

Full Scale Crash Testing at NASA Langley Research Center's Landing and Impact Research Facility with Application Toward Electric Vertical Take off and Landing (eVTOL) Crashworthiness

ASTM Powerplant meeting February 3 2023 Justin Littell Ph.D. NASA Langley Research Center Structural Dynamics Branch (D322)

NASA Full Scale Crash Testing / Research Programs (not a complete list)

NASA

- Metallic General Aviation (GA) Aircraft Tests and Analysis
 - 1970-1980s Historical
 - 2015 Emergency Locator Transmitter Survivability and Reliability (ELTSAR) Project
- Transport Category Crashworthiness
 - Boeing 737 fuselage section drop tests
 - 2019 Fokker F28 full scale crash test
- Composite General Aviation Aircraft Tests
 - 1994 Lear Fan
 - Beech Starship
 - Lancair
- Composite Energy Absorbing (EA) evaluations
 - 2009-2010 MD-500 Tests with Deployable Energy Absorber (DEA) Development
 - Transport Rotorcraft Airframe Crash Testbed
- Electric Vertical Take off and Landing (eVTOL)
 - 2022 NASA Lift+Cruise
- Discussion on test data acquisition and usage, analysis methodology, and knowledge obtained from conducting full scale crash testing

Landing and Impact Research Facility (LandIR)

- Subscale & full-scale landing/impact dynamics test facility
- Landing/impacts onto water, concrete, or soil
- Free flight conditions can be simulated by releasing swing cables just before impact. *i.e. pendulum swing*

Outdoor 70' and 50' Drop Tower

Indoor 30' and 15' drop tower

- In 1974, a cooperative research program was initiated between NASA, the FAA, and the GA industry to assess and improve the crash safety of small aircraft.
- Objectives of the research program were to determine:
 - Dynamic responses of the airframe, seats, and occupants
 - Effect of flight parameters at impact on the magnitude and pattern of structural damage
 - The failure modes of seats and occupant restraint systems
 - The impact loads imposed on the occupants
- 33 crash tests were performed between 1974 1983 on Piper Navajos, Aztecs, and Cherokees, along with Cessna 172s

Historical GA Crash Test Video

TABLE I.- SUMMARY OF DATA FROM CONTROLLED CRASH TESTS OF AIRPLANES

(a) Experimental and calculated normal pulse parameters

Test	Flight-path angle, γ, deg	Pitch angle, θ, deg	Flight-path velocity, V _{fp} , m/sec	Experimental normal pulse parameters				Calculated normal pulse parameters	
				Maximum deceleration, ^Ž a,max [,] g units	Pulse duration, At, sec	Velocity change, ^V _Z , m/sec	Impulse, ^Z a,max At, sec	Impulse, Ž _{a,max} Δt, sec	Velocity change, ∆V _Z , m/sec
2	-16	-12	27	20	0.089	8.5	1.78	1.49	7.44
3	-18.75	-18	26.2	28	.05	8.74	1.40	1.63	8.42
4	-15	4	27	16	.102	8.5	1.63	1.42	6,99
5	-20.5	-19.5	26.1					1.76	9.14
6	-16	14	27	18	.110	10.4	1.98	1.47	7.44
7	-47.5	-47.25	28.6	20	0.174	20.73	3,48	2,92	21,1
8	-30	-31	27	18	.135	13	2.43	2.36	13.5
9	-16	-13	26.3					1.44	7.25
10	-18	-14	27.8					1.70	8.59
11	-31	-27	25	12	.1 32	10	1.58	2.34	12.87
12	-15	9	25	12	0.149	9.5	1,79	1.30	6,47
13	-29	-26	25	27	.049	13	1.32	2,22	12.12
14	-16.75	-11.75	32.7					1.88	9.42
15	-18	-12	41	46	.064	17	2,94	2.53	12.67
16	~15	-4	40	46	.054	15	2.48	2.11	10.35
17	-30	-38	40	42	0.097	19	4.07	3.22	20.0
18	-30	-31	27.9	27.2	.083	11.3	2.26	2.34	13.5
19	-15	-17.7	27	16	.12	10.6	1.92	1.38	6.99
20	-15.4	2	26.6	31	.057	9.1	1.77	1.43	6.99
21	- 30	-29.5	27.1	29.9	.096	12.3	2.87	2.39	13.5
FAA-1	-32	-30	25	21	0.120	11	2.52	2.34	13.24
FAA-2	-17	-13.5	23	7	.160	6	1.12	1.33	6.72
FAA-3	-34.5	-39	25.9	18	.12	13.8	2.2	2.33	14.7
FAA-4	-32	-34.5	25.3	18	.13	14.8	2.34	2.25	13.41

Carden, H. "Correlation and Assessment of Structural Airplane Crash data with Flight Parameters at Impact." NASA TP 2083. 1982

2015 – ELTSAR Project – Crash Tests of GA Aircraft

- Main ELTSAR Objective System level Emergency Locator Transmitter (ELT) tests (beacon, cabling, antennas, remote switches, and associated hardware) to examine ELT system functionality and survivability
- Added objective #1 Evaluate differing types of restraint systems
- Added objective #2 Evaluate stand-alone onboard crash data recorders

*total time on airframe

Littell, J.D. "Crash Test of Three Cessna 172 Aircraft at NASA Langley Research Center's Landing and Impact Research Facility." NASA TM-2015-218987. 2015

ELTSAR Test 2 – 2015 - Controlled Flight into Terrain (CFIT) Nose Down

- Flight Path Velocity = 74 ft/sec (44 kt)
- Horizontal Velocity = 68.6 ft/sec
- Vertical Velocity = 28.7 ft/sec
- Pitch Angle = 12.2 deg nose down
- https://www.youtube.com/watch?v=FsRwIr7RDkk

Airframe Response – Data Collection

Ω

0.1

Time after impact, sec

0.2

0.3

• Pilot head hitting yoke caused high accelerations, leading to high Head Injury Criteria (HIC) value (4241)

0.3

- Even with Co-Pilot restraint failing, y-harness was able to restrain Co-Pilot enough to avoid yoke, leading to low HIC value (274)
- Lumbar loads below established limit of 1,500 lb
- Pilot injurious crash

30

20

-10

-20^L

01

Time after impact, sec

0.2

Acceleration, g

- Vertical Acceleration
 - Triangular to trapezoidal in nature
 - Peaks of 23.2 g and 24.7 g for Pilot floor and DAS floor, respectively
- Horizontal Acceleration
 - Triangular in nature with peaks of 27.1, 39.5 and 19.9 g in Pilot Floor, DAS Floor and Tail
 - Uniform in shape
 - Large spike in DAS floor could be from any number of dynamic events onboard

ELTSAR Calibrated Model

• Airframe, soil, lifting hardware all modelled

Time, s

- Peak acceleration is over predicted, but timing is close
- Occupants and seats are not modelled

- Full-scale crash test data feeds into standards developments and minimum operational performance standards (MOPS)
 - RTCA DO204 RevB (2018)
 - Table 4.4 drop testing
 - Chapter 6
 - Full Spectrum Crashworthiness Criteria for Rotorcraft
- Full-scale crash test data feeds into design guides and other reference materials
 - Small Airplane Crashworthiness Design Guide
 - Aircraft Crash Survival Design Guide Vol iii

Fokker F28 Full Scale Crash Test - Purpose

- Evaluate transport category aircraft under dynamic conditions which includes a forward velocity
 - Evaluate missing factors from a pure vertical component test
- Evaluate advanced Anthropomorphic Test Devices (ATD's aka crash test dummies) for injury
- Evaluate experimental ATDs
- Generate data for computer modelling purposes

F-28 taxi into LaRC - 2001

Fokker F28 – 2019 - Full Scale Crash Test - Video

Composite GA with Crashworthiness

- Testing conducted under
 - NASA AGATE Advanced Crashworthiness Group
 - Aviation Safety Program

Lear Fan – 1994 - Composite Baseline

- Baseline configuration, ~7053 lb.
- Impact conditions: $V_v = 31$ ft/sec, $V_h = 81$ ft/sec, AoA = 0 degree
- 7 seats installed, both 9 g static and dynamic prototype
 - Dynamic limited loads, but still over 1,500
 lb. criteria
- Determine composite aircraft structural behavior for crash loading conditions and provide baseline for similar aircraft

- Limited amount of full-scale test data is available for the study of composite crashworthiness
- NASA Langley has tested composite airframes and components to generate test data
- eVTOL vehicles will incorporate new technologies such as all-composite fuselage design, electric powertrain systems and other novel features

Energy Absorber Development

- Limit dynamic loading transmitted to onboard occupants to tolerable levels
- Composites are used to save weight, however crashworthiness is mostly overlooked
 - How do the composites fail?
 - Many aircraft/parts are built from "black aluminum"
 - 1 for 1 replacement composite retrofit
 - Is a skin stringer (semi-monocoque) system the way to go?
- NASA Langley has evaluated many energy absorbing designs, ranging from seat crush tubes to subfloors to external devices
- Designs are be developed at subscale level, then tested in full-scale aircraft

Deployable Energy Absorber (DEA) for GA/Rotorcraft Concept

- Retrofit on existing small aircraft
- One example of crash energy management developed by NASA
- Kevlar honeycomb which can be folded and stowed

DEA Application – 2009/2010 - Full Scale MD-500 Tests

- Two identical tests conducted, one with and one without DEA
- DEA test conducted first, presented in reverse order here

DEA Performance

• 67% and 60% Peak load attenuation for pilot and co-pilot respectively when using the DEA

Electric Vertical Take-off and Landing (eVTOL) Full Scale Crash Testing - Goal

eVTOL Full Scale Crash Testing – Vehicle Development

- NASA Lift + Cruise (L+C) concept vehicle chosen for full-scale test campaign
- Test Article Specifications
 - Dimensions: 18'x6'x7'
 - Seats: 6 passenger
 - Wing Type: High wing
- Design features
 - Carbon fiber weave skin
 - Carbon fiber weave frames
 - Rigid overhead Wingbox area
 - Rigid and energy attenuating seats
 - In-house EA designs
 - Seat, Subfloor

eVTOL – L+C Energy Absorber Integration

- After development, a single accordion modular subfloor design was used in the subfloor region of the L+C
- Self supported cruciform geometry exhibited robust response to multi-axis loading
 - Similar crush response across impact energy and direction variations within subfloor designs
- Subfloor component integrated into vehicle structure

- Subfloor, in conjunction with energy absorbing seats, is intended to achieve loading levels below established limits

eVTOL - Lift + Cruise Full Scale Test – November 9, 2022

eVTOL - Finite Element Modeling (FEM)

- Evaluate capability of FEM to predict vehicle crash response
 - Validation of composite structural models through full scale test data
 - Validation of EA mechanisms under multi-axis integrated loading environment
- Demonstrate analytical techniques for defining "survivable" crash space
 - Expansion of crashworthiness through EA mechanisms
 - Validation through enveloping test selection
- Extend the full-scale crash matrix by simulating additional cases

- NASA has extensive history in GA aircraft crash testing and data from NASA testing is published
- Full scale test data guides regulations and provides industry knowledge
- NASA has tested composite historical composite aircraft and new designed eVTOL reference vehicles as a way to generate test data for evaluation
- NASA has designed and tested various internal and external energy absorbing systems as a way to limit occupant loads in a crash
- Crashworthiness involving a systems level approach must be able to address the features as a system
 - Subscale / individual tests give insight into systems behavior
 - Full scale dynamic test is necessary to verify system performance
- NASA Lift+Cruise eVTOL concept used to generate crash test data to inform development of eVTOL specific crashworthiness regulations
 - Utilize NASA's test capabilities and experience to conduct full-scale crash testing of generic eVTOL vehicle designs
- Numerical simulations supplement full scale data where applicable