

Agenda

- Overview
- TVC Test Activities and Findings
- Artemis I Flight Rationale: Approach
- Post Flight Rationale Activities:
 - Modeling, Evaluation and Path Forward
- Flight and Preliminary Post Flight

Overview

- The SLS Core Stage (CS) TVC system is a mix of heritage and new hardware
 - heritage Shuttle TVC actuators, RS-25 engine, gimbal bearing
 - Redesigned avionics and attached to a new vehicle structure
- SLS Vehicle Flight Control imposed CS TVC frequency & step response requirements: command to engine angle
 - Green run testing showed violations both in ambient and hot fire conditions and departure from pre-test models
- SLS flight control determined that friction, load stiffness, and amplitude dependent nonlinearities dominated physical cause of differences
- Flight Rationale for Artemis I based on prediction of in-flight Limit Cycle Oscillation (LCO)
- Integrated team refined understanding of friction & stiffness
- Flight Data showed some evidence of small LCO

RS-25 Shuttle Heritage Engine & Gimbal Bearing

TVC Frea

Response Requirement

TVC Model Updates after Green Run Testing: Friction

- Effects of gimbal Friction clearly observed during SLS hot fire [1]
- Shuttle observed friction in Main Propulsion Test Article (MPTA) hot fire vectoring, but an LCO never appeared in flight [8]
 - Simple models of gimbal friction appear in historical models
- Prior to Green Run SLS models never included gimbal friction
 - Longstanding assumption that it could be neglected
- After Green Run, friction models included using multiple approaches [2]
 - Simple: Keene & Jeff Brouwer
 - implementations
 - Dahl & LuGre
 - Modified LuGre

TVC Model Updates after Green Run: Stiffness

- Green Run ambient & Hot Fire showed different load resonance frequency
 - Observed via notch in command to piston frequency response
- Simplex Model lumps all stiffness outside the actuator control loop into a load stiffness, KL
 - KL → all compliances in path: engine, gimbal, clevises, thrust structure
- KL can be determined from load resonance
 - Moment arm, R, Engine Inertia, Jn are known and duct stiffnesses, Kn negligible
- Bounding analysis for flight rationale assumes the softer structure
 - Conservative prediction of LCO
- Cause for change in stiffness eventually determined
 - Nonlinearities associated with loaded gimbal and small amplitude actuator behavior

Load resonance derived from actuator command to piston notch frequency

TVC Model Updates after Green Run: Avionics Command Path Gain

NASA

- SLS TVC Actuator Controller (TAC) commands Core Stage TVC
 - New digital component designed to mimic Shuttle's analog box,
 Shuttle Ascent Thrust Vector Controller (ATVC)
- MSFC 2-axis Inertial Load Simulator (ILS) & Green Run testing showed DC offset
- Actuator vendor confirmed presence of scale factor nonlinearity in commanded current
 - due to crossover distortion in servo-amplifier design
- Hardware in the Loop Systems Integration Lab (SIL)
 Frequency Response Testing confirmed behavior
 - Also discovered FSW truncation operation in command quantization that can yield similar gain decrease
- Later SLS missions will include updates to FSW & TAC
- Command gain offset ~ -1dB for typical operating signals
 - Included in analysis for LCO predictions

Command to servo current shows DC offset during Ambient GR Testing

Gimbal Friction Degrades TVC Response, Produces Flight Control LCO

NASA

- Gimbal friction results in degradation of the TVC piston and engine responses
- This nonlinearity can produce a Limit Cycle Oscillation (LCO) in Vehicle Flight Control System Loop

Amplitude at which TVC gain & phase causes
 FCS open loop (OL) to reach [0dB,-180deg]
 will indicate LCO amplitude

Bounding LCO Predictions for Artemis I Flight Rationale

- TVC Step and Frequency Response departures accepted for for Artemis I
- Artemis I flight rationale based on acceptability of LCO prediction
- Simplex model adjustments bound the solution
 - Variety of friction models: Simple (Keene/Brouwer), Dahl, LuGre, tuned based on Green Run & Shuttle MPTA
 - Utilized Range of stiffnesses observed during Green Run testing
 - Included the -1dB TAC command gain effect
- Time domain analysis shows LCO at small amplitude, near FCS crossover frequency
 - Core flight only, boost flight shares authority with Solid Rocket Booster (SRB) TVC
- Not additive with Programmed Test § Input periods (PTIs)
 - Amplitude of PTI larger than LCO amplitude
- Simple models show more distorted behavior, larger LCO
- Dahl/LuGre show smoother, smaller E
 LCO
- Higher load stiffness reduces propensity for LCO
 - eliminates LCO with Dahl & LuGre

Time Domain Monte Carlo LCO Predictions Consistent with Nominal

- Monte Carlo runs performed
 - Baseline, pre-test model, no friction
 - "Jeff" Brouwer implementation of simple coulomb friction, KL @ low stiffness
 - Dahl friction, KL @ low stiffness
 - Dahl friction, KL @ high stiffness
- LCOs from Monte Carlo predictions show consistency with the nominal, as expected
 - Dispersions in vehicle parameters and environment do not change fundamental LCO result, being driven by friction and stiffness in the TVC model
- Simple Coulomb model + soft structure produces largest LCO
- Dahl model + stiff structure → no LCO

- The SLS Vehicle Loads & Dynamics group incorporated the additional LCO content in core stage flight and found it to be acceptable
 - Negligible impact due to small amplitude, low frequency, and only present during quiescent periods
- All other disciplines and elements accepted the potential for LCO in Artemis I first flight

Frequency Domain Analysis of Softer Structure

- An independent evaluation of the load stiffness was conducted using linear frequency domain toolset
 - Setting KL to lowest observed value from GR ambient testing and comparing against baseline high stiffness assumption prior to Green Run
- Objective 1: ensure vehicle flight control stability margins and frequency response is not significantly altered by the presence of softer structure
 - Rigid Body margins were not significantly affected with assumption of softer load stiffness
- Objective 2: ensure no significant difference in higher frequency flex mode response
 - This analysis was of particular interested as global bending modes > ~6Hz are advantageously coupled with the core stage TVC system via inertial-structural interaction (Tail-Wag-Dog (TWD) and Dog-Wag-Tail (DWT) flex forces) [12]
- Servo-elastic torque break (open loop cut at DWT-flex torque interface) used to evaluate KL drop
 - beneficial phase stabilized effect of structural modes the TVC is retained
- Overall vehicle flex margins maintained throughout flight across full load stiffness range

Developments after Acceptance of Flight Rationale

- NASA
- Acceptability of flight control stability analysis and predictions of Bounding LCO \rightarrow Artemis I Flight Rationale
- Following development of flight rationale, a cross-disciplinary team was formed with loads & dynamics, TVC, and flight control engineers along with core stage & engine contractors
 - To improve friction modeling
 - To explain difference in stiffness between hot fire and ambient
 - To determine acceptability of and/or mitigations for Core Stage TVC on future SLS vehicles

Advances in Understanding:

- Flight expected to have higher stiffness as was observed in Green Run
 - Gimbal stiffness under loaded conditions
 - Small loads and command amplitudes during ambient shows
- TAOS (Two Actuator Operational Simulation)
 - Flex body effects of the gimbal required modeling each half as a separate stiffness in addition to the typical single-spring load stiffness
 - Vector model of gimbal joint and friction torques
 - Advanced model of friction developed "modified LuGre" that best fit Green Run
- TAOS fidelity with Green Run Hot Fire anchored suggested no LCO would be present in flight

Artemis 1 Flight Response

NASA

- Artemis I flight on Nov 16, 2022: FCS was close to nominal predictions
- Some small TVC amplitude oscillation present
 - Not as clearly persistent as pre-flight LCO predictions but within bounding pre-flight predictions
- Program Test Inputs (PTI) response of FCS open loop show evidence of decreased gain effect that could be considered consistent with modeled gimbal friction effects
 - Friction has worse effect on engine than piston → engine necessarily shows up in PTI FCS OL
 - Green Run Hot fire could not determine absolute gain of engine response
- Post Flight Prelim Evaluation: gimbal friction appears larger than at Green Run, but still a small amplitude effect
 - Green run simultaneous high and low frequency commanding produces dither
 - Higher acoustically-induced vibratory environments at Green Run lowers friction
 - Exoatmospheric Flight thrust larger than sea level Green Run Hot fire test

Concluding Remarks

- Green Run testing was essential to uncover critical knowledge about the response of Core Stage TVC System in various conditions
- Test anchored models confidently certified FCS for first flight Artemis I
- First flight of SLS provided confirmation of Green Run findings showing responses consistent with small amplitude LCO caused by gimbal friction
- In-flight PTI excitations reveal key information about the SLS response
- This foundation of data and experience will help reduce cost, minimize risk, and maximize mission capability as NASA shapes the SLS generation of heavy-lift launch vehicles.

c/o NASA fb

References

- NASA
- 1. Wall, J., Russell, C., Moore, R., Orr, J., Alaniz, A., Ryan, S., "Design, Instrumentation, and Data Analysis for the SLS Core Stage Green Run Test Series,", AAS-23-152, American Astronautical Society GN&C Conference, Feb 2-8, 2023.
- 2. Russell, C., Brouwer, J., Ryan, S., and Stepp, N. "Gimbal Bearing Friction in the Core Stage TVC System,", AAS -23-154, American Astronautical Society GN&C Conference, Feb 2-8, 2023.
- 3. Brouwer, J., "Notes on the Titan IV Coulomb Friction Modelling Approach," DRAFT 2, Troy 7, Inc. January 31, 2022
- 4. Barrows, T., "Keene Model of Coulomb Friction," Draper Memo, April 24, 2017
- 5. Dahl, P. R., "A Solid Friction Model," Space and Missile Systems Organization, TR-77-131, 1977.
- 6. Olsson, H., Åström K.J., Canudas de Wit, C., Gäfvert, M., and Lischinksky, P., "Friction Models and Friction Compensation," European Journal of Control, vol. 4, no. 3, pp. 176-195, 1997.
- 7. Moore, R. et al. "Structural Dynamics Observations in Space Launch System Green Run Hot Fire Testing,", AAS -23-156, American Astronautical Society GN&C Conference, Feb 2-8, 2023.
- 8. McDermott, et al., "Space Shuttle Ascent Flight Control Actuation Subsystem Data Book," SSD93D0595, Rockwell, September 30, 1993.
- 9. Gerstner, B. A., "MPT Engineering Analysis Second Interim Report Static Firings S/F-5A Through S/F-12" Rockwell Report STS 81-0254, May 1981.
- 10. Orr J., et al., "Advanced Modeling of Control-Structure Interaction in Thrust Vector Control Systems," AAS -23-157, American Astronautical Society GN&C Conference, Feb 2-8, 2023.
- 11. Thompson Z., "A Mathematical Model for a Space Vehicle Thrust Vector Control System," MS Thesis, University of Tennessee, NASA Report 67-34613, Aug 24, 1967.,
- 12. Orr, J., Wall, J., and Barrows, T., "Simulation-Based Analysis and Prediction of Thrust Vector Servoelastic Coupling," AAS 20-091, American Astronautical Society Guidance, Navigation, and Control Conference, 2020. "Space Launch System Thrust Vector Servoelastic (TVSE) Resonance" Aerospace Control and Guidance Systems Committee (ACGSC) Meeting, October 17, 2019
- 13. Brandon, J. et al, "Ares-I-X Stability and Control Flight Test: Analysis and Plans" AIAA Space Conference and Exposition, San Diego, CA, September 9, 2008.