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SLS Core Stage, BHS and Green Run

* Focus here is the Core Stage base heat
shield Green Run environments & TPS
observations

Base Heat Shie

\ /«\\ﬂ conel Foil -

Engine
Blanket

FORWARD SKIRT

LIQUID OXYGEN

(]
X
2
[ I
wi
=
z
N

LIQUID HYDROGEN

o
o
¥

At KSC Pad 39B

ENGINE SECTION




Base Heat Shield (BHS) DFI

AT

10 DFl Islands were installed to determine
BHS aerothermal environments for ascent
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GR HF1 Pre and Post-Test Observations

Flight CAPU Ports + Not flight configuration Localized tape adhesive and TPS cork burning observed

2.4" RT455 at CAPU Exhaust Ports * Applled _NeXOIVe ReﬂeCf!ve TO pe
over entire base heat shield

B oon Led to localized tape removal and BHS charring

0.7” Cork Ablative Materials

(can handle high heating)
. 1.25” RT455

1.25” S180 Foam - NOTAN ABLATOR
Used for Ease of Removal
Post GR

T+67.6 s
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GR HF1 BHS Aerothermal Reconstruction

* Locadlized tape lPIumegases (T~2000 K)
adhesive and TPS cork $
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GR HF1 BHS Aerothermal Reconstruction

* No burning event observed between E2/E3 - Negative base pressure and convective heating

observed between E2/E3 shows flow entrainment
* Localized TPS cork convective cooling effects

observed near the CAPU ports between E2/E3
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GR HF1 BHS Aerothermal Reconstruction

Heat Flux (BFS)
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Dr. Chris Morris (EV33)

IR imagery,
convective
heating and
base pressure
data and CFD
analysis show
that in the low
CAPU flow state,
H, flame
attachment to
the BHS in the
E1/E4 region
due to
freestream flow
obstruction

Test fixture may
have led to the
flow obstruction



Film Coefficient (BTU/ft2-sec-F

Convective Heat Flux (BFS)

Mitigation Approaches for GR HF2
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Reference: Feikema, Chen & Driscoll, Combustion & Flame (1991)

Turns, S.R. Intfroduction to Combustion (2012)
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Theoretical analysis done to determine CAPU design

GR HF1 reconstructed data used to size sacrificial TPS
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GR HF2 Pre and Post-Test Observations

24" CAPU Extensions (x4)

I

Not flight configuration

Applied LT80 Reflective Tape

Mitigations Plans Implemented based on
HF1 Lessons Learned

. 1” Flight Cork

0.7" Flight Cork No Reflective Tape
B 125 Fight RT455 Exposed RT-455

1” Additional Cork on Top of Flight (2” total)

0.5” Cork on Top of S180

. 1” Cork on Top of RT455

wwiv.ilasa.yuvioio

P50 Cork'C




GR HF2 BHS Aerothermal Reconstruction

Heat Flux (BFS)
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Upon reaching the cork
ignition heat load, large
increase in total and
convective heating observed

Cork combustion first occurred
near the CAPU poris between
E1/E4 due to the exposed TPS
and then large-scale flames
propagated through most of
the heat shield

Cork combustion supported by
high convective heating and
high gas temperatures

Radiation nominal and close
to prediction prior to cork
ignition, but not measured
during cork combustion due to
soot covering the radiometers



GR HF2 BHS Aerothermal Reconstruction

- Large-scale BHS deflagration leads to increases

. . i + Large-scale BHS deflagration leads to up to an
in base pressure and convective heating

order of magnitude increase in convective
heating over the whole heat shield from nominal

GR HF2 Base CAPU Line GR HF2 Base SRB Line

- (unknown impact to radiation)
Good agreement between w—TOT033

el oS SEEEEE & [ base pressure and convective 1 GR HF2 Convection Along CAPU Line GR HF2 Radiation Along CAPU Line
e uw heating rates T T
) @ |
S < $ NOM
3 3
E _LL_, Conyective Heating } 1
© 3]
T 2 |
2 LS 3 P %
g 8 | a { @
c z x x
5 [ 8 2 G t

’ v - E 3

Convective Cooling |===TOT034 S L :OEJ %
0 100 200 ' . ' -

300 400 500 0

100 200 300 400 500 r 1 -+
Time (sec) Time (sec) . }
—AD-P027| | ‘ ' T ' 0 { § NOM r
e AD-P034 § FIRE |
-10 -5 0 5 10 -10 -5 0 5 10
Radius (ft) Radius (ft)
fr— Recirculation - :
2 GR HF2 Convection Along SRB Line GR HF2 Radiation Along SRB Line
L § NOM| ¢ NOM||
" § FIRE
o ] |
L [V
Q Q
Entrainment Entrainment < x
i N . | A i ] i =) i
0 100 200 300 400 500 0 100 200 300 400 500 e w { {
Time (sec) Time (sec) ‘g ®
S PS T T
Burning Burning | {
: bt
15 -10 -5 0 5 10 -15 -10 -5 0 5 10
www.nasa.gov/sls Radius (ft) Radius (ft)




Heat Flux (BFS)

Heat Flux (BFS)

GR HF2 BHS Aerothermal Reconstruction
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CAPU extensions have shown to substantially decrease local convection as

observed from DFl datq, IR imagery data and as predicted by engineering and
computational analysis (performed as designed)

Radiation environments were still high and led to P50 cork TPS combustion
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Based on IR imagery data and DFI convective heating environments,
CAPU extensions performed as designed

HF2 (CAPU Extension Design & Other Mitigation Plans)

T+11.2s

Hi-Flow J
H2 I,r;—:(,lk
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T+56.9 s

All IR/VIS imagery provided by Darrell Gaddy (ER43)




BHS PGR Hedating Models

« BHS has multiple sources of fuel,
oxidizer and ignition for burning

« Applied methods in deriving
equations and constraints for the
base heat shield post-Green Run
(PGR) heating models

SLS base has many
sources of fuel,
oxidizer and ignition

for burning L
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BHS PGR Models

BHS PGR heating models
show a significant increase
in both convective heating
(red line) and total heating
(green line) as compared to
the baseline SLS-SPEC
models (black line) prior to
T+103 s due to P50 cork
combustion

7 DFl island GR test data
reconstruction was
incorporated to all the body
points in the BHS either
through zonal or symmetry
approximations

(sLs
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ARO1 BHS TPS“Elight Redesign

CS BHS TPS redesign required an increase in TPS thickness anywhere from 140% to 200% from the
baseline due to the updated PGR heating models

Required full removal and reapplication of new TPS prior to launch

CS BHS Configuration- PGR Model
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www.nasa.gov/sls

225°

1 180°

Legend
1.00” Hyp/P50 cork area

1.312” Hyp/P50 cork area
0.700” Hyp/P50 cork area

315°

45°

CS BHS Configuration— SPEC Model

270°

0.70“ Cork

0.70" Cork

e,

90°

225°

180°



- Completed base heat shield environment reconstruction and TPS
observations for both GR HF1 and HF2

- Quantified critical Hypalon/P50 cork TPS combustion environments from GR
HF1 and HF2 that led to the development of PGR models

- Completed mitigation approach analysis that both protected the Stage
from heat shield burn through and showed optimal performance for GR HF2

- Updated PGR base heating models led to significantly higher heating than
the baseline SPEC models which would result in a heat shield burn-through if
no TPS redesign occurred

- BHS TPS redesign occurred about 1 year prior to launch
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