidation Morphology helped with interpretation of fragments
Unique appearance of remaining Fibers

! 'R
F R

i

BHEE - - . |‘%|||||||
CC1100_1_1 6.0kV 12.1mm x500 SE(U) 3/7/2005 100um

« Laboratory oxidation of uncoated carbon/carbon

» Oxidation Morphology: Fibers thinner and pointed * Edge of recovered fragment from Columbia
* Pointed fibers indicated burning when

vehicle broke-up
* Flat fracture surfaces indicated fracture on
impact with ground

WWWw.nasa.gov 2
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In Memoriam...

WWWw.nasa.gov 2
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Selected Studies of High Temperature
Chemistry Related to NASA Missions

« Space Shuttle Orbiter Wing Leading Edge
« Environmental Barrier coatings for Ceramic Turbine parts

* Chemistry on other Worlds: Exoplanets

« K/Ar dating of minerals

Knudsen
Effusion
Mass
Spectrometry

www.nasa.gov 27
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Rare Earth Silicate Coatings (with G. Costa, B. Kowalski)

- High-Temperature Materials: Silicate Coatings

1!

! =| '“mEmfﬂﬂhulum:’ --

. ,.Jm—
5 i EE

- Hot section: Currently advanced Co-Ni based superalloys.
- Always a push to higher temperature, lighter materials: better fuel efficiency

- Future silicon-based ceramics and composites: combustion chambers, static
parts in turbine

- Need 1000s of hours reliable operation

Www.nasa.gov 2



Weight Loss of SiC in High Pressure Jet Fuel Burner (6 atm, 20 m/s) @

N 0 N
e A |
E - |
O ; |
m - -
E 5 -
0 I ]
0]
3 i |
_I - -
w -10 .
= ]
7)) i B9
15 |
| | | | | | | | | | | | | | | | | | | |
0 20 40 60 80 100
Exposure Time (hrs)
Opila: SiC(s) + 3/2 O,(g) = SiO,(s) + CO(g)
Robinson and Smialek, SiO,(s) + 2H,0(g) = Si(OH),(9)
J Am Ceram Soc 82, 1817 (1999) Structural part is vaporizing out exhaust!

Needs to last 1000s of hours...

WWww.nasa.gov g
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Use Activities as an Index of Reactivity

» Lower activity of silica = less reaction

« Corrosion: Water vapor enhanced volatilization A

— SiC + 3/2 O4(g) = SiO, + CO(g)
SIO, + 2 H,0(g) = Si(OH)4(9)
— P[Si(OH),] = K a(SiO,) [P(H,0)]?

H,0(g) Si(OH),(g) ¥, MOH(g) ¥
~ 7

(Underline indicates in solution)

Meschter, Opila, Jacobson, Ann Rev Mater Res 43, 559 (2013)

Si(OH),(g) vapor flux o« a(SiO,)

Need to measure a(SiO,) in
candidate coating materials

Jacobson, J Am Ceram Soc 97, 1959 (2014)

www.nasa.gov s



National Aeronautics and Space Administration M eaS U re ACtiViti eS
Work in two Phase Regions (Constant activity)
Lose a little SiO, on heating—still good measurements

Y O 'Si02 szO 'Si02
2~3 3

\ \ \ \ 2300

3800

500 |

4
o
o

.I.EwbEBV‘.I;‘nBE KEFAIN
3
°
\

o
(=
o

1800 |

1e00 | | | | | | | | | B0 ' 3|u I Jflﬂ- 6|U- I slo T
0 04 0S5 03 0FY 02 0 0\ 08 09 d0 0.0, Mol % 50,

INOrE EKVCLIOU 2103

. _ Toropov et. al. (1962)
Fabrichinaya, Seifert calculated

Wwww.nasa.gov s
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Measure Thermodynamic Activities “Escaping Tendency” @
Knudsen Cell Method to Measure Partial Pressure

Effusion
orif‘iJcelz N I ) !

1 ]
12 12
Condensed phase
oxide

1
T
Ny
el
S
1
T
/ \ .

Thermocouple
well or pyrometer
sighting port — —

— Obtain near equilibrium between condensed phase/vapr

— First developed by Knudsen (Denmark), 1909: Measure Hg vapor pressures

— Vapor effusing from orifice leads to a weight loss rate which relates to pressure;
vapor can also be analyzed with spectrometer

* First developed by Inghram (Chicago) 1950s
* Knudsen effusion mass spectrometry (KEMS) Remarkably versatile method

— Major issues: temperature measurement and sample/cell interactions

www.nasa.gov s
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Methods of Measuring Vapor Pressure based

on Knudsen Cell (Low Ambient Pressure)

Video
Magnet — View port
supply \ camera J
//
/

lon beam —
!

/ High-voltage

50 I/s T source/
ion pump . z divider
o o7 3 " _ - ——Molecular
beam
\ Emission
‘—Movable faraday cup regulator
\— 20-dynode
electron
multiplier

N

Molecular beam /o
SN detnng sporires — 00 s

Electrometer

P
Knudsen cell vapor source —

W element, Ta shields -7

CD-03-82268
Low-voltage,
high-current

supply

Mass spectrometry: direct molecular
beam from K-cell to spectrometer

kI;T

0;

i

/J—Heooming
- Electrobalance

Tare Weight —

Pumped by
g Diffusion —Water-Cooled Shell
ump T / and Door

<] -~ Thermocouple

Tungsten Mesh
Heating Element— i

Vacuum Weight loss:
Measure vapor flux

Www.nasa.gov g3



National Aeronautics and Space Administration
Procedure for Measuring Thermodynamic Activities @
* lon intensity measurements of relevant species for:

1. Pure compound

I

2. Solution...a; = /,0 (for alloys; more complex for oxides)
l

» Best to have in-situ pure compound and solution: Use multiple cell furnace

(@)
Knudsen cell — =-—~"7 [+ ~ 7=~ — W foil-heating element

.a"";“_‘"]"':"’ L.

Mo Knudsen-cell holder — -~ __Z=>— Taheat shields

Power feed-through — ’

E. Copland, 2000

I ."'J -
Pyrometer sight CO-10-83223

Www.nasa.gov s
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Monosilicate + Disilicate: Constant Activity
SiO(g) relates to a(SiO,)
Mo (reducing agent) added to boost SiO(g) Signal

Three cells:

* Cell (1) Au (reference: temperature calibration)

* Cell (2) 3Mo + Yb,0;-2Si0O, +Yb,0, - SiO,

* Cell (3) 3Mo + SiO,

* Mo as powder and cell material

Note that cell is part of the thermodynamic system:
Best way to overcome container issue!

Cell 2: SiO,, in silicate

Mo +358i0, =3Si0+ MoO,

[P(si0)} P(M00,))
K

a(Sio,) = {

a(Si0.) = [1(SiO)] I(MoO;)
e sion] (oo,

|

Cell 3: pure SiO,

[P(5i0)] P(Mo0O,)

la(sio,)]
Mo +3S8i0, =3S8i0 + MoO,

a(Si0,) =1= {[P (sio)f P (1‘4003)F33

K

0.33

-]

Www.nasa.gov s
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YD,0;4 JT'(,X 0,05-S10; Activity across phase diagram 1600K

1650 1600 1550 1500
1.0 == T r T r T r T ;
[ ——
a(Yb,0,)
-1.5+ ——J
0.1F
Yb,0,+ Yb,Si0, + Yb,Si,0, +
__ 2.0+ - Yb,Si0, Yb,Si,0, Si0,
o 2001}
%-2.5- O N N NI N N A - | _alsio)
= )
2 0.001}
-3.04 =-1412.60(1/T)-1.67
-3-5- 0.0001 1 L L 1 1 | 1 '} 1 1
00 01 02 03 04 05 06 0.7 08 09 1.0
x(Si0
4.0 — . (Si0,)

T T T T T T
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7

™ 0'4(K'1) 2300 ; . T T
Yb,0,-Si0,+ Yb,0,-2Si0,
T (K)
1880 1860 1840 1820 1800 1780 2100
0.0 T T T T T T T T T T
L Y00, + Lin. Yb,5i0 + Lig YB,8L.0,, + Lig.
-0.2-
£ 1900 -
= 1850°
QN -0.4 - F Y50, + Y50, ——
©
'S -0.6- 1700 0,0, + Yo 80
°
s jad 1650°
-0.8 = B YB,Si0; + YB,5,0, —— = Y80, + 50, b
100 o E‘D l‘D 6|D I ﬂlﬂ ‘ 100
-1 '0 - UDZD.B Mol % 502
-1.2 —r—rr7r 77T 7T Jacobson (2014). JACerS, 97(6), 1959-1965.
5.30 535 5.40 545 5.50 5.55 5.60 5.65

Costa and Jacobson (2015) J Eur Ceram Soc 35, 4259-67.
T'10* (K"

Wwww.nasa.gov s
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Enthalpies of Formation from Thermodynamic Cycles

RE203(S, 1600K) T SiOZ(S’ 1600K) — REZSiOS(S, 1600 K) AH, = measured in this work
RE,SiO5 1600 ) = RE;S105 205 k) AH; = H 600k — Haosx
RE;O3 208 ) = RE2O5 1600 ) AHj
Si05( 298 k) = S105. 1600 ) AH,
2 RE( 295 k)1 3/2 Oy g 208 k) = RE;O5(5 208 k) AH;
Sis, 208 )T Oa(g 208 k) = S105 205 ) AHg
2 RE 595 k) T Si 208 k)1 5/2 Oyg 208 k) > RES105( 295 k) AH,_ AHfRE,si05,298 K
A

AHf, RE silicate, 298 K (kd/mol)

KEMS Calorimetry*
Y,0;.(Si0y) 2907 + 16 -2868.54 + 5.34
Yb,05.(SiO,) 2744 +11  -2774.75 +16.48

*Liang et al. “Enthalpy of formation of rare-earth silicates Y,SiO5 and Yb,SiO5 and N-containing silicate Y,,(SiO4)sN,", J. www.nasa.gov 5,
Mater. Res. 14 [4], 1181-1185.
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Silica activity in Rare Earth Silicates

» Candidate Environmental Barrier Coatings for SiC ceramics and coatings: Achieve
water vapor resistance with low (< 1) silica activity

« Examined Y,0;-SiO,, Yb,0,-SiO, (Costa), and Lu,05-SiO, (Kowalski) systems
« Similar behavior with the monosilicate showing lowest silica activity

» Other problems with RE monosilicates: CTE mismatch to SiC composite

Www.nasa.gov

38



National Aeronautics and Space Administration ] ] ]
Hot Stage Static Components in Gas Turbines @

© B
N\

HPT CMC Shrouds

e HPT (High Pressure Turbine) Shrouds on CFM International LEAP engine
since 2016—Airbus A320Neo, Boeing 737 Max; GE9X Combustor Liners, HPT
Shrouds, HPT stage 1 and 2 Vanes on Boeing 777X

- Optimize protective coating for maximum corrosion protection
- Thermomechanical testing and modeling
- Basic thermochemistry: critical tool

WWW.Nasa.gov s
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Selected Studies of High Temperature
Chemistry Related to NASA Missions

« Space Shuttle Orbiter Wing Leading Edge
« Environmental Barrier coatings for Ceramic Turbine parts

« Chemistry on other Worlds: Exoplanets

« K/Ar dating of minerals

Knudsen
Effusion
Mass
Spectrometry

Www.nasa.gov 4o
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Exoplanets: Planets outside our Solar System

« Confirmed discoveries:
— 1988—First discovery,
confirmed 2002
— 2009—300
— 2010—453

— exoplanets.org (2023)—3262
» Kepler Candidates—2584

* Most commonly found by transit method

« Hot, rocky Exoplanets
— Short orbital periods
— Tidally locked/strongly irradiated
— CoRoT-7b, Kepler 10b, 55 Cnc e
— 2000 C and above!

1 2 Jf: %:._"m__ :
"""" L . e
r__;;._ _}5
star 4
1 o light curve
w
Time >

www.nasa.gov
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Atmospheres of Hot, Rocky Exoplanets
CoRoT-7b, Kepler 10b, 55 Cnc e

Estimated densities suggest BSE (basic silicate earth: SiO,-MgO-FeO-CaO) or
moon-like compositions

Inorganic vapors above lava oceans—molten silicates (Fegley)

Major species are Fe(g), SiO(g), Mg(g) above olivine
— Can also form silicate ‘clouds’

Grant with MSU (Reed, Cornelison), Wash U (Fegley), and NASA (Jacobson,
Costa).

www.nasa.gov



Use Knudsen Effusion Mass Spectrometry @
(KEMS)

Video ]
camera S View port
//
/
/

High-voltage
source/
divider

_ —-—Molecular
beam

Emission
regulator

\500 IIs
turbo-
pump

CD-03-82268

2401/s
\— 20-dynode turbo- )
electron pump

multiplier

Molecular beam /o
defining apertures—*

Electrometer

P
Knudsen cell vapor source —

W element, Ta shields -7

Low-voltage,
high-current
supply

CD-01-81225

» Single Cell—can reach T >2000C
« Simulation of hot, rocky exoplanet??
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Psuedo-Binary Forserite (Fo)-Fayalite (Fa) (Mg,SiO,-Fe,SiO,) System

(with G. Costa)

. T (K)
2300 2200 2100 2000 1900 1800 1700
0 =yt L : L L L L L L L L
I
14 : x Fe
| * x  SiO
2- * * Mg
T 3 § ! %*‘é 0,
< % %& * T
o L | E S % K
O 4 o, SR K Kx
5= i * % o
I % w
. ! X
6= : *
7 ——r——r—t—r—Tr—r—r—r—r—rr—r
44 4.6 4.8 5.0 5.2 5.4 5.6 5.8

18050c. 10° T(K™)

Temperature dependence of ion intensity ratios of
Mg*, Fe*, SiO*, O* and O,* in the olivine sample.

2000
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1700

1600

T/Celsius

1500

1400

1300

1200

1100

0.0

fayalite - forsterite
Bowen & Schairer 1935

O

calculated
observed
Fo93Fa7 isopleth
solidus 1788 C
liquidus 1852 C

0.2 0.4

Fayalite mole fraction

0.6 0.8 1.0

Fegley and Osborne, Practical Chemical Thermodynamics

For Geoscientists, Elsevier 2013, Fig. 12-11.

Measurements show good agreement with the
phase diagram calculated by Bowen and Shairer.

Bowen and Schairer, Am. J. Sci. 29, 151-171 (1935).
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Pseudo Binary Forsterite-Fayalite
(Mg,SiO,-Fe,SiO,) System

» Derive from equilibrium constants for Fo, Fa constituents of solution

~ P(Fe) _ arq B ~AGygap(Fo) /RT)
in (P(Mg))gas =In (apo)mv In (—AG,?ap(Fa)/RT
— Ideal Solution =£% = constant, ln(P(Fe)) vs 1/T linear
QFo P(Mg) gas

48 — —
45 |
44

42

In (Fe/g)

Cbserved
* Caculated

40

38 |

5.2 5.3 54 5.5 5.6 57 5.8
10,000/T(K)
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Psuedo-Ternary

Sio

Olivine
il
\ Pyroxene

- MgO-'FeO’-SiO,

Mg - SiQ (FeOQ-5i0,)
o 2 N\ Olivine 2
60 Olivine + Pyrnt% ‘\ Si0, abi
%2 Mg0 -5i0, . \_ino-sio!
20 ;is
Magnesiowiistite + Olivine
AY4 bV ALY AVa \
Mgo 20 40 60 80 FEO

Mole Percent

Nafziger & Muan (1967)

Composition of Interest: Fo, o5Fa; (7
Activity gradient across olivine line

|deally work in three phase regions to fix P,

« Excess SiO,: Olivine + Pyroxene

« Excess MgO: QOlivine +
Magnesiowustite

Www.nasa.gov s



National Aeronautics and Space Administration

Solutions: Measure Partial Thermodynamic Quantities

Olivine: (FeO),.,(MgO),4(SiO,),.,

Pure Compound :
FeO(s) =Fe(g)+1/20,(g)

R AR A

’ Areo 1
Solution :
FeO(solution,a <1) =Fe(g)+1/20,(g)
_ By, [PO2 ]1/2
P Ape0

a _ PFe[Po2 ]1/2 _ ]Fe[102 ]1/2
RSN

In(ap.q) vs /T — —partial molar enthalpy
Apply to S10, =S10(g)+1/20,,MgO =Mg(g)+1/2 0,

www.nasa.gov 47
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Thermodynamic Activities in Olivine — (Fe,SiO,), 47(Mg,Si0,), g3

SiO, Side: Qualitative Comparison

LAY
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Sublattice Model: Fabrichnaya (1998)
Olivine + Pyroxene
Olivine + Liquid

Olivine + SiO,

XRD: Only olivine...may be

small amounts of pyroxene

Olivine + Pyroxene or Liquid
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Hot, Rocky Exoplanets

« Lava oceans, inorganic vapors as atmosphere
— Olivine-like: Mg, Fe, SiO, O, O, Vapors

— Lunar Basalt-like: SiO, Fe, Na, K, O, O,, Mg, SiO,, TiO,, TiO,
Ca, Al Vapors (DeMaria et al., Apollo 12 Sample Vaporization)

 When we can view exoplanet atmospheres spectroscopically—look
for these vapors

WWW.Nasa.gov 4
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Selected Studies of High Temperature
Chemistry Related to NASA Missions

« Space Shuttle Orbiter Wing Leading Edge
« Environmental Barrier coatings for Ceramic Turbine parts

* Chemistry on other Worlds: Exoplanets

« K/Ar dating of minerals

Knudsen
Effusion
Mass
Spectrometry

WWw.nasa.gov so
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K-Ar Dating of Minerals
with K. Farley/Caltech and J. Hurowitz/NASA JPL

« Decay sequence “°K 40Ca
" 40Ar t,, = 1.25 billion years
« Determine when rock was molten—all “°Ar escaped and process reset

1 YaAr\( A
t=—In m +1
A K )\ A,

A = total decay constant A_ = decay constant of *’K—* Ar

“4r” =in situ radiogenic Ar from sample
*K, =amount of K in sample

40 4 *
- Difficult to measure these quantities 4;“
« 0K --0.012% K,

- 40Ar*--want radiogenic component, need to separate from “°Ar in air

39K—93.083 36Ar—0.327
40K—0.012 38Ar—0.063
41K—6.905 40Ar—99.600

WWw.nasa.gov s
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Unique Features of this Approach

» |sotope dilution method:
— Add a known amount of 4’K to an unknown amount 3°K
« Measure R = 41K /3%K
e 3K =4K/R
— Know total moles of K in mineral [3°K + 4'K]—multiply by 0.00013 to get 4°K
— Many modifications:
« Works if some of the added isotope already in unknown
« Double isotope dilution for several isotopes

39K—93.083 36Ar—0.327
40K—0.012 38Ar—0.063
41K—6.905 40Ar—99.600

« Low melting borate flux to make homogeneous mixture

www.nasa.gov



National Aeronautics and Space Administration @

Sample Preparation

A

* Mo Knudsen cell
— 10 mg basalt
— 150 mg LiBO,-Li,B,0; flux
— 179 ug Spike albite-like glass
 Enriched in 4K (>95%)
 Enriched in 3%Ar (from neutron irradiation of traces 3°K)

* Required Ar isotope ratios measured with inert gas methods (Caltech)
— Very clean vacuum system—nhigh capacity getters

* Required K isotope ratios measured with KEMS (NASA GRC)

— Flux creates homogeneous mixture with near unit activity of K =
high vapor pressure

WWw.nasa.gov
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40  *
. Ar .
Determine . from Double Spiked Glass + Unknown
u
o 40Ar, = 40Ar* +40Ar, + 4O0Ar | e 39K = 3K, + 3K,
o 36Ar =36Ar . MK =4K, + 41KSpk
« 39Ar, =Arg, o 40K =r,, %K,

* Radiogenic

m = measured

40 36Ar 39Ar 19 u = unknown in sample
Ar ( Arj r,o = natural 40K/3°K
spk

41

R., = (“°Ar/3%Ar),,
’"sk Repk = (4OAr/P9Ar)
r, = (3°K/AK),,
nat

spk (39K/41K)s k
= (39K/41K)

nat

Need only measure circled quantities

www.nasa.gov
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Calculation of Age @

Sample Ratio Measurement Method

10 mg Basalt + 179 nug Spike | 4CAr/3°Ar 44300 + 740 Inert Gas Mass Spec
10 mg Basalt + 179 ug Spike | 36Ar/3%Ar 102+1.8 Inert Gas Mass Spec
Spike Glass IK/AK 0.0390 + 0.0006 Preparation of Spike
10 mg Basalt + 179 ug Spike | 3¥K/4'K 4.71+0.07 KEMS

Spike Glass BAr/AK 1.453 + 0.037 Preparation of Spike

40 4 *
t= lln Ar | 4 +1
A | YK A4

Basalt from Viluy traps (lava coated region), Eastern Siberia
t =347 £ 19 Ma (million years) Only £ 5% !

Compare to: 351.4 £ 5 Ma (K-Ar) and 354.3 = 5 Ma (“0Ar/3%Ar)
(Courtillot et al. (2010), Earth Planet Sci Let 300, 239)

K. A. Farley, et al. (2013), Geochimica et Cosmochimica Acta 110, 1-12.

WWw.nasa.gov
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K-Ar Dating of Minerals for Mars or other Planetary Probes

Advantages:

* Do not need to weigh sample; Only

need a known amount of spike glass

» Li Borate flux lowers temperature to achieve
homogeneous mixture and strong K signal
(~1000°C)

« Single instrument

« High accuracy ~5%

* Future probes

WWW.Nasa.gov s
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Summary: Selected Studies in High Temperature Chemistry

Space Shuttle Orbiter Wing Leading Edge
—  With NASA’s LESS-PRT
— Model damage due to SiC cracks
— Accident investigation

Coatings for ceramic turbine parts
— Part of larger project with GRC colleagues and engine companies

— Measure activities in rare earth silicates to determine resistance to water
vapor attack

Chemistry on other worlds
— GRC colleagues and Universities (Fegley/WUSTL, Harvey/CWRU)
— Hot, Rocky exoplanets: High temperature vapors

K-Ar dating of minerals
— With JPL and Caltech (Farley)
— Unigue method using double isotope dilution and borate flux

www.nasa.gov s
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NASA Glenn Research Center
Cleveland, OH

NASA Glenn Research & ol
@NASAglenn

An extraordinary career opportunity could
be a few clicks away—we're hiring.
Monitor @USAJOBS for openings
@NASAGIenn in #Cleveland, Ohio.
Positions are available in both
engineering and administrative fields:
nasai.usajobs.gov.

Www.nasa.gov
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