

Agenda

- Overview
- Development Testing: Lab Environments
- Green Run Testing
 - -Ambient Modal
 - Ambient Vectoring
 - Hot Fire
- Discussion of Results

Overview

- The SLS Core Stage (CS) TVC system is a mix of heritage and new hardware
 - heritage Shuttle TVC actuators, RS-25 engine, gimbal bearing
 - Redesigned avionics and attached to a new vehicle structure
- SLS Vehicle Flight Control imposed key CS TVC requirements
 - frequency & step response requirements: flight control command to engine angle
 - Minimum [load] resonance frequency → observable in piston frequency response
- Contractor TVC verification was largely through analysis with limited lab-based input
- NASA flight control & TVC collaborated with contractor to ensure proper instrumentation and testing was conducted prior to flight: nozzle instrumentation & integrated TVC tests
- Lab and Green Run testing was critical to reveal unmodeled behaviors and provide essential data for model updates and Artemis I flight confidence

 Green run testing showed violations both in ambient and hot fire conditions and departure from pre-test models

Early Development Testing: MSFC 2-axis Inertial Load Simulator (ILS) Lab

- MSFC building 4205 facility built ILS to enable core stage TVC subsystem testing, nextdoor to hardware-in-the-loop lab
 - Flight actuators, flight gimbal bearing
 - Backup structure and torsion rods simulate structural and engine duct "load" stiffnesses
 - Pendulum simulates engine pitch/yaw inertia
 - Facility provides hydraulics or flight hydrogen-driven power unit
 - Heritage analog or actual flight avionics
- Means to test efficacy of instrumentation and vectoring command profiles prior to Green Run
 - Lab @ 1000 Hz, Flight telemetry @ 50 Hz
 - [lab] String potentiometer (string pot) based nozzle instrumentation
 - [lab] Linear encoder & [flight] actuator piston position
 - Command path servo currents [flight]
 - [lab] load cell data

Early Development Testing: MSFC 2-axis ILS 2017 Results

NASA

- Shuttle MPTA Type III (same as flown on Artemis I) actuator testing in 2017 showed good comparison to linear planar simplex TVC models
 - Discrete sine testing using Green Run vectoring approach
- Piston-notch based identification of load resonance,
 - Determination of load stiffness, KL from knowledge of load inertia, Jn moment arm, R, (negligible influence of torsion rod stiffness, Kn)
- String pot length-based determination of engine/nozzle position

MSFC 2-axis ILS Results: SubSystem Test Article (SSTA)

- SSTA testing was a stage contractor-performed test primarily to test the hydrogendriven Core Auxiliary Power Unit (CAPU) hydraulic supply to the actuators
- SSTA setup (Fall 2020) changed from prior ILS 2017 testing
 - Type III Shuttle MPTA actuators → Type II Shuttle actuators (different than SLS flight)
 - Command avionics TVC actuator controller (TAC) used
- Verified the efficacy of the Green Run Profile with Flight Command Avionics
 - Offset in response gain due to TVC actuator controller (TAC)

Stennis Space Center (SSC) "TC-5" Engine Section Modal Test

- Engine Section modal test added after Crane-Hung empty stage modal test identification of engine-pendulum modes were inconclusive
 - Accelerometers placed on engine and thrust structure
 - Mid-stroke locks placed on actuators (bypasses hydraulics) as in crane test
 - Lowest freq engine pendulum modes same as crane hung → lower than FEM
- Unlocked, powered actuator testing showed observation of engine pendulum modes during 20 minutes of uncommanded quiescent hold period → lowest mode @ 6.1Hz → closure of min frequency requirement
 - Unexpected result, expected TVC closed loop to damp modes
 - assumes that actuators are servo/powerspool deadband as piston response didn't fall out of quant and piston quant < assumed deadband
- Observation of "total resonance" via engine pendulum mode assumes single load spring, KL, is sufficient to represent structure
 - Later found not to be a suitable assumption for SLS Core Stage
 - Many modes in engine section influence equivalent static stiffness KL → single freq observation in modal test cannot determine KL

$$\omega_L > \omega_T = \sqrt{\frac{K_T R^2 + K_n}{J_n}}$$

$$\frac{1}{K_T} = \frac{1}{K_L} + \frac{1}{K_{\text{oil}}}.$$

NASA MSFC added accelerometer instrumentation and performed modal ID

SSC TC-5: First Vectoring Test on Integrated Vehicle

- TC-5 was only originally planned TVC vectoring test prior to Green Run Hot Fire
 - Simple command sequence of freqs [0.1 0.2 1 3] Hz and steps [0.25] deg, same as employed during Shuttle pre-flight checkouts
- String pot measurements were available but were not usable
 - Data rate insufficient during steps (test coordination oops)
 - End point knowledge needed higher accuracy to determine angle from
 - string length measurement
- DC offset observed in commanded currents and piston responses
- Piston frequency response showed unexpected peaking at 3Hz
- Piston step response showed more overshoot than the model
 - Cause could not be determined without further testing

Overshoot and ringing corroborated by video feed and accelerometer

Frequency (Hz)

step response: all actuators

0.3

0.2 angle (deg)

Frequency (Hz)

TC5 2020 09 02 0000 FRT

current CMD

current sens

piston +

SSC TC-7: Extension of Ambient Vectoring Test

- TC-7 vectoring test was added upon request of flight control and NASA TVC teams
 - Survey of string pot end points and string pots recorded at full data rate
 - 12 camera visual data system corroborated string pot angle reconstruction
 - Extended frequency response showed primary reason for the differences: Load resonance was much lower than pre-test modeling
 change in load stiffness

Green Run Hot Fire: Frequency & Step Response Test

- Green Run Hot Fire: frequency & step commands over 130 seconds during full throttle periods
 - Pitch and yaw performed simultaneously with disparate frequency bins to avoid cross talk
 - No net torques: coordinated motion to vector in the null space
 - Commanding beyond typ. software rate limit to maximize SNR given actual TVC response for higher freqs
 - 0.4 deg in low freq (~0.4-6.25), 0.8 deg in high (~7-14Hz)
 - Three step amplitudes: 0.6, 0.4, 0.2 deg: yaw, then pitch

All commands were properly sent and instrumentation was

captured as intended

Low Frequency Profile 0.4 deg Z-T-P		High Frequency Profile 0.8 deg Z-T-P	
Channel 1 (Hz)	Channel 2 (Hz)	Channel 1 (Hz)	Channel 2 (Hz)
0.4032	7.0-14.0 Hz increasing	7.0000	0.40-6.25 Hz increasing
0.5682		7.7286	
0.8333		8.5331	
1.1364		9.4213	
1.7857		10.4020	
2.5000		11.4847	
4.1667		12.6801	
6.2500		14.0000	

Green Run Hot Fire: Results

- Response during hot fire is significantly different from TC-7 ambient Response
 - Much more damped step responses → thrust loaded gimbal exhibits friction
 - Unexpected and not observed during Shuttle MPTA testing: Load resonance frequency shift (piston notch)
- Responses do not follow linear model, even after load stiffness kind of adjustment to align with notch
- String pot derived engine response provides trends but not absolute position due to sensitivity and uncertainty in geometric config
 - Friction would result in more pronounced DC gain effect in engine

Discussion of Green Run Results

NASA

- Post test correlation and model activities determined that three key factors were responsible for the results at Green Run
 - TVC command avionics exhibited nonlinear amplitude dependent scale factor →
 DC offset
 - Gimbal friction is present when gimbal is loaded
 - More advanced friction models than simple coulomb were required to sufficiently model the Green Run responses
 - Shift in load resonance: apparent load stiffness change due to thrust loaded gimbal bearing & amplitude-dependent nonlinear effects
- Long standing assumption of the MSFC flight control and TVC team was that gimbal friction could be neglected was reversed
- Shuttle MPTA testing showed similar evidence of gimbal friction in available responses
 - Hot fire TVC ramp testing measured coulomb effects
 - No measurement of engine was available but piston data showed damped behaviors
 - Shuttle flight never exhibited Limit Cycle Oscillation characteristic of gimbal frictional effects → friction is negligible
- Step & frequency response deviations were accepted for Artemis I flight by determining bounding estimate for possible friction induced LCO:
 - Hot fire anchored friction coupled with softer observed ambient load stiffness
- Green run provided critical data to SLS flight control engineers to update knowledge, models, and confidently proceed to Artemis I first flight

