THE CHEMICAL AND ISOTOPIC SIGNATURES OF THE HIBONITE-RICH FUN INCLUSION "HIDALGO" IN DAR AL GANI 027 (CO3). M.-C. Liu¹, N. Matsuda², E. T. Dunham^{2,3}, K. D. McKeegan² and K. A. McCain⁴ ¹Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory (liu88@llnl.gov), ²Department of Earth, Planetary, and Space Sciences, UCLA, ²Department of Earth and Planetary Sciences, UCSC, ⁴Jacobs JETSII contract, NASA Johnson Space Center

Introduction: Refractory Ca-Al-rich Inclusions (CAIs) with FUN (Fractionation with Unidentified Nuclear effects) characteristics are peculiar samples among all high-temperature components in chondritic meteorites. They are generally characterized by strong mass-dependent isotopic fractionations in several elements (e.g., O, Mg, Ca, Ti), large (~5-20‰) enrichments or depletions in neutron-rich isotopes (e.g., ⁴⁸Ca, ⁵⁰Ti, ⁵⁴Cr), and low inferred abundances of ²⁶Al $(^{26}\text{Al}/^{27}\text{Al} < 1 \times 10^{-5})$ [1]. Understanding the origins of these features in FUN CAIs can shed light on the astrophysical environment and chemical processes that took place in the early Solar System. A large fraction (slightly less than 50%) of the ~20 FUN CAIs discovered so far are hibonite-rich (such as HAL, SHAL and DH-H1, collectively called HAL-type inclusions hereafter). According to their elemental and isotopic signatures and the results of evaporation experiments, HAL-type inclusions are thought to have formed as a distillation residue [2,3]. However, questions regarding the timing of the formation of HAL-type inclusions (or FUN inclusions in general) relative to those of regular CAIs and the decoupling between the ²⁶Al abundances and nucleosynthetic anomalies remain poorly understood. In 2021, we reported the discovery of a new HAL-type inclusion, HIDALGO (Hibonite in Dar al Gani CO3) in the CO3 chondrite Dar al Gani 027 (DaG027), based on its (fractionated) oxygen isotopic compositions and low inferred ²⁶Al/²⁷Al ratio of $(1.50\pm0.02)\times10^{-5}$ [4]. Since then, more work on other short-lived and stable isotope systems and trace element abundances has been conducted. Here we report these new results and discuss the implications for the possible formation history of HIDALGO and origins of shortlived radionuclides (SLRs).

Experimental: HIDALGO is a $\sim 300 \times 300 \mu m$, nearly stoichiometrically pure, single hibonite crystal, containing homogeneous CaO = 8.5% and Al₂O₃ = 91% along with trace amounts of TiO₂ = 0.2% and FeO = 0.3%. No MgO could be detected by EPMA. Measurements of HIDALGO for the SLR systems ¹⁰Be-¹⁰B (t_{1/2} = 1.3 Myr) and ⁴¹Ca-⁴¹K (t_{1/2} = 0.1 Myr), stable Ca-Ti isotopes, and rare earth element (REE) abundances were carried out by using the CAMECA ims-1290 ion microprobe at UCLA.

Results: Similar to oxygen, the Ca and Ti isotopic compositions in HIDALGO are also mass-dependently fractionated by 13‰/amu and 14‰/amu, respectively.

HIDALGO is also characterized by large anomalies in ⁴⁸Ca and ⁵⁰Ti, with $\delta^{48}Ca = -31\%$ (⁴⁴Ca/⁴⁰Canormalized) and $\delta^{50}Ti = -21\%$ (⁴⁶Ti/⁴⁸Ti-normalized) (Fig. 1; also shown are literature Ca-Ti data for other HAL-type inclusions). Such isotopic signatures confirm the inference that HIDALGO belongs to the FUN inclusion family.

Large radiogenic ¹⁰B excesses are found to correlate well with ⁹Be/¹¹B in HIDALGO, suggesting in-situ decay of live ¹⁰Be. The slope of the isochron corresponds to initial ¹⁰Be/⁹Be = $(7.96\pm0.93)\times10^{-4}$ with an intercept of ¹⁰B/¹¹B = 0.2508 (χ_r^2 =0.94; Fig. 2). This ratio is ~2–3 times higher than what was recorded in other FUN inclusions but comparable to that normally found in CAIs from CV3/CO3 chondrites [5]. In contrast, no resolved radiogenic ⁴¹K excesses were found, even for ⁴⁰Ca/³⁹K ratios exceeding 3 × 10⁶ (Fig. 3), indicating an absence of short-lived ⁴¹Ca during the final formation of HIDALGO.

The REE abundances of HIDALGO are characterized by a pronounced Ce depletion $(0.01 \times CI)$ in otherwise relatively uniform REE concentrations (~10×CI). This pattern resembles those in other HAL-type inclusions [2,3].

Discussion: According to the nearly pure hibonite stoichiometry and fractionated oxygen isotopes, we inferred that HIDALGO was likely of a distillation origin [2-4]. The new Ca and Ti isotope data provide further support for this explanation. The Ca and Ti mass fractionations, which are large and of almost equal magnitude, are comparable to the fractionation results derived from evaporation of chondritic starting material [3]. This suggests that HIDALGO could have formed from a precursor of chondritic composition that lost a large amount of major elements during distillation. This is consistent with the extremely low Mg abundance in HIDALGO, as this element may have been essentially completely lost. The large Ce depletion suggests that the distillation process HIDALGO experienced took place in a highly oxidizing condition.

The new data also help constrain the chronology of HIDALGO (or its precursor) formation and the origins and distributions of ¹⁰Be, ²⁶Al, and ⁴¹Ca in the solar nebula. The low ²⁶Al/²⁷Al ratio of $(1.50\pm0.02)\times10^{-5}$, if understood in the context of the radioactive decay of homogeneously distributed ²⁶Al in the solar nebula, would mean that the final crystallization of HIDALGO

occurred ~1.3 Myr after the assumed peak formation stage of cm-sized CAIs at ${}^{26}\text{Al}/{}^{27}\text{Al} = 5.2 \times 10^{-5}$. The 1.3 Myr time would also allow ${}^{41}\text{Ca}$ to completely decay away (hence no ${}^{41}\text{K}$ excesses in HIDALGO), even though the true initial abundances and distributions of ${}^{41}\text{Ca}$ in the solar nebula still remain a subject of further study [6]. However, the major issue has always been the need to preserve the carriers of anomalous $\delta^{48}\text{Ca}$ and $\delta^{50}\text{Ti}$ in the nebula for >1 Myr.

Alternatively, HIDALGO could have formed when ²⁶Al was being homogenized in the solar nebula. The absence of ⁴¹Ca at that time could be explained by invoking the decoupled arrival of ²⁶Al and ⁴¹Ca from a massive star: ²⁶Al would have arrived in the forming solar system before ⁴¹Ca due to the nature of nucleosynthesis and thus would have been subjected to earlier and more thorough mixing than ⁴¹Ca [6]. This scenario could also explain why FUN inclusions carry more variable isotope anomalies in δ^{48} Ca and δ^{50} Ti compared to normal CAIs that incorporated uniformly distributed ²⁶Al.

Understanding the meaning of ${}^{10}\text{Be}/{}^{9}\text{Be} =$ $(7.96\pm0.93)\times10^{-4}$ in HIDALGO requires discussions of the origin of ¹⁰Be. One favored hypothesis is that ¹⁰Be was produced in the early Solar System by charged particle irradiation of dust and/or gas (e.g., [7]), and thus would be too spatially heterogeneous to be an early solar system chronometer. Irradiation can readily produce ¹⁰Be/⁹Be at the level comparable to that seen in HIDALGO but in the meantime would co-produce ${}^{41}\text{Ca}/{}^{40}\text{Ca} \ge 5 \times 10^{-8}$ (the exact amount depends strongly on model details; e.g., [7]). The absence of fossil records of ⁴¹Ca implies that the observed ¹⁰Be/9Be ratio in HIDALGO could not have resulted from irradiation of the inclusion directly, or of the gas reservoir at the time of HIDALGO formation. Rather, irradiation must have occurred to HIDALGO's precursor or to the gas ≥ 0.6 Myr before its final formation (allowing ⁴¹Ca to become extinct), suggesting that the ¹⁰Be/9Be ratio in the HIDALGO-forming region could have been $\geq 1.1 \times 10^{-3}$. In the case of late formation of HIDALGO, an irradiation origin of ¹⁰Be would mean that there existed a reservoir in the solar nebula with ${}^{10}\text{Be}/{}^{9}\text{Be} > 1.1 \times 10^{-3}$ when ${}^{26}\text{Al}/{}^{27}\text{Al} \ge 2.6 \times 10^{-5}$ (i.e., ≤ 0.7 Myr after ${}^{26}\text{Al}/{}^{27}\text{Al} = 5.2 \times 10^{-5}$). In contrast, if the final crystallization of HIDALGO took place early, it would require that irradiation had started 0.6 Myr before ²⁶Al homogeneity was attained. Since spallogenic ¹⁰Be would be expected to vary spatially, the lower ¹⁰Be/⁹Be in other FUN inclusions would also be explained.

Another possible source for ¹⁰Be is the Sun's parental molecular cloud. Inheritance would lead to a homogeneous distribution of ¹⁰Be in the solar system and allow it to be used for chronometry (e.g., [5]). If the

low ²⁶Al/²⁷Al in HIDALGO resulted from late formation, the ¹⁰Be/9Be ratio in the HIDALGO-forming reservoir when ${}^{26}\text{Al}/{}^{27}\text{Al} = 5.2 \times 10^{-5}$ should be 1.6×10^{-3} , much higher than the value recorded by >80% of the normal CV3/CO3-chondrite CAIs [5]. This suggests that either HIDALGO's precursor (or forming reservoir) had incorporated extra ¹⁰Be through additional irradiation prior to the final formation of HIDALGO (see above), or the ¹⁰Be homogeneity is an incorrect assumption. If HIDALGO was an earlyformed inclusion, the fact that it and normal CV3/CO3 CAIs have the same ¹⁰Be/⁹Be but different ²⁶Al/²⁷Al may imply fast mixing of ²⁶Al. However, the ¹⁰Be/⁹Be ratios found in other FUN CAIs cannot be understood chronologically and thus require other interpretations. References: [1] Wasserburg et al. 1977, GRL, 4, 299 [2] Ireland et al. 1992, GCA, 56, 2503 [3] Floss et al. 1996, GCA, 60, 1975 [4] Liu et al. (2021) Met. Soc. Meeting, #6084 (abstr.). [5] Dunham et al. 2021, GCA, 324, 194 [6] Liu 2017, GCA, 201, 123 [7] Gounelle et al. 2001 ApJ, 548, 1051

Fig. 3. The K isotopic compositions of HIDALGO. ${}^{41}Ca/{}^{40}Ca = 4.2 \times 10^{-9}$ [6] is shown for reference.