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ADVANCED MODELING OF CONTROL-STRUCTURE
INTERACTION IN THRUST VECTOR CONTROL SYSTEMS

Jeb S. Orr*, Timothy M. Barrows†, Colter W. Russell‡, Richard K. Moore§, Abran
Alaniz¶, and Stephen G. Ryan||

The Space Launch System (SLS) Core Stage (CS) Thrust Vector Control (TVC)
system is comprised of 8 mechanical feedback Shuttle heritage Type III TVC
actuators and four RS-25 engines, each attached to a Shuttle heritage gimbal
block/bearing. Two actuators are used to move each engine in two planes per-
pendicular to one another (i.e., pitch and yaw). The TVC system design lever-
ages hardware from the Space Shuttle program as well as new hardware designed
specifically for the Core Stage.

During the development of the SLS TVC system, a family of advanced dynam-
ics models were developed to extend and compliment the simplified quasi-linear
“simplex” model historically used for flight control design and stability analysis.
The importance of these advanced models became increasingly evident after ambi-
ent and hot fire testing of the Core Stage, which revealed a number of findings as-
sociated with the dynamic response of the TVC integrated system. Test responses
suggested that the TVC did not meet its performance specifications and its step
and frequency responses exhibited unexpected departures from prior lab tests and
modeled behavior. One driving factor for these results was a higher-than-expected
degree of coupling between the TVC system, the engine dynamics, and the Core
Stage structure.

This paper is the third installment in a seven-paper series surveying the design,
engineering, test validation, and flight performance of the Core Stage Thrust Vec-
tor Control system. In this paper, a new method of modeling rocket vehicle thrust
vectoring servoelastic dynamics is presented. In this approach, the load dynamics
are replaced by a detailed finite element model containing both the rigid body and
elastic modes. A partitioning technique is used to compute the effective compli-
ance from the modal data and obtain accurate simulation results using a reduced
number of generalized coordinates. Coupled backup structure and nozzle attach
compliance effects on multiple engines are captured in higher fidelity than with
a spring approximation, eliciting novel effects due to the complex load paths in-
volved in the Core Stage structure. Validation of the model is demonstrated using
a variety of structural/modal, laboratory, and full-scale hot fire test data.

1 INTRODUCTION

In the aerospace domain, it is important to develop accurate models of servoactuator systems to
support the design of flight control algorithms. More so than in many applications, in launch vehi-
cles having gimbaled engines, the contributions of the thrust loading and inertial coupling effects of
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the articulated engine nozzles can significantly influence the structural dynamic response. The goal
of a thrust vector control (TVC) actuator model is to accurately reproduce the dynamic response of
the engine and thrust vector to both flight software commands and external load torques. Such a
model can be combined with test data to produce a validated representation of the engine-actuator
system, used to verify requirements. Thereafter, a simplified model can be synthesized for integra-
tion with a high-fidelity linear or nonlinear model of the vehicle dynamics. This fully integrated
simulation is then used to determine flight control gains and filters and verify the stability of the
integrated engine-vehicle system prior to flight.

The Space Launch System (SLS) hydraulic actuator (Figure 1) is a pressure-stabilized, three-
stage, quad-redundant position control system, originally developed and qualified for use with the
RS-25D Space Shuttle Main Engine (SSME) and adapted to control the RS-25E Core Stage En-
gine (CSE) used on the Space Launch System launch vehicle.3, 4 This actuator contains a servo-
valve package with 4 current-controlled servovalves driven by an external TVC Actuator Controller
(TAC). However, the servoloop feedback is entirely mechanical and no power other than hydraulic
pressure is required to operate the actuator. Piston feedback is provided via a roller cam assembly
that provides nulling torques on all four servovalves while load damping is provided by a passive
hydraulic pressure feedback (DPF) assembly. Current inputs to the servovalve torque motors apply
a bias which induces flow until the servovalve torque is equalized by the piston position feedback
cam. As such, piston position is directly proportional to input current. With its exceptional design
and precision tolerances, the SLS actuator is able to achieve a reasonably linear response over an
impressive range of loading conditions and control piston displacements.

Figure 1. Typical SLS Hydraulic Actuator

In the NASA launch vehicle community, TVC models traditionally used for design verification
fall into two categories: a high-fidelity, nonlinear (“complex”) model, and a lower-fidelity, linearized
or mostly-linear (“simplex”) model. In the case of a hydraulic actuator, the former represents all of
the internal nonlinearities and flow limitations, and is valid over a wide range of command ampli-
tudes and operating conditions. Such models are used in detailed functional requirements verifica-
tion, i.e., in a software-in-the-loop (SIL) simulation environment. The simplex model is a simplified
representation of the complex model, valid for small signals and used for linear stability analysis of
the flight control system.

During the development of the Space Launch System Core Stage TVC system, additional fidelity
was required to represent the predicted (and later observed) response of the TVC system in flight
or flight-like boundary conditions, as seen during the Green Run ambient and hot fire vectoring
tests conducted in the Stennis Space Center B-2 test stand in January and March of 2021 (Fig-
ure 2). The notable discrepancy between modeling and test, particularly in the non-firing case, was
an observed change in the apparent load resonance frequency of the engine-structure-actuator sys-
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Figure 2. SLS Green Run Hot Fire Test #1, SSC B-2, January 16, 2021 (NASA TV)

tem. In non-firing conditions, this resonance depends almost entirely on the compliance of the stage
backup structure and engine attach load path. While it was not surprising that the actual structural
compliance was higher than predicted by the design, it was determined that the single-spring ap-
proximation traditionally used in the planar, single-DoF simplex model could be improved upon by
directly incorporating information about the structure from a finite element model (FEM).

As of the Green Run hot fire test, NASA MSFC’s Multiple Actuator Stage Vectoring (MASV)
simulation model had already undergone development to support verification of the servoelastic
stability of the TVC system coupled to the core stage structure. Since high-power actuation systems
must actively stabilize the load, MASV was used to verify that all eight actuator degrees of freedom
were robustly stable with respect to the elastic modes of the core stage structure, as reflected into
the actuator position feedback loop.

The MASV model is a mechanism whereby the traditional single-DoF simplex model is extended
to incorporate a modal representation of the rigid and elastic DoFs of multiple engines, coupled with
multiple actuators in flight-like boundary conditions. In the case of the SLS Core Stage, this includes
four engines, eight actuators, and many thousands of degrees of freedom as represented in a high-
fidelity FEM. The MASV implementation has been successfully verified using an independently-
developed, generalized elastic multibody simulation (DARTS/DSHELL).1, 2

MASV is used to support test validation of the SLS Core Stage TVC parameters, including those
derived from finite element model data, by correlating the fully-coupled response of the engine-
structural system to ground test data in both ambient and static firing conditions. While not rep-
resentative of all of the nonlinearities that affect the TVC system response (particularly friction),
MASV has the highest-fidelity representation of the structural dynamics and the associated load
paths and was part of the overall toolchain used for development of the Artemis I mission flight
rationale.8 The derivation and development of MASV is the topic of the present paper. Further
analysis as applied to the SLS Core Stage and model correlation performed using MASV are dis-
cussed further in the companion papers.6, 7

1.1 Traditional Model

The simplex model is a compact representation of the TVC system containing only a few states,
and is valid over a typical range of operating conditions. Typical simplifications in the hydraulic case
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include the removal or linearization of nonlinearities in the small-signal regime, removal of kine-
matics and external pressure equalization dynamics, and consolidation of redundant servovalves and
flow paths into a single transfer-function representation. These models are used in linear stability
analysis to assess the effects of flight control stability, global servoelasticity, and so on. Due to the
dependence of the inertial coupling (“tail-wag-dog” or TWD) effect on the engine acceleration, the
simplest model that provides an appropriate representation of the open-loop phase lag and TWD ef-
fects has three states: two states for the engine angle and angular rate, and a third state representing
the actuator lag, e.g., the hydraulic power cylinder.

In practice, the model must also account for the servovalve dynamics, pressure feedback, and
the compliance of the load, so a typical linear model has six states. Since the oil and structure
are both compliant at high loads, the position of the piston and that of the load (the engine) differ.
The actuator’s integrating position feedback eliminates the effect of the oil and actuator structural
compliances between the actuator endpoints, and actively stabilizes the load resonance of the engine
combined with the backup structure. Dynamic pressure feedback (DPF) adds damping to the load
resonance, and provides a remarkably well-damped response with good phase lead characteristics
near the rigid-body control frequency.

This combination of active stabilization and load feedback also has the important feature that
tends to improve flight control stability margins for global modes that have a strong coupling with
the aft structure of the launch vehicle. That is, the actuators indirectly act as active dampers for
certain servoelastic interactions. Such effects are uncovered using a high-fidelity vehicle-level ser-
voelastic coupling model.9 (Conversely, thrust vector servoelasticity can be destabilizing, as in the
case of the SLS booster antisymmetric bending, but was found to be inconsequential in the presence
of elastic jet damping effects).

In a simplex model, it is typical to represent the compliance of the load by combining the engine
and stage compliances into a single spring. While this assumption is warranted in most cases,
strong coupling with secondary modes other than the fundamental load resonance requires careful
verification that these modes do not present a servoelastic concern. More importantly, a value of this
load spring must be determined, and it can usually only be ascertained from a test-validated model.

1.2 Multiple Actuator Stage Vectoring (MASV) Model

The MASV formulation is intended to complement the vehicle-level reduced-body approach for
coupling the engine-servo dynamics and the vehicle global bending modes. Importantly, this ap-
proach can be used to demonstrate that the local compliance effects, typically several decades above
the global vehicle bending modes, can be omitted from the global vehicle model if their effect on
servoloop response is shown to be negligible (as intended in the servoloop design).

The structure of the paper is as follows. In Section 2, a review of the simplex model formulation
is presented, and a state model is derived assuming a single-spring approximation of the load and
a rigid engine. In Section 3, the rigid load is replaced with a modal representation. In Section 4, it
is shown that a portion of the structural modes from the finite element model can be collapsed into
a static compliance without a significant loss of fidelity. In Section 5, the use of MASV to support
TVC performance validation using both ambient and static firing data is discussed.
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Figure 3. TVC actuator with load compliance

2 SIMPLEX MODEL

Consider the notional diagram of a hydraulic actuator given in Figure 3. In this simplified model,
the actuator components are massless and the only compliances are in the loadKL and the hydraulic
oil Ko.* The load compliance is a single spring that represents all of the compliance in the system,
including the actuator components outside the position control loop, the engine structure, and the
backup structure.

The total compliance from the rocket stage to the (rigid) engine interface is

KT =

(
1

KL
+

1

Ko

)−1

(1)

and the linear displacement of the rigid engine is given by

xE = Rβ (2)

whereR is the equivalent moment arm calculated about the actuator null position and β is the engine
angular displacement (in radians). It is helpful to introduce the ideal piston position xi which can
be thought of as the displacement of the piston if the oil were not compressible. The ideal piston
position is related to the flow by

ẋi =
1

Ap
Q (3)

whereAp is the piston area andQ is the input flow. For small signals, the dynamics of the spool and
servovalves at the input of the power cylinder are well-represented by a second-order linear system
of the form

H(s) =
Q(s)

u(s)
=

kvω
2
v

s2 + 2ζvωvs+ ω2
v

(4)

*In this discussion, it is assumed that the compliance of the oil, which depends strongly on fluid air entrainment, is the
most significant factor affecting the total compliance within in the servo position loop. The structural compliance of the
actuator body and the radial elasticity of the cylinder also contribute to the actuator compliance, but are generally much
less than that of the oil. In practice, these effects are combined to form a single actuator stiffness Kac.
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where u and Q are the servovalve torque input and output flow rate, kv is the valve package gain,
and ζv, ωv are the damping and natural frequency, respectively.

The actual displacement of the piston xa is less than xi due to the compliance of the oil and the
actuator body. The displacement of the engine, xE , is less than xa due to the fact that KL is not
infinite. Thus we can write

xE = xa −
fa
KL

(5)

where
fa = KT (xi − xE) (6)

is the force developed in the actuator. Combining these expressions,

xa =

(
1− KT

KL

)
Rβ +

KT

KL
xi. (7)

The engine dynamics can be written as

Jnβ̈ = faR− Cnβ̇ −Knβ

where the first term on the right-hand side of the equation is the actuator torque on the rigid engine.
The damping coefficientCn is a viscous damping approximation to dissipation in the load dynamics,
and the angular stiffness Kn represents gravitational restoring torque and loads about the engine
gimbal due to the pressurized propellant feedlines. Substituting from (6) and then from (2) it follows
that

Jnβ̈ = KTRxi − Cnβ̇ −
(
Kn +KTR

2
)
β (8)

The engine natural frequency for a stationary actuator (xi = 0) with zero damping is

ωp =

√
KTR2 +Kn

Jn
. (9)

This is called the pendulum mode frequency. It represents the natural frequency of the engine-
structure-actuator system when the compliance of the structure and oil is included and the actuator
is inoperative. Compared with the effect of the structure, the contribution of Kn in this equation, at
1g, can be neglected for most liquid engines. (For SRMs, Kn can be much more significant due to
the effects of a flex bearing).

Similarly, the load resonance frequency is

ωL =

√
KLR2 +Kn

Jn
, (10)

which depends only on the load compliance, and does not include the oil. As discussed in the com-
panion papers,6, 8 the load resonance frequency appears as an antiresonance (notch) in the transfer
function relating the piston position xa to the servovalve input torque. This relationship is crucial
for test-based validation of the load stiffness KL, assuming that the moment arm and inertia can
be determined separately. This fact was noted by Thompson10 in the development of the simplex
model.
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In order to control the position of the load, a feedback mechanism is used to sense the displace-
ment and the force. Since the direct sensing of the engine position is not feasible, a piston position
measurement (Equation 7) is determined via the actuator’s internal mechanical feedback cam. The
second component, the load feedback, depends on the differential pressure ∆P developed in the
actuator. The differential pressure ∆P is equal to the actuator force (Equation 6) divided by the
piston area;

∆P =
1

Ap
fa. (11)

Load feedback is used to add damping to the load; i.e., the engine-structural resonance, which
becomes proportional to the load velocity after integration by the power cylinder. Since direct load
feedback would produce an unacceptable steady-state error, the load feedback is filtered using a
hydraulic high-pass filter, which has the dynamics

żd = − 1

τp
zp + ∆P. (12)

This scheme is referred to as Dynamic Pressure Feedback (DPF). The quantity zp is the state of the
load feedback filter, and the output that is used for feedback is the state derivative żp. The value
τp is the time constant associated with the load feedback dynamics. Combining (2), (12), and (11)
gives the equation for the pressure feedback filter;

żp = − 1

τp
zp +

1

Ap
KT (xi −Rβ) . (13)

The engine slew control is performed by modulating the flow Q using both piston position feed-
back and pressure feedback. An external motor torque is applied to the servovalve that biases the
equilibrium point obtained by mechanical feedback. The total servovalve torque input is given by

u = ktmic − kfbxa − kdżd (14)

where xa is the mechanical displacement across the actuator body and kd is the DPF gain. The
torque applied to the servovalve is proportional to the input current ic. Using the load feedback
and measured piston position expressions (6) and (7) to replace fa and xa with quantities related to
the engine angle β, and substituting the state derivative żd in Equation 14, the final set of simplex
equations are given by

ẋi =
1

Ap
Q (15)

żd = − 1

τd
zd +

1

Ap
KT (xi −Rβ) (16)

β̈ =
KTR

Jn
xi −

Cn
Jn
β̇ − Kn +KTR

2

Jn
β (17)

along with the servo dynamics

Q̇ = zv (18)

and
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żv = −2ζvωvzv − ω2
vQ+

(
kvω

2
vkd

1

τd

)
zd −

(
kvω

2
vKT

(
kd
Ap

+
kfb
KL

))
xi

+ kvω
2
vR

(
kd
Ap
KT − kfb

(
1− KT

KL

))
β + kvω

2
vktmic. (19)

This model can be mechanized in a state model form ẋ = Ax + bic , y = Cx using the state
vector

x =
[
xi zd Q zv β β̇

]T
(20)

and the system matrices

A =



0 0 1
Ap

0 0 0
1
Ap
KT − 1

τd
0 0 − 1

Ap
KTR 0

0 0 0 1 0 0

−kvω2
vKT

(
kd
Ap

+
kfb
KL

)
kvω2

vkd
τd

−ω2
v −2ζvωv kvω

2
vR
(
kd
Ap
KT − kfb

(
1− KT

KL

))
0

0 0 0 0 0 1

KTR
Jn

0 0 0 −(Kn+KTR
2)

Jn
−Dn
Jn



b =



0
0
0

kvω
2
vktm
0
0

 (21)

The outputs are the engine angle and actuator piston position

y =

[
β
xa

]
(22)

The engine angle β can be taken directly from the state vector; the actual piston position is given by
Equation 7 and therefore

C =

[
0 0 0 0 1 0
KT
KL

0 0 0 R
(

1− KT
KL

)
0

]
. (23)

3 MODAL MODEL

Incorporating a modal model of the structure with the actuator dynamics allows the load path to
be represented, hypothetically, by a structural model of arbitrary fidelity. A modal representation
allows an analyst to isolate the modal components that contribute most significantly to the response
and identify physical characteristics of the structure that influence the servodynamic response.

Suppose the engine degrees of freedom are described by a FEM withK orthogonal modes instead
of a rigid-body engine model (Figure 4). Associated with this FEM are the gridpoints at the two
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Figure 4. Rocket Nozzle and Coordinate Frame

attach points of the actuator. The bending equation in generalized coordinates is given by

η̈ + Dη̇ + Ω2η = ΦT
1 f1 + ΦT

2 f2 + ΨT
β (gs + gd) + ΦT

0 f0 (24)

where D is a viscous damping matrix, Ω2 = diag(ω2
i ), fj is the applied force at each attach point,

and gs, gd are the spring and damping torques applied at the gimbal point, respectively. The engine
angle is described by

β = (Ψβ −Ψ0)η = Ψ̃βη (25)

where β ∈ R3 is, in general, a three-axis small rotation about the nominal engine position, and
Ψβ ∈ R3×K is the mode slope on the rotating side of the engine gimbal. The external thrust load
f0 is applied at the gimbal interface, where Φ0 ∈ R3×K is the mode shape on the fixed (thrust
structure) side.

For a freely rotating (frictionless) gimbal, this point must be unconstrained in the FEM so that the
engine is free to pivot. Likewise, the quantity Ψ0 is the mode slope on the fixed side of the gimbal,
or at some point in the thrust structure that corresponds to the local control actuation plane. Thus,
β represents the rotation of the engine structure with respect to the thrust structure, which is the
controlled quantity as represented in the simplex model. It is important to distinguish between this
quantity and

βg = Ψβη (26)

which is the rotation of the engine structure with respect to the global undeformed vehicle coordi-
nate system. Since, in general, the addition of external thrust loads, dynamic response, and varying
boundary conditions may cause differing degrees of thrust structure deformation, βg 6= β, in gen-
eral.
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The spring and damping torques are given by

gs = −Knβ +mng
×
0 r×nβg = −

(
KnΨ̃β −mng

×
0 r×nΨβ

)
η (27)

gd = −Dnβ̇ = −DnΨ̃βη̇ (28)

where the nozzle mass mn and center of mass location rn affect the gravitational load torque. The
gravitational stiffening has been separated from the usual nozzle angular stiffness term, since it
must be computed with respect to the global frame. It is also important to distinguish between Dn,
representing the damping torque applied at the gimbal point, and the matrix D representing the
modal damping. For liquid engines, the term Dn can approximate the friction of the gimbal bearing
and account for any residual velocity-dependent damping as measured via test. For conservatism,
D is usually chosen as a diagonal viscous damping matrix with ζi = 0.005, but Rayleigh damping
has also been shown to compare favorably with test.

It is assumed in the present discussion that these auxiliary stiffness and damping matrices are
diagonal and have no axial components; however, this need not be the case. In the case of the
RS-25 engine, the feedline torques are not symmetric about the gimbal axis. Compared with the
backup structure stiffness and actuator forces, however, they are too small to measure to any degree
of confidence. Other real effects, particularly compliance of the gimbal attach structure, may lead
to a non-diagonal auxiliary stiffness matrix. These values can be estimated via detailed modeling
and validated through testing.

If the test structure is vertical, the external load f0 is equal to

f0 = (I + βg) u0FT −mng0 (29)

= FTu0 −mng0 − FTu×
0 Ψβη. (30)

where the nominal thrust unit vector is u0, and mng0 represents the weight of the engine. The first
two terms are static and can be omitted from a linear analysis. The remaining term is the follower
effect, and should be retained to capture the dependency of the thrust vector on the global engine
angle.

It is assumed that for the present model and to be consistent with the linearization of the finite
element model, deflections of the engine are small angles from the nominal (null) position of the
engine. The actuator force is resolved along a unit vector p that points along the direction of the
actuator line of action as used in the previous section. It is not necessary that the actuator be aligned
in any particular way with the vehicle body frame; p is directly computed from the FEM geometry.
The applied force vectors are related to the scalar actuator force by

f1 = −fap (31)

f2 = fap (32)

These forces excite the structure at the two points shown in Figure 4. For a single nozzle with
two actuators, the FEM will contain two zero-frequency modes (rigid-body modes) that represent
the equivalent of the nozzle deflections βy and βz . The remaining modes will represent the structural
deflections. When all the modes are included, the FEM provides the total actuator output as given
by Equation 25, and it is not necessary to distinguish between Rβ and xstr . The actuator output
equation can be replaced by the component of the net deflection in the direction of p:
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xa = pT (Φ2 −Φ1)η (33)

Defining

γT = pT (Φ2 −Φ1) , (34)

the quantity γ is the modal compliance coefficient. It is a constant derived from the finite element
model geometry and its eigenvectors. The modal equation and actuator position equations can now
be written as

η̈ + Dη̇ + Ω2η =
(
ΦT

1 −ΦT
2

)
pfa + Ψ̃β

T
(gs + gd) + ΦT

0 f0 (35)

= γfa + Ψ̃β
T

(gs + gd) + ΦT
0 f0

xa = γTη (36)

The quantity

xac = xi − xa (37)

can be used to describe the actuator compliance; that is, the displacement of the actuator due to the
compliance of the oil and actuator structure. Note that the ideal actuator position xi introduced in
Equation 3 is not an actual displacement, but can be thought of as proportional to the time integral
of the flow. The actuator force becomes

fa = Kacxac = Kac

(
xi − γTη

)
(38)

Using this expression and Equations 25 through 28, and grouping terms, the elastic equation be-
comes

η̈ = γKacxi −
(
D + Ψ̃T

βDnΨ̃β

)
η̇ −

(
Ω2 +Kacγγ

T + K̃
)
η + ΦT

0 (FTu0 −mng0) (39)

where
K̃ = Ψ̃T

β

(
KnΨ̃β −mng

×
0 r×nΨβ

)
+ FTΨ0

Tu×
0 Ψβ.

Note that the term Kac is equivalent to Ko as used in Section 2. It is straightforward to use Equa-
tion 39 to extend the analysis of Section 2 and incorporate the actuator dynamics (xi). The state
vector for the updated model can be chosen as

x =
[
xi zd Q zv η η̇

]T (40)

By inserting Equation 38 into Equation 16, the pressure feedback dynamics are given by

żd = − 1

τd
zd +

Kac

Ap

(
xi − γTη

)
(41)

By using Equations 36 and 41 to modify Equation 19, the servovalve feedback expression is given
by
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żv = −2ζvωvzv−ω2
vQ−

kvω
2
vkd
τd

zd−
kvω

2
vkdKac

Ap

(
xi − γTη

)
−kvω2

vkfbγ
Tη+kvω

2
vktmic (42)

In the generic form ẋ = Ax + bic, omitting zero-order terms, the system matrices are

A =



0 0 1
Ap

0 0TK 0TK
Kac

Ap
− 1
τd

0 0 −Kac

Ap
γT 0TK

0 0 0 1 0Tk 0TK

−kvω
2
vkdKac

Ap

kvω
2
vkd
τd

−ω2
v −2ζvωv kvω

2
v

(
kdKac

Ap
− kfb

)
γT 0TK

0K 0K 0K 0K 0K×K 1K×K

Kacγ 0K 0K 0K −
(
Ω2 +Kacγγ

T + K̃
)
−
(
D + Ψ̃T

βDnΨ̃β

)



b =



0
0
0

kvω
2
vktm

0K
0K

 . (43)

Here 0K is a null vector with K elements, 0K×K is a square null matrix of dimension K, and
1K×K is an identity matrix of dimension K. This model is valid for a single actuator and an
arbitrary number of engine degrees of freedom. In the MASV implementation, this structure is
block-diagonalized with a single set of elastic modes to represent multiple actuators and engines.

4 STATIC AND DYNAMIC MODES

The previous section assumes that the modes from the FEM can be used to represent all of the
deflection that results from an actuator force. Although this is possible in theory, in practice it
becomes necessary to include a very large number of modes from the FEM in order to fully capture
the displacements and accelerations of the attach points at the nozzle and backup structure. The
present section introduces a method whereby the full compliance can be approximated using a only
a small number of modes.

In this technique, a frequency cutoff is defined, such that only those modes that are below this
frequency are included in the state-space model. This set of modes is referred to as the dynamic
modes. The modes that are not included, i.e., those that are above the cutoff, are static modes. To
analyze these static modes, we begin with the elastic equation, neglecting the spring and damping
torques gs, gd and external loads that are applied at the gimbal.

η̈ + Dη̇ + Ω2η =
(
ΦT

1 −ΦT
2

)
pfa = γfa (44)

In its modal representation, the system dynamics are uncoupled (diagonal), and therefore each scalar
equation appears in the form

12



η̈k +Dkη̇k + Ω2
kηk = γk fa (45)

Here, k represents the mode number.

The choice of cutoff frequency is based on the assumption that for modal frequencies Ωk � ωL,
that is, much greater than the load resonance frequency, the settling time of the structural dynamics
is such that η̈k ≈ 0 on a much faster timescale than that of the actuator dynamics. If this is the case,
the modal displacement is directly proportional to the applied force;

ηk ≈
γk fa
Ω2
k

, k > J (46)

In this expression, it is assumed that the modes are sorted by frequency, and that J is the number
of the highest frequency mode to be included in the dynamics. For the static modes, in scalar form,
Equation 36 is written

xa =
∑

γkηk, (47)

which is composed of the sum of the effective engine displacement (xE) and the structural displace-
ment. The structural displacement contains both a dynamic component xd and static component
xs;

xa = xE + xd + xs (48)

In the simple case of one engine with two actuators and a FEM constrained to have only two free
DoF about the gimbal, there will be two rigid-body modes. The effective displacement can be
written as

xE = γ1η1 + γ2η2. (49)

Here, η1 and η2 correspond to the modes whose eigenvalues in the generalized stiffness matrix are
equal to zero.

The static and dynamic displacements are given by

xs =
K∑

k=J+1

γkηk ≈
K∑

k=J+1

γ2k fa
Ω2
k

(50)

xd =
J∑
k=3

γkηk (51)

The load compliance can then be defined as

Cs =
xs
fa

=
K∑

i=J+1

γ2k
Ω2
k

. (52)

The inverse of this quantity is Ks, which is analogous to the load stiffness in Equation 1. It is
emphasized that this static load stiffness is only a portion of the total load stiffness, because the
remaining dynamics are represented using lower-frequency modes from the finite element model.
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In the equations of motion, overbars are used to designate the following vectors in which the
static modes have been removed via truncation;

γ̄ = [ γ1 γ2 · · · γJ ]T (53)

η̄ = [ η1 η2 · · · ηJ ]T (54)

The actuator displacement expression can then be partitioned as

xa = γ̄T η̄ + faCs (55)

The actuator force in Equation 38 can be replaced with a partitioned version;

fa = Kac

(
xi − γ̄T η̄ − faCs

)
. (56)

This equation can be solved for the total actuator force fa,

fa = K0

(
xi − γ̄T η̄

)
(57)

where

K0 =

(
1

Ks
+

1

Kac

)−1

. (58)

Equation 57 can be used to incorporate the static stiffness using overbarred variables and substituting
K0 forKac . Note that if J is chosen to incorporate only rigid-body modes, and a very large number
of modes is included in calculating the static modes, Ks → KL and K0 → KT , the simplex
approximations to the load stiffness and total stiffness, respectively. That is, the simplex model
corresponds to the case in which all of the flexibility, except the rigid-body mode, is treated as static
modes. A side effect of this relationship is that Equation 52 can be used to interrogate the FEM and
determine an estimate of the load stiffness.

With the partitioning included, the final form of the elastic equation becomes

¨̄η = γ̄K0xi −
(
D + Ψ̃T

βDnΨ̃β

)
˙̄η −

(
Ω2 + K̃T γ̄γ̄

T + K̃
)
η̄ + ΦT

0 (FTu0 −mng0) (59)

Here, it is understood that all of the boldfaced parameters must be truncated to match the size of the
overbarred quantities.

When there is no truncation of the modes, the 3-vector of nozzle angles (a small rotation) is
obtained from Equation 25, in which Ψ̃β is full-sized. With truncation, this expression can be
written as

β = Ψ̃βη̄ +

K∑
k=J+1

ψ̃βkηk (60)
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where the mode slope matrices Ψ are truncated accordingly to be consistent with Equation 59. This
expression can be rewritten using Equations 46 and 57 such that

β = Ψ̃βη̄ +K0

(
xi − γ̄T η̄

) K∑
k=J+1

ψ̃βk
γk
Ω2
k

(61)

Note that the summation is a fixed parameter that only has to be computed once. It is entirely
reasonable to select a very large number for K, which could represent as many as several thousand
degrees of freedom.

5 RESULTS

As employed on the Space Launch System program, the present approach has been used for
a variety of detailed analyses of control-structure interaction, as represented by a detailed finite
element model that reproduces the boundary conditions of the core stage as installed in the B-2 test
stand at SSC, or in flight.

A principal goal of these analyses was to determine the effect of higher-frequency modal con-
tent on the servoloop stability. A representative comparison between the open-loop Nichols (log-
magnitude frequency response) of one actuator degree of freedom in both static conditions and
with a modal representation is shown in Figure 5. The response shown on the left includes only
rigid-body degrees of freedom: the modal representation of the engine consists only of the eight
unconstrained engine DoF representing pitch and yaw rotations about each gimbal point. The re-
maining DoF (over 6,000 modes, including residual vectors) have been used to compute a static
stiffness approximation according to Equation 52.

Phase [deg]
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a
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 [
d

B
]

MASV (static)

Simplex

Phase [deg]

G
a
in

 [
d

B
]

MASV (1142 dyn. + 6324 static)

Simplex

Figure 5. MASV core stage actuator servo loop break, GRHF configuration. Static
approximation (left); dynamic modes to 25 Hz (right)

The dynamic model (Figure 5, right) represents the same configuration but with dynamic content
truncated above 25 Hz. The modal representation (here, using about 1,000 dynamic modes) repro-
duces the spring load resonance in higher fidelity. In Figure 5, the simplex model with a rigid engine
is shown for comparison (dashed lines). The rigid-body response is identical, although the MASV
solution exhibits slightly higher damping. In the modal representation, the coupling of the elastic
modes through the actuators effectively distributes dissipation across multiple modes, resulting in a
resonance that is less concentrated at a single frequency.†

†This results in an effective coupled system damping matrix that is no longer diagonal.
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As can be seen, the servoloop provides ample stability margin for variable load resonances in both
gain, phase, and frequency. In fact, the range of load resonances that can be tolerated by the RS-25
servoactuator is roughly one octave, between about 6 Hz and 12 Hz. In the absence of friction,
variations in this range produce a relatively small change in the transient performance characteris-
tics. However, the coupling of gimbal bearing friction and the load compliance is significant. These
effects are discussed in more detail in the companion papers.6, 8

In order to determine the appropriate cutoff frequency, a convergence study was implemented as
part of the MASV workflow. The results of a typical convergence analysis are shown in Figure 6,
shown here for the Green Run hot fire configuration. The load stiffness as computed by MASV is in
family with values computed using other finite element analysis techniques.‡ Although the backup
structure is slightly different for adjacent actuator degrees of freedom, the effective load stiffness
is approximately the same for all gimbal DoF. As discussed in Refs.6, 8 the as-tested value was
significantly lower in the non-firing condition, in part due to compliance in the gimbal bearing and
small-amplitude nonlinearities associated with the actuator and structure. Subsequent frequency
identification during hot fire showed that the thrusting condition stiffness was closer to the value
predicted by the finite element model with propellant pressurization and cryo loading effects, and the
remaining increase in the apparent load resonance frequency could be accounted for by the interplay
of friction, mechanical deadbands, nonlinear load response, and gimbal bearing elasticity.5, 7, 8

Cutoff frequency [Hz]
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Figure 6. Computation of Ks as a function of modal frequency

Finally, MASV was used to produce both the closed-loop engine transient response and actuator
piston transfer functions, to compare with those data as telemetered during test using string po-
tentiometer and piston position feedback measurements (Figure 7). Piston position is the primary
measure of the frequency of the load (anti)resonance,6 and while engine position information was
not available during the first flight of Artemis I, the correlated models incorporate system identifica-
tion data and are used to predict the flight performance.8 Here, the closed-loop piston antiresonance
(notch) frequency appears close to 9.5 Hz, which is consistent with the MASV predictions for the
flight configuration.

‡The reader is cautioned that depending on the technique, direct querying of a FEM can produce misleading results in
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Figure 7. RS-25 actuator piston transfer function, GRHF configuration

6 CONCLUSIONS

In certain highly-coupled thrust vector control systems, and especially those used for vectoring
of multiple liquid engines, it may be necessary to capture dynamic effects that span a wide spec-
trum of local and global structural modes. The present approach provides an analysis framework
for incorporating potentially thousands of modes into a fully-coupled, multi-actuator simulation.
Importantly, MASV and related formulations can be used to elucidate effects from a finite element
model representation of the thrust structure that are not immediately obvious considering only the
structural dynamics or the actuator dynamics alone.

The simplex formation, where the engine load response is approximated by a rigid inertia and a
spring, is a reliable design tool for flight control performance and stability analysis unless friction or
gimbal elasticity cannot be represented in a single plane.5 However, it is important to consider that
these simplified design models should be verified using a higher-fidelity approach to ensure that no
adverse coupling can occur. Design models should be anchored to hot fire test data, especially when
any or all of the components do not have a validated modeling pedigree in the flight configuration.
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determining the TVC load stiffness.
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