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ABSTRACT 14 

In recent decades, spaceborne microwave and hyperspectral infrared sounding instruments 15 

have significantly benefited weather forecasting and climate science. However, existing 16 

retrievals of lower troposphere temperature and humidity profiles have limitations in vertical 17 

resolution, and often cannot accurately represent key features such as the mixed layer 18 

thermodynamic structure and the inversion at the planetary boundary layer (PBL) top. Because 19 

of the existing limitations in PBL remote sensing from space, there is a compelling need to 20 

improve routine, global observations of the PBL and enable advances in scientific 21 

understanding and weather and climate prediction. To address this, we have developed a new 22 

3D deep neural network (DNN) which enhances detail and reduces noise in Level 2 granules 23 

of temperature and humidity profiles from the Atmospheric Infrared Sounder 24 

(AIRS)/Advanced Microwave Sounding Unit (AMSU) sounder instruments aboard NASA’s 25 

Aqua spacecraft. We show that the enhancement improves accuracy and detail including key 26 

features such as capping inversions at the top of the PBL over land, resulting in improved 27 

accuracy in estimations of PBL height. 28 

1) Introduction 29 

 30 

Figure 1: Planetary boundary layer (PBL) illustration, and illustrated water vapor 31 
and potential temperature profiles showing sharp gradient at the top of the PBL 32 

 33 

Improved understanding of thermodynamics within the planetary boundary layer (PBL), 34 

including its structure and PBL height (PBLH) over land and water as a function of time of 35 

day, is of great importance to NASA, as recommended by the National Academy of Sciences 36 

in the 2017 Decadal Survey for Earth Science and Applications from Space (“ESAS 2017”) 37 

(National Academies of Sciences & Medicine, 2018; "Planetary Boundary Layer Decadal 38 
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Survey Incubation Study Team,") and subsequently by the NASA PBL Incubation Study Team 39 

Report (STR; (Teixeira et al., 2021)). During the ESAS 2017 process, improved PBL 40 

monitoring from space was identified as a high priority across multiple interdisciplinary panels 41 

and science and application questions, leading to the current NASA PBL Decadal Survey 42 

Incubation (DSI) program that will invest in future spaceborne PBL mission development.  43 

In the last two decades, spaceborne microwave and hyperspectral infrared sounding 44 

instruments on Aqua, Suomi NPP, and JPSS have significantly improved weather forecasting 45 

(Liu & Li, 2010; Pangaud, Fourrie, Guidard, Dahoui, & Rabier, 2009). These instruments use 46 

passive measurements of thermal radiation emitted by the atmosphere at different wavelengths 47 

to retrieve vertical profiles about the temperature 𝑇 and water vapor 𝑞. The retrieval process 48 

makes use of the fact that different wavelengths are sensitive to thermal emissions from 49 

different altitudes. However, the sounding retrievals are fundamentally limited in vertical 50 

resolution, with a function called the “averaging kernel” describing how small point changes 51 

in the true state of the atmosphere become vertically spread out among the surrounding profile 52 

levels in the retrieval estimate (Rodgers, 2000). As a result, retrievals from sounders often 53 

cannot accurately represent key features such as the mixed layer thermodynamic structure and 54 

the inversion at the PBL top, the latter of which appears as a sharp gradient in 𝑞 or potential 55 

temperature 𝑇  as illustrated in Figure 1. With the mixed layer itself being ~1-3 km thick, 56 

previously reported AIRS 𝑇 and 𝑞 profile resolution (and resultant PBLH) errors on the order 57 

of ~1-2 km (Martins et al., 2010) are not sufficient, and, alone, fall well short of the ESAS 58 

recommendation of ~100-300 m vertical resolution for new PBL observing systems. Because 59 

of the existing limitations in PBL remote sensing from space, there is an urgent need to improve 60 

routine, global observations of the PBL and enable advances in scientific understanding and 61 

weather and climate prediction. With the hyperspectral infrared sensor record continuing 62 

beyond the next decade with SNPP, JPSS, IASI, and planned GEO sounders, new 63 

methodologies that improve sounding capability will yield benefit for a long time to come.  64 

Sounding retrieval algorithms reconstruct a vertical distribution of atmospheric 65 

temperature and water vapor from the observations, which consist of thermal IR and 66 

microwave radiation emitted by layers of the atmosphere and measured by a sounder 67 

instrument on orbit (Rodgers, 2000). The objective is to estimate the state of the atmosphere 68 

(represented by unknown parameter vector 𝑥, a vertical profile of 𝑇 𝑝  or 𝑞 𝑝 ), given 69 

spaceborne spectral radiance observations (represented by a radiance vector 𝑦). The IR 70 
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observations used in 𝑦 are typically a cloud-cleared spectrum derived from a 3 by 3 group of 71 

neighboring cloudy spectra beforehand (though single-FOV retrievals have recently advanced 72 

(Irion et al., 2018) (DeSouza-Machado et al., 2018) as well). This inverse problem is ill-posed, 73 

lacking a single unique solution, with vertical details beyond a certain (scene- and data-74 

dependent) vertical resolution limit not directly observable from the spectral measurements, 75 

including in the lower troposphere and the PBL. This limitation in PBL information content 76 

from the instrument motivates interest in exploring the new, AI-informed technique described 77 

herein.  78 

Two approaches to sounding retrievals are physical retrievals and statistical regression 79 

retrievals. The physical retrieval approach uses a forward model (the radiative transfer model) 80 

to calculate the expected measurements 𝑓 𝑥  given a specific atmospheric state 𝑥. The estimate 81 

𝑥 is iteratively adjusted to reduce the squared difference between the observations 𝑦 and 82 

prediction 𝑓 𝑥 . Due to the ill-posed nature of the inverse problem, regularization is typically 83 

required to stabilize the retrieval. Statistical regression approaches, including neural networks, 84 

learn an empirical relationship 𝑥 𝑧 𝑦  between an ensemble of measurements 𝑦  and 85 

collocated truth datasets 𝑥  (W.J. Blackwell & Chen, 2009). For a neural network, 𝑧 is 86 

a nonlinear function composed of simple, interconnected computational elements, or nodes, 87 

defined by learned weight parameters and an activation function. A key advantage for neural 88 

networks over physical approaches is that they are fast and accurate, and, as universal function 89 

approximators (Hornik, 1991), they can empirically learn complex, often indirect and nonlinear 90 

dependencies embedded in the data that may be difficult to physically model(W.J. Blackwell 91 

& Chen, 2009). Neural networks have attracted increasing wide use from the sounding and 92 

remote sensing community in recent years (F. Aires, Rossow, Scott, & Chédin, 2002; W. J. 93 

Blackwell & Chen, 2005; Cai et al., 2020; Chase, Nesbitt, & McFarquhar, 2021; Maddy & 94 

Boukabara, 2021), including, recently, the use of convolutional neural networks in surface 95 

temperature retrievals (Filipe Aires, Boucher, & Pellet, 2021) and precipitation nowcasting 96 

(Samsi, Mattioli, & Veillette, 2019; Veillette, Samsi, & Mattioli, 2020). 97 

In recent years, the Level 2 retrieval algorithm for Aqua’s Advanced Microwave Sounding 98 

Unit (AMSU) (Susskind, Blaisdell, & Iredell, 2014; Susskind et al., 2020) has combined both 99 

of these approaches by using MIT-LL’s Stochastic Cloud Clearing/Neural Network (SCC/NN) 100 

retrieval (W. J. Blackwell & Milstein, 2014; Milstein & Blackwell, 2016) as first guess for 101 

NASA’s physical retrieval. The introduction of SCC/NN in versions 6 and 7 of the product as 102 
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the first guess has led to improved accuracy and yield in down to the surface, including the 103 

PBL, versus previous versions with a different regression first guess(Susskind, Blaisdell, et al., 104 

2014; Yue et al., 2020). SCC/NN builds upon years of work by Blackwell and colleagues (W. 105 

J. Blackwell, 2005; W. J. Blackwell & Chen, 2005; W.J. Blackwell & Chen, 2009; Cho & 106 

Staelin, 2006), and is a highly capable retrieval approach for 𝑇 and 𝑞 in its own right, achieving 107 

state of the art accuracy under a wide variety of cloud cover conditions. The most recent version 108 

of SCC/NN, which we call here “v7 NN” for convenience, improves upon the v6 NN by 109 

utilizing a more comprehensive training set, among other documented improvements 110 

(Susskind, Blaisdell, et al., 2014; Susskind et al., 2020), and includes architectural changes 111 

which have improved overall accuracy and precision in the PBL(Wong et al., 2018; Yue et al., 112 

2020). In the current Level 2 retrievals, PBL phenomenology is, to a significant degree, 113 

introduced via the SCC/NN first guess, along with most of the fine vertical structure in the 114 

retrievals, with the physical retrieval adding coarse (~2 km) structure to the SCC/NN first guess 115 

(Susskind, Lee, & Iredell, 2014). This combination of neural networks and physical retrieval 116 

to improve operational science products resulted from over a decade of investment by NASA, 117 

long predating the recent intensified focus on AI from the larger science and technology 118 

community.  119 

In this paper, we present a new AI technique for enhancing the resolution and accuracy of 120 

existing passive sensor retrievals, and show that it improves PBLH accuracy specifically. This 121 

technique uses a deep neural network that exploits temperature and moisture structure over a 122 

3D volume to improve vertical resolution. In contrast to previous NN algorithms which 123 

performed regressions between the retrieved variable 𝑥 and radiances 𝑦 like those described 124 

above, the DNN described enhances a volumetric 3D dataset of the retrieved variable 𝑥 itself, 125 

without using the radiances again. The DNN, trained using ensembles of realistic scenes from 126 

reanalysis fields, is a powerful way to incorporate prior knowledge, representing the joint 127 

statistics of the whole 3D scene being reconstructed with high fidelity. We describe our recent 128 

progress in developing this AI approach for the AIRS/AMSU sounders aboard Aqua. We show 129 

how the deep network results in improved thermodynamic profiles (T and q) in the lower 130 

troposphere, that have the physical (realistic) structure of the PBL mixed-layer and PBL-top 131 

inversion, and we demonstrate how these profiles can be used to derive PBLH over land more 132 

accurately than existing approaches. The AI approach that we present can be used in principle 133 

to enhance a wide variety of program-of-record retrievals, including regressions and physical 134 

retrievals. In the present work, we chose to enhance the v7 NN AIRS/AMSU retrievals. We 135 
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found that using the v7 NN (first guess) retrievals rather than the v7 (final) retrievals was 136 

helpful in this initial investigation in a number of ways. For example, v7 NN provides the fine 137 

vertical structure and PBL information (of most interest to this study) used by the final v7 138 

product, and, in contrast to recommended practice for the physical retrieval, is intended to be 139 

used down to the surface at all instrument footprints.  140 

The DNN is trained using 3D 𝑇 and 𝑞 fields from the ERA5 reanalysis model (Hersbach et 141 

al., 2018) as an ensemble of realistic, detailed scenes of vertical thermodynamic profiles and 142 

PBL characteristics. One conceivable approach would be to assume that the ERA5 fields are 143 

the true state of the atmosphere, and pair them as training targets with the v7 NN retrievals or 144 

AIRS radiances as the corresponding DNN inputs. However, we do not choose this approach, 145 

as ERA5, while a good model, is not the true state of the atmosphere, and the temporal or 146 

spatial correspondence with the instrument data is not exact. Our goal is to restore the level of 147 

detail typical of ERA5 without relying on the accuracy or truth of the ERA5 model. Instead, 148 

we pair the ERA5 training targets with simulated v7-NN-like retrieval granules derived from 149 

the ERA5 fields in known fashion. First, we simulate how the retrieval process (the instrument 150 

and retrieval algorithm) degrades the “true” atmospheric state using a combination of vertical 151 

smoothing and noise. We then train the enhancement DNN to reverse, as best it can, the 152 

degradation process. Through this approach, we model what the retrievals would look like if 153 

the true atmospheric state were equal to ERA5, and train an enhancement function (our DNN) 154 

which restores the original atmosphere given a v7 NN-like retrieval granule as input. We then 155 

execute the trained enhancement function on real AIRS v7 NN retrieval granules to restore a 156 

better representation of the true atmosphere. In this paper we use ERA5 as a reference for 157 

preliminary validation to demonstrate performance improvements versus the v7 NN retrievals. 158 

Future work is planned to address validation versus in-situ truth data. 159 

There is unique value in generating enhanced sounder retrievals to investigate the PBL 160 

rather than relying solely on modeled products such as ERA5. ERA5 has been shown to 161 

produce realistic estimates of PBL structure compared to observations (e.g. radiosondes) and 162 

other reanalysis models (Guo et al., 2021), typically underestimating PBLH by ~130 m. 163 

Nevertheless, reanalyses are limited in terms of assimilated PBL observations and lower 164 

tropospheric radiances, and contain inherent biases and compensating errors that require 165 

independent validation, beyond what is available from sparse, intermittent radiosondes. Hence, 166 

profile retrievals derived uniquely from satellite observations remain important, and can be 167 
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used for global, gridded process studies and independent assessment of numerical weather and 168 

climate models. In addition, the retrieval enhancements presented here are compatible with 169 

near-real-time operation, while reanalyses such as ERA5 have significant latencies. We also 170 

note that multiple IR sounders with geostationary coverage are planned in the coming years 171 

(Li, Paul Menzel, Schmit, & Schmetz, 2022), with China’s Fengyun-4 series currently in orbit. 172 

Improved IR retrieval capabilities in combination with these new instruments will enable 173 

dramatic improvements in spatial and temporal coverage versus current polar-orbiting 174 

sounders. The technique presented here will be fully applicable in principle to these next-175 

generation IR sounder missions. 176 

2) Deep Neural Network Enhancement Approach  177 

 178 

Figure 2: THATS-DEEP architecture and real example 3D granule images 179 
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Deep neural networks (DNN), including convolutional neural networks (Goodfellow, 180 

Bengio, & Courville, 2016) are highly expressive, and commonly used in AI to denoise, 181 

enhance, synthesize, or detect complicated phenomena in images or 3D datasets. They can be 182 

trained on a large ensemble of datasets and can provide a highly accurate representation of joint 183 

dependencies that conventional image enhancers or prior models aimed at regularizing 184 

solutions to inverse problems typically cannot. The AI agent we present here is a DNN aimed 185 

at removing typical sources of error (Rodgers, 2000) in sounding retrievals such as smoothing 186 

error (the vertical resolution limit of the observation and reconstruction technique in 187 

combination) and retrieval noise, resulting in enhanced vertical resolution with clearer PBL 188 

features, including sharper gradients, as well as more clearly-defined features in the mid- and 189 

upper atmosphere that can better constrain the sensor model. The agent is a 3D DNN operating 190 

on volumetric 3D granule datasets of size 𝑁 𝑁 𝑁 2 (where the 2 channels 191 

are 𝑇 and 𝑞, and “rows”/“columns” correspond to the 2D spot grid on which the profiles are 192 

geolocated). Specifically, the input is a 3D retrieval granule (in this case, the v7 NN, available 193 

to users in the Level 2 support product as the first guess), and the output is an enhanced retrieval 194 

granule of the same dimension. The DNN is therefore learning and utilizing complicated joint 195 

dependencies over the whole 3D volume, as well as joint dependencies between 𝑇 and 𝑞 to 196 

enhance the retrievals. We call this AI prior model Temperature and Humidity ATmospheric 197 

Sounding DEtail-Enhancing Prior, or “THATS-DEEP”.  198 

The architecture for THATS-DEEP, along with a real example granule image, are 199 

illustrated in Figure 2. The DNN is a residual learning convolutional neural network with a 3D 200 

UNet (Ronneberger, Fischer, & Brox, 2015) architecture, an encoder-decoder network with 201 

skip connections, and a mixed gradient loss function (Lu & Chen, 2019). This loss function 202 

includes a sum of the mean squared error for the image and the mean squared error for the 203 

vertical gradients of the image, with the gradient term weighted by a factor of 2. (The mixed 204 

gradient was selected because it was found to offer a modest benefit in image detail 205 

enhancement, but overall gave visually and quantitatively similar results to the common mean 206 

squared error loss function.) As Figure 2 illustrates, the convolutional layers use rectified linear 207 

units (“ReLU”) and batch normalization, which are commonly used to maximize training 208 

performance in deep networks (Goodfellow et al., 2016). Dropout layers are used to regularize 209 

the network (Goodfellow et al., 2016). Kernels of size 3x3x3 were used. 210 
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The training set is a database of 𝑇 and 𝑞 fields from the European Centre for Medium-211 

Range Weather Forecasts (ECMWF) ERA5 reanalysis model (Hersbach et al., 2018), 212 

collocated with the AIRS/AMSU retrieval spots from a total of 6,707 granules, with an 213 

additional 1,118 testing and 1,116 validation granules set aside. The training, testing, and 214 

validation granules are randomly interleaved, and are completely distinct from one another, 215 

and the results in this paper are from the testing set. Each granule is 2250 km by 1650 km in 216 

extent. We assumed that the large granule extent (encompassing a wide variety of surface and 217 

atmospheric conditions) makes even consecutive granules sufficiently distinct in coverage to 218 

preclude significant overfitting concerns, and thus, in the current work, we did not try to 219 

guarantee larger temporal separation between the testing granules from the closest training 220 

granules. The training set size was determined by initial trial and error and inspection of the 221 

results to be sufficient to generalize well, though further study of the optimal training set size 222 

is likely needed. The training outputs, or targets, are the ECMWF fields..  223 

The inputs at training are highly realistic simulated retrievals formed by degrading the 224 

ECMWF fields with synthetic smoothing error and noise representative of the real v7 NN 225 

retrievals we aim to enhance, for reasons highlighted below in a). The inputs at execution are 226 

the real v7 NN granules. The ERA5 fields were vertically interpolated from the provided 37 227 

pressure levels to 91 sigma levels used by both SCC/NN and the ECWMF IFS (ECMWF, 2014) 228 

forecast fields used in SCC/NN’s training set. (While all processing is done on the sigma levels, 229 

profiles in this paper are plotted versus altitude in kilometers, approximating height above 230 

surface for visualization purposes.) The 3D AIRS granules are initially of size 45x30x91 231 

(where 45x30 is the AIRS L2 retrieval and SCC/NN granule format), and are cropped to size 232 

40x24x56, making each dimension a multiple of 8 for convenience and simplicity with the 233 

encoder depth of the selected 3D UNet architecture. (Future iterations of this work will aim to 234 

refine the architecture with resizing layers to use the full set of instrument granule footprints, 235 

though we sidestep this additional effort for now.) The v7 NN granules and corresponding 236 

ERA5 data were selected from throughout 2010 and 2013 and interpolated to AIRS spot 237 

locations, and are distributed globally, though care was taken to maintain an even balance 238 

between ocean and land retrievals and between nonpolar versus polar regions.  239 

THATS-DEEP is currently implemented using Matlab’s Deep Learning toolbox (Beal, 240 

Hagan, & B., 2022), and trained using acceleration from the GPU nodes in the Lincoln 241 

Laboratory Supercomputing Center (LLSC) (Byun et al., 2012; Reuther et al., 2018) using the 242 
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well-known stochastic gradient descent with momentum (SGDM) optimizer in randomly 243 

shuffled minibatches, with 65 epochs required for convergence before noticeable increases in 244 

validation error that would indicate overfitting. The training options used are listed in Table 1. 245 

The hyperparameters specifying the model were chosen by experimenting with different values 246 

and using the resulting training and validation loss values to select the best-performing model. 247 

Specifically, the “Momentum”, “InitialLearnRate”, and “L2Regularization” parameter were 248 

chosen by looping over a range of values and reviewing the loss values. The SGDM and Adam 249 

(Kingma & Ba, 2014) optimizer were evaluated, and gave overall similar results. The 3D UNet 250 

encoder is generated by the Matlab-supplied “unet3dlayers” function (with layers and 251 

connections modified for image enhancement rather than the defaults for segmentation). The 252 

UNnet encoder depth of “3” selected by searching over another loop. The use of gradient 253 

clipping was inspired by Kim et al.(Kim, Lee, & Lee, 2016), from work that used a different 254 

architecture for image enhancement. 255 

Option Name Value 
Momentum 0.9 

InitialLearnRate 0.1 
LearnRateSchedule Piecewise 

LearnRateDropPeriod 60 
GradientThresholdMethod Absolute-value 

GradientThreshold 0.005 
L2Regularization 0.0001 

Table 1 Matlab Deep Learning training options used in this work 256 

a) Synthetic Training Input Model 257 

As described above, we train the DNN using simulated retrievals with realistic errors rather 258 

than real v7 NN retrievals, while we execute with the real v7 NN retrievals. Our rationale for 259 

training with simulated rather than actual retrievals derived from instrument data is that the 260 

reanalysis fields and the real retrievals inevitably contain undesired temporal or spatial 261 

collocation discrepancies between the reanalysis and instrument as well as errors in the 262 

reanalysis itself, while the simulated retrievals have a known, exact correspondence to the 263 

inputs used to generate them. We have found that this known correspondence is essential for 264 

this technique, and our prior attempts to train a deep network with only real retrievals paired 265 

with ECMWF produced only minor enhancement. However, as a result, a high degree of 266 

realism is required for the training inputs, with errors similar to those that would be encountered 267 

in the real retrievals. We considered (and remain open to) a variety of methodologies for 268 

generating the simulated retrieval errors, including generative adversarial networks (GANs) 269 
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for style transfer (Zhu, Park, Isola, & Efros, 2017) and first-principles approaches. For 270 

example, one could:  271 

- Compute and apply retrieval averaging kernels on each footprint 272 

- Compute realistic, synthetic cloudy radiance spectra for inputs into the AIRS/AMSU 273 

v7 NN algorithm.  274 

However, in our current implementation, we chose a different approach, which balanced ease 275 

of implementation with direct control of both the smoothing and noise error models. We 276 

generate synthetic proxy data profiles from the ECMWF fields, using a purpose-built neural 277 

network to degrade them such that errors are very similar to those in retrievals from the 278 

AIRS/AMSU v7 NN. We call this training approach “Sim-NN”, and illustrate it in Figure 3. 279 

The inputs to this network are the ECMWF profiles (both T and q), transformed into their 280 

principal components for dimensionality reduction. These are augmented with ancillary inputs 281 

similar to those that would be required for running a cloudy radiative transfer model, including 282 

cloud liquid water path (from the AIRS/AMSU L2 product), the v7 NN cloudiness flags 283 

(“BTCorr”) indicating degree of cloud spectrum correction applied the stochastic cloud 284 

clearing algorithm, land fraction, surface pressure, cos(latitude), cos(scan angle), and cos(solar 285 

zenith angle), all suitably normalized and centered. The sim-NN network is a shallow, fully 286 

connected network with two hidden layers (17 and 13 nodes), and uses sigmoid activation 287 

functions. The network is trained in two passes. The first pass uses more dimensionality 288 

reduction on the inputs (25 PCs for T and 35 PCs for q ), and the well-known Levenberg-289 

Marquardt algorithm. The second pass relaxes the dimensionality reduction (90 and 90 PCs for 290 

T and q, respectively, with input layer nodes added and initialized to zero on the second pass), 291 

and uses the GPU-friendly scaled conjugate gradient algorithm, to refine the results of the first 292 

pass, enabling slight improvement in fidelity without the Levenberg-Marquardt algorithm’s 293 

memory requirements. For the training targets, the outputs were the corresponding v7 NN 294 

profiles, divided into the same vertical layer segments used in the generation of that product to 295 

match its characteristics. The training set was about one fourth the size used for THATS-DEEP, 296 

with limited improvement found for additional profiles. Training time on LLSC was under 1 297 

hour. 298 

An example of this approach is illustrated in Figure 3, for an example log(q) granule, 299 

including the input ECMWF granule, the output “Sim-NN” granule, and the corresponding v7 300 

NN granule. The Sim-NN granule visually appears very similar to the v7 NN granule in vertical 301 
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smoothness, which we quantify in future sections. However, the Sim-NN profiles paired with 302 

exact ECMWF “truth” profiles, with no temporal or spatial discrepancy between them, as 303 

desired. Sim-NN smooths each profile with a spatially varying vertical smoothing error based 304 

on cloud and other ancillary inputs, as would be expected in the real v7 NN datasets. However, 305 

retrieval noise also needs to be added to the Sim-NN retrievals. As with the smoothing error, 306 

we considered first principles approaches for estimating and adding retrieval noise to the proxy 307 

retrievals. However, in the current implementation, we choose a simple heuristic approach, 308 

which we found worked remarkably well. This approach is illustrated in Figure 4. In this 309 

approach, a “noise” pattern is derived from a real v7 NN granule, and added to the 310 

corresponding Sim-NN proxy granule. This noise is determined by denoising the v7 NN 311 

granule with a 3D median filter and differencing the filtered data from the original. The median 312 

filter was chosen due to its simplicity and its well-known edge-preserving denoising 313 

capabilities. The noise-like 3D pattern we obtain was found to be representative of 3D real 314 

errors in the v7 NN granules, including scene-dependent errors that would be complex to model 315 

synthetically otherwise.  316 

We considered that the “noise” determined using the median filter may include some 3D T 317 

and q features other than true retrieval noise, and thus might cause THATS-DEEP to 318 

mistakenly reject true image features (such as some sharp gradients) as if they were noise. 319 

However, we have found empirically that this was not a significant or driving issue, as such 320 

sharp image features of interest do not exactly align between the Sim-NN and corresponding 321 

v7 NN granules. Hence, treating such features as additive noise does not typically cause 322 

confusion for THATS-DEEP in practice. 323 

 324 

Figure 3: Sim-NN approach for generating realistic proxy v7 NN data to use as 325 
training inputs for THATS-DEEP 326 
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 327 

Figure 4: Heuristic approach used to add noise derived from real v7 NN retrieval 328 
granules to synthetic inputs used to train THATS-DEEP 329 

 330 

3) Results 331 

a) Example granules 332 

First, we demonstrate the impact of THATS-DEEP with three example test granules from 333 

AIRS/AMSU, all taken from 2010 (which, along with 2013, was included in our training, 334 

validation, and independent testing datasets). These example scenes are illustrated in Figure 5 335 

as VIS/NIR or LWIR preview images from the AIRS, and include (a) a July 16, 2010 UTC 336 

11:53 daytime scene over Africa; (b) a December 16, 2012 UTC 18:47 nighttime scene over 337 

China and Southeast Asia; and (c) an August 21, 2010 UTC 06:53 scene over northern Russia. 338 

The arrows superimposed on the images depict the direction and approximate location of slice 339 

plots shown in the subsequent figures. 340 

 341 

Figure 5: Three example scenes, shown as VIS/NIR or LWIR images from AIRS, 342 
with arrows depicting the direction and approximate location of slice plots in the 343 
subsequent figures. (a) July 16, 2010 UTC 11:53 daytime scene over Africa; (b) 344 
December 16, 2012 UTC 18:47 nighttime scene over China and Southeast Asia; (c) 345 
August 21, 2010 UTC 06:53 daytime scene over northern Russia.  346 
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Figure 6 shows example results, as 3D slices through the granule in Figure 5 (a). The 347 

granule is shown as slices of potential temperature 𝑇 , the log of specific humidity (log 𝑞), 348 

the specific humidity 𝑞 and vertical gradients  and , all chosen to highlight key details. 349 

Slices through the original AIRS/AMSU v7 NN are shown, along with the enhanced THATS-350 

DEEP result, and the corresponding ECMWF fields. The scene includes features of a 351 

convective boundary layer under mostly clear conditions, with the height of the mixed layer 352 

slowly varying across the granule. The original v7 NN retrievals, while a significant 353 

improvement over previous AIRS L2 retrievals (Susskind, Blaisdell, et al., 2014; Susskind, 354 

Lee, et al., 2014) contain smoothing error and retrieval noise which are intrinsic to the 355 

hyperspectral IR sounding process (including both the measurement and retrieval 356 

algorithm)(Rodgers, 2000). These errors vary from profile to profile, as well as vertical 357 

gradient artifacts at regular intervals due to the layer-wise retrieval method. As a result, key 358 

PBL features as well as other vertical structure are not always clearly discernible. However, 359 

while ECMWF is not exact truth (as it is for the synthetic training profiles), the enhanced 360 

outputs from THATS-DEEP look far more similar to the ECMWF granules than the input v7 361 

NN retrievals do, including sharper, more well-defined moisture and potential temperature 362 

gradients at the top of the PBL and more accurately defined vertical structure in temperature 363 

and moisture, a key science objective of this effort. An example profile of q and Tpot versus 364 

altitude from this granule is plotted in Figure 7, demonstrating how THATS-DEEP enhances 365 

the accuracy of the inversion location at the top of the mixed layer versus the v7 NN profile. 366 
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 367 

 368 

Figure 6: Example THATS-DEEP enhancement results for real AIRS/AMSU v7 NN 369 
granule slices of the scene in Figure 5 (a) 370 

 371 
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 372 

Figure 7: Example plot of q and Tpot versus altitude from example granule of 373 
scene in Figure 5 (a) and Figure 6, for v7 NN, THATS-DEEP, and ECMWF 374 

 375 

Figure 8 shows slices through the granule in Figure 5 (b), a night-time overcast scene over 376 

China and southeast Asia (including Vietnam, Laos, and Myanmar). The scene is complex in 377 

terms of variable structure, including nighttime/stable PBL close to the surface and one more 378 

layer around 2-3 km, as demonstrated in the humidity gradient. The original v7 NN retrievals, 379 

while again significantly improved relative to previous L2 retrievals, also contain the 380 

aforementioned smoothing error and retrieval noise. The enhanced outputs from THATS-381 

DEEP enhance key vertical structure and detail, showing that elevated layers of moisture and 382 

moisture gradients can be restored. This is particularly important for processes such as elevated 383 

convection layers that are important for severe weather and aviation forecasting, respectively. 384 

These types of scenes are particularly challenging from space, and demonstrate the potential of 385 

this approach.  386 
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 387 

Figure 8: Example THATS-DEEP enhancement results for real AIRS/AMSU v7 NN 388 
granule slices of the scene in Figure 5 (b) 389 

 390 

Figure 9 shows slices through the granule in Figure 5 (c), a daytime scene over northern 391 

Russia which contained rainy weather and low clouds. This scene also contains complex 392 

features and shows variable PBL structure and height. The restored scene in THATS-DEEP, 393 

once again, removes noise and layer artifacts from the original retrievals and sharpens key 394 

details and gradient features, including the varying height of the near-surface moisture layer. 395 

b) Simulated vs Real Granule Example 396 
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As outlined in 2)a), THATS-DEEP is trained using simulated input data and meant to be 397 

executed using real input data. Therefore, it is instructive to look at an example of the simulated 398 

versus real test data for the same granule. Figure 10 shows results using the simulated Sim-NN 399 

granule corresponding to the real one in Figure 9. As in Figure 3, the Sim-NN inputs are 400 

comparable in appearance with the real v7 NN inputs, with similar layer artifacts, smoothing, 401 

and noise. As is typically the case, the simulated granule restored using THATS-DEEP shows 402 

similar removal of errors and enhancement of detail, as well as similar phenomenology overall 403 

to the real granule. These similarities between results for simulated and real datasets provide 404 

reassurance that the simulated datasets used to train the algorithm are representative, and that 405 

the algorithm performance is comparable on both as well. One notable, and expected, 406 

difference is that the simulated granules have features with close alignment with the 407 

corresponding features in the ECMWF granule, while this correspondence of key features is 408 

less closely aligned in the real dataset. 409 
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 410 

Figure 9: Example THATS-DEEP enhancement results for real AIRS/AMSU v7 NN 411 
granule slices of the scene in Figure 5 (c) 412 
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 413 

 414 

 415 

 416 

Figure 10: Example THATS-DEEP enhancement results for simulated granule slices 417 
corresponding to the real scene in Figure 5 (c) and Figure 9. 418 

 419 

c) Daytime Land PBL Retrieval Study 420 
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A key science objective of this effort is to assess PBL retrieval capability over land, which 421 

is inherently more difficult from space due to land surface heterogeneity and emissivity 422 

uncertainties. To demonstrate the utility of THATS-DEEP, we assessed its impact using an 423 

ensemble of 149,622 profiles (daytime, |lat|<65, 2010 and 2013, land) from the test granule set 424 

described in 2). We show example PBLH assessments over land for both simulated and real 425 

datasets, with results described as follows. 426 

d) Principal Component Enhancement 427 

To assess vertical detail enhancement due to THATS-DEEP, we performed principal 428 

component (PC) analysis on the ensemble of 𝑇 and log 𝑞 test profiles including the original v7 429 

NN profiles, the enhanced THATS-DEEP profiles, and the ECMWF profiles. The analysis was 430 

also performed on the corresponding simulated datasets. The PC transform vectors were 431 

computed using the ECMWF training set profiles. Figure 11 shows the PC analysis results for 432 

𝑇. Figure 11 (a) shows the first 20 PCs of 𝑇 profiles for ECMWF, the v7 NN, THATS-DEEP, 433 

Sim-NN, and THATS-DEEP (with Sim-NN inputs). Figure 11 (b) offers a closer look by 434 

showing the same PCs but normalized by the PCs for ECWMF, highlighting how each of the 435 

retrieval techniques falls off from unity. In particular, the blue curves showing THATS-DEEP 436 

PCs fall off from unity at a significantly slower rate than the red curves showing PCs for the 437 

v7 NN and Sim-NN inputs. This indicates that for both real and simulated detail, THATS-438 

DEEP restores detail in the retrieved profiles, bringing them significantly closer to the level of 439 

detail in the ECMWF fields (unity in Figure 11 (b)). The first 20 principal vectors 440 

corresponding to these PCs are shown in Figure 11 (c), visualized as functions of altitude. The 441 

components boosted by THATS-DEEP include higher resolution features in their basis vectors, 442 

particularly in the PBL. Beyond the first 20 PCs, which contain the vast majority of the signal 443 

in the retrieved 𝑇 profiles, the blue curves representing THATS-DEEP intersect and even dip 444 

below the red curves representing the corresponding inputs, indicating that THATS-DEEP 445 

attenuates those PCs to suppress noise rather than try to enhance them. The overall agreement 446 

between the dashed curves (representing simulation) and the solid curves (representing real 447 

retrievals) is reassuring, indicating that the simulated inputs and their level of smoothing are 448 

good models for the real retrievals, and that similar enhancement is provided to both by 449 

THATS-DEEP. (The Sim-NN curve is greater than the corresponding v7 NN curve at higher 450 

PCs, suggesting that the simulated inputs are noisier than the real ones.) Figure 12 shows a 451 

similar PC analysis for log 𝑞, from which we draw similar conclusions about the utility of 452 
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THATS-DEEP in enhancing vertical detail and the good agreement between simulation and 453 

reality. 454 

 455 

Figure 11: Principal component analysis of T profiles. (a) First 20 PCs of T profiles 456 
for ECMWF, v7 NN, THATS-DEEP, Sim-NN, and THATS-DEEP (with Sim-NN 457 
inputs). (b) The same PCs as (a) but normalized by the PCs for ECWMF, highlighting 458 
THATS-DEEP enhancement. (c) The first 20 PC vectors vs altitude, showing that 459 
enhanced components include greater vertical detail features 460 

 461 

 462 

Figure 12: Principal component analysis of log q profiles. (a) First 20 PCs of log q 463 
profiles for ECMWF, v7 NN, THATS-DEEP, Sim-NN, and THATS-DEEP (with Sim-464 
NN inputs). (b) The same PCs as (a) but normalized by the PCs for ECWMF, 465 
highlighting THATS-DEEP enhancement. (c) The first 20 PC vectors vs altitude, 466 
showing that enhanced components include greater vertical detail features 467 

e) RMS Errors 468 

We evaluated the retrieval error performance by computing RMS errors over the test profile 469 

ensemble. While improved vertical detail is a goal of this work, coarser layer-averaged errors 470 

are commonly used in the sounding community as a less noisy benchmark of overall error in 471 

profile data. Hence, we show layer-averaged and unaveraged RMS errors below. We examined 472 

performance for both simulated and real retrievals. Simulations provide a best-case bound of 473 

feasible performance because the ECMWF atmospheric state is the exact truth used to generate 474 
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them, and THATS-DEEP was trained using Sim-NN inputs. On the other hand, real retrievals 475 

provide an upper bound on actual RMS error, due to the mismatch between ECMWF and the 476 

true atmospheric state at the time of the instrument measurements. 477 

First, we examined the simulated retrievals, for which the ECMWF profiles are known, 478 

exact ground truth. Figure 13 shows RMS error for Sim-NN and corresponding THATS-DEEP 479 

𝑇 profiles and log 𝑞  profiles versus ECMWF, both averaged to 2 km layers and unaveraged. 480 

The results indicate dramatic improvement due to THATS-DEEP relative to its Sim-NN inputs, 481 

with RMS errors typically reduced by 40-50%. While these retrievals are simulated, they are 482 

representative of real retrievals in terms of the level of smoothing error and noise relative to 483 

the ECMWF fields, as the PC analysis of d) establishes. Hence, Figure 13 provides a best-case 484 

bound on RMS error improvement that can be obtained for realistic input retrievals using 485 

THATS-DEEP. 486 

 487 

Figure 13: (a) RMS error as a function of altitude for T and log(q) for simulated 488 
retrievals, including Sim-NN and THATS-DEEP vs corresponding ECWMF profiles 489 

We also determined errors for retrievals from real AIRS/AMSU, for which the ECMWF 490 

profiles do not correspond exactly to the true atmospheric state at the time of the measurement. 491 

Figure 14 shows RMS error for v7 NN and corresponding THATS-DEEP 𝑇 profiles and log 𝑞  492 

profiles versus ECMWF, both layer-averaged and unaveraged. The layer-averaged results 493 

indicate improvements on the order of 5-20% due to THATS-DEEP relative to its v7 NN 494 

inputs. This improvement is statistically significant, as determined by a one-tailed F-test for 495 

variance reduction applied on all the profiles with a p-value of 0.05. However, the reductions, 496 

as expected, are less dramatic than the changes seen in the simulated datasets. We expect that 497 

this difference is due to two factors: 1) the aforementioned differences between the ECMWF 498 

fields and the true atmospheric state at the time of the AIRS measurements and 2) remaining 499 

discrepancies between the Sim-NN model used to train THATS-DEEP and the actual retrieval 500 
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error statistics which impact performance on real data. The qualitative agreement in 501 

phenomenology between simulated and real granules noted in 2)a) suggests that the second of 502 

these factors is relatively small, but future validation efforts will work to quantify more 503 

precisely, in part using in-situ truth data. 504 

 505 

Figure 14: (a) RMS error as a function of altitude for T and log(q) for real 506 
retrievals, including v7 NN and THATS-DEEP vs corresponding ECWMF profiles 507 

f) PBLH Results 508 

We also evaluated PBLH from the retrievals in comparison to ECMWF for the same land, 509 

daytime test profiles. While many approaches can be used to evaluate PBLH and the best choice 510 

is typically regime-dependent, we used a vertical gradient approach similar to Seidel et 511 

al.(Seidel, Ao, & Li, 2010).While relative humidity gradient is one quantity which has 512 

previously been used to evaluate PBLH (Ding, Iredell, Theobald, Wei, & Meyer, 2021), we 513 

evaluated gradients in both 𝑞 and 𝑇  individually, as both are useful indicators of the PBL 514 

top as illustrated in Figure 1, and both are more directly related to the variables retrieved by 515 

the algorithms. We also check PBLH derived from 𝑞 against the PBLH derived from 𝑇  to 516 

confirm whether they are mutually consistent as physically expected. Specifically, the PBLH 517 

was determined using two different measures: The minimum value of , and the maximum 518 

value of . To reduce errors, the search for the minimum or maximum gradient was limited 519 

to a certain interval within the vertical profile, as illustrated in Figure 15. For 𝑞, only segments 520 

of the profile for which 𝑞 was within the interval 0.8 max 𝑞 , max 𝑞  were included, 521 

reducing inadvertent selection of sharp gradient features too far away from the PBL. The PBLH 522 

was also bounded by the interval [0.29 km, 5 km]. Similarly, for 𝑇 , only segments of the 523 

profile for which 𝑇  was within the interval min 𝑇 , 1.02 min 𝑇  were included. 524 

PBLH was bounded by [0.61 km, 5 km] and we took the additional step of rejecting any profile 525 
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for which the maximum gradient was out of that range. This additional step was included 526 

because a distinct above-surface gradient was not identified for all 𝑇  profiles, including 527 

ECMWF profiles, even when it was for the corresponding 𝑞 profile. All search intervals were 528 

selected after empirical tradeoffs to obtain best results. 529 

As in e), we evaluate PBLH performance versus ECMWF for both simulated and real 530 

retrievals, with simulated retrievals offering a best case performance bound and real retrievals 531 

offering an upper bound on PBLH errors due to the mismatch between ECWMF and the true 532 

atmospheric state.  533 

 534 

Figure 15: Illustration of the bounded search interval used to locate the top of the 535 
PBL for both q and Tpot 536 

Before evaluating PBLH using gradients for v7 NN retrievals, we noted that these retrievals 537 

were generated using vertical layers, each from its own neural network, and thus gradient 538 

discontinuity artifacts were sometimes apparent at the boundaries between the layers. Figure 539 

16(a) and (b) show an example of this with a slice through a v7 NN granule of 𝑞 and its vertical 540 

gradient, respectively. We found that these artifacts impacted gradient-based PBLH 541 

assessments, causing them to cluster near layer boundaries. Hence, before calculating PBLH, 542 

we used a simple heuristic method to reduce these artifacts on a per-profile basis. Specifically, 543 

we assumed that the desired gradient at each layer boundary should be equal to a local three-544 

point average (on the retrieval grid) of the actual gradient, and we added a small ramp function 545 

to each retrieval layer such that the gradients at the layer boundaries were equal to this desired 546 

value. Example results, including the modified granule of 𝑞 and its vertical gradient, are shown 547 

in Figure 16(c) and (d), respectively. The 𝑞 profiles are less blocky in appearance, and the layer 548 

artifacts are reduced in gradient. The same process was performed on 𝑇 profiles. While this 549 

simple artifact reduction approach is not guaranteed to be optimal in any particular sense (and 550 

indeed appears to smooth the retrievals to a small degree), it significantly reduced the 551 
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aforementioned clustering of PBLH estimates from the v7 NN retrievals in the results that 552 

follow. 553 

 554 

Figure 16: Example of reduction of vertical layer blocking artifacts from v7 NN and 555 
Sim-NN retrievals before attempting gradient-based PBL top location. (a) original q; (b) 556 
gradient of q, showing blocking artifact; (c) q after artifact reduction and (d) gradient of 557 
q, showing reduction in artifact 558 

 559 

Figure 17 shows the assessment of PBLH, computed from 𝑞, shown as 2D histogram versus 560 

the PBL computed using the gradient of the corresponding ECMWF 𝑞 profile. Figure 17(a) 561 

shows the results for v7 NN, while Figure 17 (b) shows the results for THATS-DEEP with real 562 

v7 NN inputs. The PBLH histogram peaks for THATS-DEEP maintain a slope of nearly 1 with 563 

respect to the ECMWF-derived PBLH on the horizontal axis over the whole plotted range, 564 

demonstrating its overall accuracy. The agreement between PBLH from THATS-DEEP and 565 

ECMWF is typically within ~0.5 km (as seen in the half-width of the histogram peak). In 566 

contrast, the PBLH for v7 NN is less accurate, tending to remain concentrated between 1 and 567 

2 km, even when the ECMWF-derived PBLH is outside that range. Figure 17 (c) shows the 568 

results for THATS-DEEP with Sim-NN inputs, for which the ECMWF exactly represents the 569 

true atmospheric state. As in Figure 17 (b), the PBLH histogram peaks in in Figure 17 (c) 570 

maintain a slope of nearly 1 with respect to ECMWF, demonstrating overall accuracy. 571 

However, the histogram peaks for the simulated cases are noticeably narrower than for the real 572 

ones, with agreement typically between ~0.25 km and ~0.5 km. As in e), THATS-DEEP’s 573 

performance with Sim-NN inputs represents a best-case bound due to the absence of model 574 

mismatch with the training set inputs, while performance with real inputs represents a worst-575 

case bound due to ECMWF differing from the true atmospheric state in reality. However, for 576 

both real and simulated profiles, THATS-DEEP ultimately improved assessed PBLH accuracy 577 

relative to their inputs, which are typical of current program-of-record retrieval approaches in 578 

quality. We note that the results shown here do not include screening for cloudiness or “PBest” 579 

quality flags, and that we found such screening changes the distribution of PBLH values in the 580 
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accepted profiles but does not change the relative performance. Figure 18 shows the assessment 581 

of PBLH, computed from 𝑇  for (a) v7 NN, (b) THATS-DEEP with real inputs, and (c) 582 

THATS-DEEP with simulated inputs. The results are consistent with those of Figure 17 which 583 

used 𝑞. As mentioned above, one notable difference in how we assessed PBLH from 𝑇  is 584 

that the 𝑇  profile’s PBLH estimate was not accepted if it was below the search interval [0.61 585 

km, 5 km], while a PBLH estimate was accepted for all 𝑞 profiles. The percentage of profiles 586 

with accepted PBLH from 𝑇  is shown for all three cases. 587 

We also compared PBLH values computed from 𝑞 versus those computed from 𝑇  for 588 

consistency. Figure 19 shows 2D histograms of the PBLH estimates derived from 𝑇  versus 589 

the PBLH estimates derived from the corresponding 𝑞 for (a) v7 NN, (b) THATS-DEEP with 590 

real inputs, and (c) ECMWF. For the ECMWF profiles, the agreement between 𝑇  and 𝑞 is 591 

excellent, with a slope close to 1, and agreement precision typically within ~0.25 km. PBLH 592 

from 𝑇  is systematically about 0.25 km lower than 𝑇  from 𝑞. For THATS-DEEP, the 593 

slope is also close to 1, with similar systematic offset to the ECMWF profiles and tight 594 

agreement showing the overall consistency between 𝑇  and 𝑞 in the enhanced profiles. The 595 

consistency is also significantly improved versus the v7 NN in (a) used as input.  596 

 597 

 598 

Figure 17: 2D histogram for PBLH for (a) v7 NN vs corresponding ECMWF 599 
profiles, (b) THATS-DEEP (with real v7 NN inputs), and (c) THATS-DEEP (with Sim-600 
NN inputs) vs corresponding ECMWF profiles. PBLH was computed from the gradient 601 
of q 602 

 603 
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 604 

 605 

Figure 18: 2D histogram for PBLH for (a) v7 NN vs corresponding ECMWF 606 
profiles, (b) THATS-DEEP (with real v7 NN inputs), and (c) THATS-DEEP (with Sim-607 
NN inputs) vs corresponding ECMWF profiles. PBLH was computed from the gradient 608 
of Tpot 609 

 610 

 611 

Figure 19: 2D histogram for PBLH derived from q versus PBLH derived from Tpot , for 612 

(a) v7 NN, (b) THATS-DEEP (with real v7 NN inputs), and (c) ECWMF profiles 613 

To quantify the improvement in PBLH derived from 𝑞, we computed both the median and 614 

mean absolute error in PBLH with respect to ECMWF as a function of altitude for both v7NN 615 

and THATS-DEEP. The median error is plotted in Figure 20 (a), and shows that the overall 616 

bias in PBLH is reduced by THATS-DEEP at almost all altitudes by roughly a factor of 2. The 617 

mean absolute error (MAE), a measure of the spread, in PBLH is plotted in Figure 20 (b), 618 
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showing reduction in MAE from THATS-DEEP for altitudes above 1.7 km, though the MAE 619 

remains similar or slightly increased versus v7NN below that altitude. 620 

 621 

 622 

Figure 20: Quantitative PBLH results (from the gradient of q), including (a) median 623 
PBLH error versus ECMWF and (b) mean absolute error of PBLH versus ECWMF, 624 
for both v7NN and THATS-DEEP, as a function of altitude 625 

4) Conclusion 626 

We have presented a new DNN approach for enhancing detail and reducing noise in 3D 627 

granules containing current state of the art retrievals of temperature and humidity, and we have 628 

shown that this approach improves their scientific utility, including representation of key PBL 629 

features over land such as inversions representing PBLH, with Figure 20 a) showing PBLH 630 

median errors reduced by a factor of 2 at most PBLH altitudes. This technique, while 631 

demonstrated here on the v7 NN retrievals, can in principle be applied to enhance the scientific 632 

return from a wide variety of sensors and retrieval algorithms (for example, those presented by 633 

Smith and Barnett (Smith & Barnet, 2020) and by Irion (Irion et al., 2018) ) provided it is 634 

trained accordingly. While we apply this technique as a standalone enhancement step to 635 

existing Level 2 retrieval granules, we envision that this could be used in recently proposed 636 

frameworks (for example, (Buzzard, Chan, Sreehari, & Bouman, 2017) ) which balance AI and 637 

physics, extending and drawing upon classic optimal estimation approaches familiar to the 638 

remote sensing community. Such techniques are expected to benefit from recent progress in 639 

uncertainty estimation for remote sensing retrievals (for example, (Braverman, Hobbs, 640 

Teixeira, & Gunson, 2021) ), including a neural network error prediction technique (Tao, 641 

Blackwell, & Staelin, 2013) which we are testing for v7 NN retrievals. We also expect that 642 

further improvements in accuracy and detail may be possible, including DNN architecture 643 

improvements and training improvements. For example, any improvements to the fidelity of 644 
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Sim-NN as a realistic model for real retrievals will improve THATS-DEEP accuracy. Future 645 

work will address more validation versus in-situ data sources in addition to other remote 646 

sensing modalities (active and passive) and reanalysis.  647 

Once trained, THATS-DEEP can in principle execute in near-real time on operational 648 

retrievals, enhancing their utility to the forecast and Earth science community. A key 649 

consideration of the current work is the dependence on an existing operational product. For 650 

example, any revision to the v7 NN product would potentially require retraining of both Sim-651 

NN and THATS-DEEP. In practice, this is mitigated by the fact that significant AIRS/AMSU 652 

version upgrades are relatively infrequent and have typically involved reprocessing over the 653 

life of the mission to avoid data discontinuities, resulting in a long, stable data record from 654 

which to train the subsequent steps in this work. However, in principle, the need to retrain Sim-655 

NN and THATS-DEEP if the source data is updated may be inconvenient. In addition, THATS-656 

DEEP, as currently implemented, likely requires retraining for retrievals derived from different 657 

sensors, even if they are similar hyperspectral sounder missions. Future work will consider 658 

ways to address this, such as transfer learning and more general-purpose, less sensor-specific 659 

style transfer techniques which might replace Sim-NN.  660 
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