
Blake LaFuente, Stephanie Booth, Rachel Dudukovich, Nadia Kortas,
Ethan Schweinsberg, and Brian Tomko
Glenn Research Center, Cleveland, Ohio

High-Rate Delay Tolerant Networking (HDTN) User Guide
Version 1.0

NASA/TM-20230000826

April 2023

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Blake LaFuente, Stephanie Booth, Rachel Dudukovich, Nadia Kortas,
Ethan Schweinsberg, and Brian Tomko
Glenn Research Center, Cleveland, Ohio

High-Rate Delay Tolerant Networking (HDTN) User Guide
Version 1.0

NASA/TM-20230000826

April 2023

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Level of Review: This material has been technically reviewed by technical management.

This report is available in electronic form at https://www.sti.nasa.gov/ and https://ntrs.nasa.gov/

Contents

1 High-rate Delay Tolerant Networking Overview 1

2 Architecture 1
2.1 Ingress . 2
2.2 Scheduler . 2
2.3 Storage . 2
2.4 Router . 3
2.5 Egress . 3
2.6 Web Interface . 3

3 Requirements 3
3.1 Tested Platforms . 3
3.2 Dependencies . 3

3.2.1 Linux Dependencies . 3
3.2.2 Windows Dependencies . 4

3.3 Known Issues . 4

4 Build HDTN 4
4.1 Notes on HDTN CMake . 4
4.2 Build HDTN on Linux . 5
4.3 Optional X86 Hardware Acceleration . 5
4.4 Storage Capacity Compilation Parameters . 6
4.5 Build HDTN on Windows with its Dependencies . 7

4.5.1 HDTN Developers: . 7
4.5.2 Setup Instructions for Developers Using Installed HDTN Libraries within their own

Projects . 9
4.6 Build HDTN on Raspberry Pi . 9

4.6.1 Debugging Errors/Problems . 10
4.7 Building for ARM on x86 . 10

4.7.1 Setting up ARM Chroot on x86 Desktop . 10
4.7.2 Setting up HDTN Dependencies in the Chroot Environment 11
4.7.3 Compiling HDTN . 11
4.7.4 Useful Commands . 11

5 Running HDTN 11
5.1 Directory Structure . 12
5.2 Unit Tests . 12
5.3 Integrated Tests . 12

6 Web User Interface 12
6.1 Running the Web User Interface . 12
6.2 Statistics Page . 12
6.3 System View Page . 13
6.4 Config Page . 13
6.5 Statistics Logging . 13

7 Simulations 15

8 HDTN Applications 15
8.1 BPGen . 15
8.2 BPSink . 15
8.3 BPSendFile . 16
8.4 BPReceiveFile . 16

NASA/TM-20230000826 iii

8.5 BPing . 16

9 Runscript 16
9.1 Path Variables . 16
9.2 bpsink . 17
9.3 Egress . 17
9.4 Scheduler . 17
9.5 Router . 17
9.6 Ingress . 18
9.7 Storage . 18
9.8 bpgen . 18
9.9 bping . 18
9.10 CleanUp . 18
9.11 HDTN One Process . 19

10 Config Files 19
10.1 hdtn config . 19
10.2 sink config . 22
10.3 gen config . 22
10.4 distributed config . 22

11 Contact Plans 24
11.1 JSON Fields . 24

12 Convergence Layers and Routing Protocols 25
12.1 Overview of Compatible Convergence Layers . 25
12.2 Additions to Config Files . 26

12.2.1 TCPCLv3 . 26
12.2.2 TCPCLv4 . 26
12.2.3 UDPCL . 27
12.2.4 LTP . 27
12.2.5 STCP . 29

13 Test Configurations and Instructions 29
13.1 TCP Loopback Test . 29
13.2 Two Node LTP Test . 30
13.3 Four Nodes STCP Test . 30
13.4 Integrated Tests . 31

14 Containerization 31
14.1 Docker Instructions . 31
14.2 Docker Compose Instructions . 32
14.3 Kubernetes Instructions . 32

15 Troubleshooting 33
15.1 Logging . 33
15.2 LTP Tuning Recommendations . 33

16 Notes 34
16.1 TLS Support for TCPCL Version 4 . 34
16.2 BP Version 6 and Version 7 . 35

16.2.1 Bundle Protocol Version 6 . 35
16.2.2 Bundle Protocol Version 7 . 37

NASA/TM-20230000826 iv

High-Rate Delay Tolerant Networking (HDTN) User Guide
Version 1.0

Blake LaFuente, Stephanie Booth, Rachel Dudukovich, Nadia Kortas, Ethan Schweinsberg, and Brian Tomko
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

1 High-rate Delay Tolerant Networking Overview

Delay Tolerant Networking (DTN) has been identified as a key technology to enable and facilitate the
development and growth of future space networks. Classically, space communications networks are collections
of disparate links that are manually managed either point-to-point or use space relays. The accelerating
accessibility of space enables a new scaling of space nodes, yet both the manual management of configurations
and scheduling and the lack of structure connecting links precisely prohibit scaling. This challenge gives rise
to newer and larger classes of communications needs that are met by DTN, which must overcome the
disconnection, disruption, latency, and mobility featured in space communications systems.

DTN joins the underlying links as an overlay, and can be made to communicate over any protocol stack.
The core actions of DTN are store, carry, and forward, where data are stored instead of dropped if there
is no immediately available outduct. It does this by taking the DTN unit of data, bundles, and providing
necessary layers to adapt these bundles to the underlying transport protocols of choice; these are called
convergence layers. DTN’s Bundle Protocol (BP) can then be used on top of terrestrial protocol stacks,
such as TCP/IP, as well as protocols for space, such as LTP/AOS, all in the same network. For emphasis it
is noted that bundles can be of essentially any size, and hence this convergence to lower layers of choice is
necessary.

Existing DTN implementations have operated in constrained environments with limited resources, result-
ing in low data speeds. However, as various technologies have advanced, data transfer rates and efficiency
have advanced, which has pushed the need for a DTN implementation for ground systems and for spacecraft
that is performance-oriented in order to not impose an unnecessary bottleneck.

High-rate Delay Tolerant Networking (HDTN) takes advantage of modern hardware platforms to sub-
stantially reduce latency and improve throughput compared to today’s DTN operations. The HDTN imple-
mentation maintains interoperability with existing deployments of DTN that conform to IETF RFCs 4838,
5050, and 9171. At the same time, HDTN defines a new data format better suited to higher-rate operation.
It defines and adopts a massively parallel pipelined and message-oriented architecture, allowing the system
to scale gracefully as its resources increase. HDTN’s architecture also supports hooks to replace various
processing pipeline elements with specialized hardware accelerators. This offers improved Size, Weight, and
Power (SWaP) characteristics while reducing development complexity and cost.

For questions and comments on this project, feel free to reach out to the contributors found on the Github
page at https://github.com/nasa/HDTN.

2 Architecture

HDTN is written in C++, and is designed to be modular. These modules include:

• Ingress - Processes incoming bundles.

• Scheduler - Determines if outgoing bundles can be forwarded or must be stored based on the contact
plan.

• Storage - Stores bundles to disk.

• Router - Calculates the next hop for the bundle.

• Egress - Forwards bundles to the proper outduct and next hop.

NASA/TM-20230000826 1

https://github.com/nasa/HDTN

Figure 1.—HDTN architecture.

• Web Interface - Displays the operations and data for HDTN.

Figure 1 shows the HDTN modules and their interactions:

2.1 Ingress

The Ingress module intakes bundles and decodes the header fields to determine the source and destination of
the bundles. If the link is available, Ingress will send the bundles in a cut-through mode straight to Egress,
and if the link is down or custody transfer is enabled it sends the bundles to the Storage module. Even if an
immediate forwarding opportunity exists, Storage is always required when custody transfer is enabled. The
bundle layer must be prepared to re-transmit the bundle if it does not receive an acknowledgment within
the time-to-acknowledge that the subsequent custodian has received and accepted the bundle.

2.2 Scheduler

The Scheduler sends a LinkUp or LinkDown message to Ingress and Storage to determine if a given bundle
should be forwarded immediately to Egress or sent to Storage. It also sends these events with the time
updates to Router so that it can recompute the route if needed and update its own internal time before
computing the optimal route. To determine the availability of a given link, the Scheduler reads a contact
plan which is a JavaScript Object Notation (JSON) file that defines all the connections between all the
nodes in the network. In addition, the scheduler dynamically handles unexpected Link status changes
upon receiving HDTN MSGTYPE LINKSTATUS from Egress as well as reloading the entire contact plan upon
receiving CPM NEW CONTACT PLAN request.

2.3 Storage

Storage is a multi-threaded implementation distributed across multiple disks that also handles custody
transfer. It receives messages from the Scheduler to determine when stored bundles can be released and
forwarded to Egress.

NASA/TM-20230000826 2

2.4 Router

The Router module gets the next hop and best route to the final destination using one of the algorithms
in the routing library. We currently support Contact Graph Routing (CGR), Dijkstra’s algorithm (default
algorithm used), and also Contact Multigraph routing (CMR). The Router then sends a RouteUpdate event
to Egress to update its outduct to the outduct of that nextHop. If the link goes down unexpectedly or the
contact plan gets updated, the Router is notified, recalculates the next hop, and send the RouteUpdate event
to Egress.

2.5 Egress

The Egress module is responsible for forwarding bundles received from Storage or Ingress to the correct
outduct and next hop based on the optimal route computed by the Router. HDTN uses an event-driven
approach based on ZeroMQ pub-sub sockets for sending unexpected link updates and contact plan changes
from Egress to Scheduler. When the connection is lost unexpectedly, Egress will send a LinkStatus change
message to the Scheduler, which triggers the Scheduler to send LinkUp or LinkDown events to Ingress and
Storage. In addition, the Scheduler will recompute the contact plan and send the message ContactsUpdate
to the Router. The optimal route is then recomputed based on the new contact plan, and a RouteUpdate
message is forwarded to Egress.

2.6 Web Interface

The Web Interface displays a data rates graph and statistics for network troubleshooting. It’s also used for
updating configuration, routes, and contact plans.

3 Requirements

In this section, the run environments, including tested platforms, architectures, and dependencies are de-
tailed.

3.1 Tested Platforms

• Linux

– Ubuntu 20.04.2 LTS

– Debian 10

– RHEL (Red Hat Enterprise Linux) 8

• Windows

– Windows 10 (64-bit)

– Windows Server 2022 (64-bit)

– Windows Server 2019 (64-bit)

• Raspbian

• ARM on x86

3.2 Dependencies

3.2.1 Linux Dependencies

The HDTN build environment requires:

• CMake version 3.16.3

NASA/TM-20230000826 3

• Boost library version 1.66.0 minimum, version 1.69.0 for TCPCLv4 TLS version 1.3 support, version
1.70 is required for the Web User Interface to support HTTPS/WSS.

• ZeroMQ version 4.34

• gcc version 9.3.0 (Debian 8.3.0-6)

• OpenSSL version 1.1.1f (Optional)

These can be installed using the following command(s):
On Ubuntu
sudo apt-get install cmake build-essential libzmq3-dev
sudo apt-get install libboost-dev libboost-all-dev openssl libssl-dev
On RHEL
sudo dnf install epel-release
sudo yum install cmake boost-devel zeromq zeromq-devel
On Debian
sudo apt-get install cmake build-essential openssl libssl-dev
sudo apt-get install libboost-dev libboost-all-dev libzmq3-dev python3-zmq

3.2.2 Windows Dependencies

HDTN supports 9 permutations of the Visual Studio compilers on Windows:

• Versions: 2022, 2019, and 2017 (note: for 2017, only versions 15.7 and 15.9 have been tested)

• Editions: Enterprise, Professional, and Community

HDTN build environment on Windows requires:

• One of the supported Visual Studio compilers listed in the Overview section. Visual Studio must be
installed for C++ Development during setup.

• PowerShell (recommended Visual Studio Code with the PowerShell extension installed)

• 7-Zip

• Perl (needed for building OpenSSL) with perl.exe in the Path environmental variable (Strawberry Perl
for Windows has been tested)

3.3 Known Issues

• Ubuntu distributions have been known to install older non-compatible versions of -CMake.

• Some processors do not support hardware acceleration or the RDSEED instruction. (Note: In the
CMake file, both are set to “ON” by default.) This support will be auto-detected by CMake if not
cross-compiling.

4 Build HDTN

4.1 Notes on HDTN CMake

All of HDTN’s directories of modules/libraries contain their own CMakeLists.txt file. The root
CMakeLists.txt adds all those modules/libraries to the HDTN project using the CMake add subdirectory
command. It should be noted that the HDTN CMake files are written using modern CMake paradigms, such
as “dependencies as targets” which makes it much easier and cleaner to manage a multi-platform library like
HDTN. In addition, package config information gets exported to the installation (install root/lib/cmake)
whenever a user wants to do a “make install”. There is an example in tests/unit tests import instal
lation/CMakeLists.txt which is a copy of the regular tests/unit tests/CMakeLists.txt except

NASA/TM-20230000826 4

that the former uses the find package package config information from the install root/lib/cmake
directory. The package config information is great for users that may want to write custom software projects
that only use portions of the HDTN codebase such as a library of a particular convergence layer. The
HDTN CMake tries to optimize the build as much as possible; it will test the compiler for more recent
C++ standards, and it will test the compiler and the CPU for specific x86 hardware instructions and utilize
those if available. Finally, the HDTN CMake supports building its libraries as either static or shared using
CMake’s GENERATE EXPORT HEADER which is required for building or using .dll files on Windows and for
using GCC’s new C++ visibility support.

4.2 Build HDTN on Linux

To build HDTN in “Release mode”, perform the following steps. (Note: If the -DCMAKE BUILD TYPE is
not specified, HDTN is built in “Release mode” by default).

• git clone https://github.com/nasa/HDTN.git

• export HDTN SOURCE ROOT=/home/username/HDTN (set to filepath containing HDTN)

• cd $HDTN SOURCE ROOT

• mkdir build

• cd build

• cmake ..

• make

– Adding -j8 (i.e. make -j8) to the make will speed up the processing time but requires a system
with at least 8 cores.

Note: By Default, BUILD SHARED LIBS is OFF and hdtn is built as static. To use shared libs,
edit CMakeCache.txt, set BUILD SHARED LIBS:BOOL=ON and add fPIC to the CMakeCache variable:
CMAKE CXX FLAGS RELEASE:STRING=-03 -DNDEBUG -fPIC

4.3 Optional X86 Hardware Acceleration

HDTN build environment sets the following CMakeCache variables to “On” by default:
USE X86 HARDWARE ACCELERATION and LTP RNG USE RDSEED.

Notes:

• If building natively (i.e. not cross-compiling), the HDTN CMake build environment will check the
processor’s CPU instruction set and the compiler to determine which HDTN hardware accelerated
functions will build and run on the native host. CMake automatically sets various compiler definitions
to enable supported HDTN hardware accelerated features.

• If cross-compiling, the HDTN CMake build environment will check the compiler to determine if the
HDTN hardware accelerated functions will build. It is up to the user to determine if the target processor
can support/run those instructions. CMake will automatically set various compiler definitions to enable
supported HDTN hardware accelerated features only if they compile.

• Hardware accelerated functions can be turned off by setting
USE X86 HARDWARE ACCELERATION and/or LTP RNG USE RDSEED to “Off” in the
CMakeCache.txt.

• If building for ARM or any non X86-64 platform,
USE X86 HARDWARE ACCELERATION and LTP RNG USE RDSEED must be set to “Off”.

If USE X86 HARDWARE ACCELERATION is turned “On” some or all of the following features will be
enabled if CMake finds support for these CPU instructions:

NASA/TM-20230000826 5

• Fast SDNV encode/decode (BPv6, TCPCLv3, and LTP) requires SSE, SSE2, SSE3, SSSE3, SSE4.1,
POPCNT, BMI1, and BMI2.

• Fast batch 32-byte SDNV decode (not yet implemented into HDTN but available in the common/u-
til/Sdnv library) requires AVX, AVX2, and the above “Fast SDNV” support.

• Fast CBOR encode/decode (BPv7) requires SSE and SSE2.

• Some optimized loads and stores for TCPCLv4 requires SSE and SSE2.

• Fast CRC32C (BPv7 and a storage hash function) requires SSE4.2.

• The HDTN storage controller will use BITTEST if available. If BITTEST is unavailable, it will use
ANDN if BMI1 is available.

If LTP RNG USE RDSEED is turned “On”, this feature will be enabled if CMake finds support for this
CPU instruction:

• An additional randomness source for LTP’s random number generator requires RDSEED. This feature
can be disabled for potentially faster LTP performance.

4.4 Storage Capacity Compilation Parameters

HDTN build environment sets two CMake cache variables by default: STORAGE SEGMENT ID SIZE BITS
and STORAGE SEGMENT SIZE MULTIPLE OF 4KB.

• The STORAGE SEGMENT ID SIZE BITS flag must be set to the recommended default, 32 or 64. It
determines the size/type of the storage module’s segment id t. Setting the flag to 32-bit significantly
decreases memory usage.

– If this value is 32, the formula for the max segments (S) is given by

S = min(UINT32 MAX, 646) ≈ 4.3 billion

segments since segment id t is a uint32 t. A segment allocator using 4.3 Billion segments uses
about 533 MByte RAM), and multiplying by the minimum 4KB block size gives 17TB bundle
storage capacity. Make sure to appropriately set the totalStorageCapacityBytes variable
in the HDTN JSON config so that only the required amount of memory is used for the segment
allocator.

– If this value is 64, the formula for the max segments (S) is given by

S = min(UINT64 MAX, 646) ≈ 68.7 billion

segments since segment id t is a uint64 t. Using a segment allocator with 68.7 Billion segments,
when multiplying by the minimum 4KB block size gives ∼ 281TB bundle storage capacity.

• The flag STORAGE SEGMENT SIZE MULTIPLE OF 4KB must be set to an integer of 1 or greater. It
determines the minimum increment of bundle storage based on the standard block size of 4096 bytes.
(Note: One is the default and recommended.) Example:

– If STORAGE SEGMENT SIZE MULTIPLE OF 4KB=1 , a 4KB*1=4KB block size is used. A bundle
size of 1KB would require 4KB of storage. A bundle size of 6KB would require 8KB of storage.

– If STORAGE SEGMENT SIZE MULTIPLE OF 4KB=2, a 4KB*2=8KB block size is used. A bundle
size of 1KB would require 8KB of storage. A bundle size of 6KB would require 8KB of storage.
A bundle size of 9KB would require 16KB of storage. If

STORAGE SEGMENT ID SIZE BITS=32

then bundle storage capacity could potentially double from ∼ 17TB to ∼ 34TB.

For information on how the Storage works, see module/storage/doc/storage.pptx in the repository.

NASA/TM-20230000826 6

4.5 Build HDTN on Windows with its Dependencies

To build HDTN and its dependencies in Release mode and as shared libraries (shared .dll files for both
HDTN and its dependencies), simply run the PowerShell script in building on windows\hdtn wind
ows cicd unit test.ps1 from any working directory. The working directory does not matter. Once
finished, HDTN and its dependencies will be installed to C:\hdtn build x64 release vs2022 (suffix
will be 2019 or 2017 if that’s the Visual Studio compiler installed). The script will also run HDTN’s unit
tests after the build. Once completed, you will see the following message:
"Remember, HDTN was built as a shared library, so you must prepend the following to
your Path so that Windows can find the DLL’s of HDTN and its dependencies:"
It will print four directory locations to be added to your Path environmental variable to facilitate use of
HDTN outside this PowerShell script.

• From the Windows Start Menu, type env.

• Open Edit environmental variables for your account

• double click Path

• Add the four directories. (Omit the directory containing hdtn install\lib if modifying HDTN
source code within Visual Studio. You will later build and install your HDTN binaries within Visual
Studio.)

• If you are a user of HDTN and you are NOT going to modify HDTN source code within Visual Studio,
also add this directory to your Path: C:\hdtn build x64 release vs2022\hdtn install\bin

• Click OK

• Click New

• Add the following new variable: HDTN SOURCE ROOT

• Set the variable value to your source root (the folder that contains README.md).

Example C:\path\to\hdtn

• Click OK

• Click OK

If you are a user of HDTN and you are NOT going to modify HDTN source code within Visual Studio,
you can reference any of the .bat file example tests located in HDTN SOURCE ROOT\tests\test script
s windows. Note that these scripts were intended for developers, so you will have to modify the scripts,
fixing any lines that reference HDTN BUILD ROOT, so, for example, if you see %HDTN BUILD ROOT%\comm
on\bpcodec\apps\bpgen-async.exe, replace it with bpgen-async.exe. Also note that these .bat
files reference config files located in HDTN SOURCE ROOT\config files, so feel free to modify those .json
configs to meet your needs.

4.5.1 HDTN Developers:

If you are a developer and you are going to modify HDTN source code within Visual Studio, you may delete
the directory C:\hdtn build x64 release vs2022\hdtn install and continue on with the next set
of instructions.

Launch Visual Studio 2022 and open HDTN as a project with these steps:

• File >> open >> cmake

• Open HDTN root CMakeLists.txt

• Make sure drop down configuration at the top is set to x64-Release. You may need to go to Manage
Configurations if not.

NASA/TM-20230000826 7

Then click Project >> view CMakeCache.txt Add these lines (change vs2022 directory suffix if
different):

• BOOST INCLUDEDIR:PATH=C:\hdtn build x64 release vs2022\boost 1 78 0 install

• BOOST LIBRARYDIR:PATH=C:\hdtn build x64 release vs2022\boost 1 78 0 install\
lib64

• BOOST ROOT:PATH=C:\hdtn build x64 release vs2022\boost 1 78 0 install

• OPENSSL INCLUDE DIR:PATH=C:\hdtn build x64 release vs2022\openssl-1.1.1s
install\include

• OPENSSL ROOT DIR:PATH=C:\hdtn build x64 release vs2022\openssl-1.1.1s install

• libzmq INCLUDE:PATH=C:\hdtn build x64 release vs2022\libzmq v4.3.4 install\
include

• libzmq LIB:FILEPATH=C:\hdtn build x64 release vs2022\libzmq v4.3.4 install\li
b\libzmq-v143-mt-4 3 4.lib (note: may be v141 or v142)

• BUILD SHARED LIBS:BOOL=ON

Then click Project >> configure cache
It is now time to set up additional environmental variables in order to be able to run the .bat file tests

located in HDTN SOURCE ROOT\tests\test scripts windows:

• Right click on the open tab within Visual Studio titled CMakeCache.txt and then click "Open
Containing Folder"

• Copy the path at the top of the Windows Explorer window

• From the Windows Start Menu, type "env", open "Edit environmental variables for your
account"

• Click New

• Add the following new variable: HDTN BUILD ROOT. The variable value will look something like C:
\Users\username\CMakeBuilds\17e7ec0d-5e2f-4956-8a91-1b32467252b0\build\x64-
Release

• Click OK

• Click New

• Add the following new variable: HDTN INSTALL ROOT; the value will look similar to HDTN BUILD ROOT
except change “build” to “install”.

something like C:\Users\username\CMakeBuilds\17e7ec0d-5e2f-4956-8a91-1b3246725
2b0\install\x64-Release

• Click OK

• Double click the Path variable, add the HDTN INSTALL ROOT\lib folder to your Path, something like
C:\Users\username\CMakeBuilds\17e7ec0d-5e2f-4956-8a91-1b32467252b0\install\
x64-Release\lib. This step is needed because HDTN is built as a shared library with multiple
.dll files, so this step allows Windows to find those .dll files when running any HDTN binaries.

Relaunch Visual studio so that it get’s loaded with the updated environmental variables. Now build HDTN:

• Build >> Build All

• Build >> Install HDTN

NASA/TM-20230000826 8

• Run unit tests.bat located in HDTN SOURCE ROOT\tests\test scripts windows

• For a Web GUI example, run test tcpcl fast cutthrough oneprocess.bat and then navigate
to http://localhost:8086 (note: to exit cleanly, do a ctrl-c in each cmd window before closing)

NOTE: Since CMake is currently configured to build HDTN as a shared library (because the CMake cache
variable BUILD SHARED LIBS is set to ON), any time you make a source code change to HDTN, for it to be
reflected in the binaries, don’t forget to Build >> Install HDTN after the Build >> Build All step.

4.5.2 Setup Instructions for Developers Using Installed HDTN Libraries within their own
Projects

HDTN utilizes modern CMake. When HDTN is installed, it installs the appropriate CMake Packages that
can be imported. For an example of this use case, see HDTN SOURCE ROOT\tests\unit tests import
installation\CMakeLists.txt for a project that imports the libraries and headers from an HDTN
installation and builds HDTN’s unit tests from that installation.

4.6 Build HDTN on Raspberry Pi

To build HDTN on Raspberry Pi running Ubuntu (follow Ubuntu dependencies in Section 3.2 and also install
python3-zmq):

• export HDTN SOURCE ROOT=/home/username/HDTN

- Replace username with your username, (right of equals sign should be path to HDTN directory)

• cd $HDTN SOURCE ROOT

• mkdir build

• cd build

• cmake -DCMAKE BUILD TYPE=Release ..

• Open CMakeCache.txt in Editor (edit means edit variable already in file and add means add)

- (add) Boost USE STATIC LIBS:UNINITIALIZED=OFF

- (edit) CMAKE INSTALL PREFIX:PATH=/user/local (user = your username)

- (edit) USE X86 HARDWARE ACCELERATION:BOOL=OFF

- (edit) LTP RNG USE RDSEED:BOOL=OFF

- (edit) CMAKE CXX FLAGS RELEASE:STRING=-03 -DNDEBUG -fPIC

• Save and Leave Editor

• cd $HDTN SOURCE ROOT/common/util

• Open CMakeLists.txt in Editor

- (Comment out(#)) src/CpuFlagDetection.cpp

• Save and Leave Editor

• cd $HDTN SOURCE ROOT/tests/unit tests

• Open CMakeLists.txt in Editor

- (Comment out(#)) ../../common/util/test/TestCpuFlagDetection.cpp

• Save and Leave Editor

NASA/TM-20230000826 9

http://localhost:8086

• cd $HDTN SOURCE ROOT/build

• cmake -DCMAKE BUILD TYPE=Release ..

• make -j4

- if using Pi without 4 core just use:z [make]instead

• sudo make install

4.6.1 Debugging Errors/Problems

• For errors reporting something like: cpuid.h is not found for file HDTN/common/util/src/Cpu-
FlagDetection.cpp

- Double check CMakeList.txt edits

• For errors reporting something like: recompile with -fPIC

- Double check CMakeCache.txt edits

• For errors reporting ./runscript.sh not found

- Run: export HDTN SOURCE ROOT=/home/user/HDTN

• For errors reporting similar to: no tcpdump

- Run: sudo apt install tcpdump

• For runtime errors:

- Check the log files under HDTN/logs. These are not created by default but can be created
following the instructions in Section 15.1.

4.7 Building for ARM on x86

4.7.1 Setting up ARM Chroot on x86 Desktop

Run the following commands:

• sudo apt install qemu-user-static

• sudo apt install debootstrap

• sudoqemu-debootstrap--variant=buildd--archarm64focal/var/chroot/http://por
ts.ubuntu.com/

- focal in the above command is the name of the Ubuntu Release and may need to be changed.

- This final command creates an armhf operating system located at /var/chroot. Users can
move it elsewhere, but it is recommended to keep it out of the /home/ and user directories.

• To get into chroot, use the command: sudo chroot /var/chroot

At this point, users are now in an ARM environment. Users should run the commands in the following
sections AFTER they enter the ARM environment.

NASA/TM-20230000826 10

4.7.2 Setting up HDTN Dependencies in the Chroot Environment

Note: Sudo does not exist in chroot.

• apt install make cmake build-essential software-properties-common

• add-apt-repository universe

• apt update

• apt install libboost-dev libboost-all-dev libzmq3-dev openssl libssl-dev

4.7.3 Compiling HDTN

• Download the latest HDTN from Github.

• Unzip the file in your home directory.

- Note: Users cannot write directly to ARM emulator directories in Windows Subsystem for Linux.

• sudo mv HDTN /var/chroot/home

• sudo chroot /var/chroot

• cd home/HDTN

• mkdir build

• cd build

• cmake .. -DCMAKE SYSTEM PROCESSOR=arm

• make -j 1

- Multiple threads will cause a race condition.

4.7.4 Useful Commands

• readelf -h executable

- Read executable header.

• apt install cmake-curses-gui

- Installs CMakeCache.txt editor install for static builds.

• ccmake ..

- Runs the CMakeCache.txt editor.

5 Running HDTN

Note: Ensure your config files are correct, e.g., Check that the outduct remotePort is the same as the
induct boundPort, a consistant convergenceLayer, and the outduct’s remoteHostname is pointed to the
correct IP adress. tcpdump can be used to test the HDTN ingress storage and egress. The generated pcap
file can be read using wireshark: sudo tcpdump -i lo -vv -s0 port 4558 -w hdtn-traffic.pcap
In another terminal, run: ./runscript.sh

Note: The Contact Plan, which lists future contacts for each node, is located under module/sched-
uler/src/contactPlan.json and includes the source and destination nodes, the start and end times,
and the data rates. Based on the schedule in the contactPlan the scheduler sends events on link availability
to Ingress and Storage. When the Ingress receives the Link Available event for a given destination, it

NASA/TM-20230000826 11

sends the bundles directly to egress. When the Link is Unavailable it sends the bundles to storage. Upon
receiving Link Available event, Storage releases the bundle(s) for the corresponding destination. When
a Link Down event is received, Storage stops releasing the bundles.

There are additional test scripts located under the directories test scripts linux and test scrip
ts windows that can be used to test different scenarios for all convergence layers.

5.1 Directory Structure

common/ Common Libraries and utils
module/ HDTN modules

|– egress CL adapter(s) that forwards bundle traffic
|– ingress CL adapter(s) that accepts traffic in bundle format
|– storage Stores bundles
|– scheduler Sends events on link availability
|– router Sends the optimal route and next hop to egress
|– hdtn one process Combines the main processes into one HDTN process
|– udp delay sim Proxy that simulates long delays
|– telem cmd interface Web interface for stats display and configuration

config files/ HDTN config files
tests/ Example Test cases and experiments

5.2 Unit Tests

After building HDTN (see Section 4), unit tests can be run using the following command within the build
directory:

./tests/unit tests/unit-tests

5.3 Integrated Tests

After building HDTN (see Section 4), integrated tests can be run using the following command within the
build directory:

./tests/integrated tests/integrated-tests

6 Web User Interface

6.1 Running the Web User Interface

This repository comes equiped with code to launch a web-based user interface to display statistics for the
HDTN engine. It relies on a dependency called Boost Beast which is packaged as a header-only library
that comes with a standard Boost installation. The web interface requires OpenSSL since the web interface
supports both http as well as https, and hence both ws (WebSocket) and wss (WebSocket Secure). The web
interface is compiled by default. Anytime that HDTNOneProcess runs, the web page will be accessible at
http://localhost:8086

To prevent the web interface from running, follow the normal build instructions for Linux. The only
difference will be in the cmake command will now be: cmake -DUSE WEB INTERFACE:BOOL=OFF ..

6.2 Statistics Page

This page, displayed in Figure 2, displays real-time telemetry of HDTN. At the top are three boxes displaying
the current Data Rate in Mega-Bits Per Second, the Average Data Rate, and the Maximum Data Rate
reached. All of these are measured in the Ingress module.

Beneath are three graphs. The first two display the data rate of the Ingress and Egress Modules in
Mega-Bits Per Second. The third graph is a pie chart displaying the location of data bundles received by

NASA/TM-20230000826 12

Figure 2.—Statistics Page of the Web Interface.

Ingress - either sent to the Storage module or directly to Egress. If a bundle is sent from Storage to Egress,
it will be measured on the pie chart as having gone to Egress.

Beneath the graphs, cards display statistics for different parts of HDTN. At this time only Ingress and
Egress are displayed.

6.3 System View Page

This page can be accessed by clicking System View GUI in the top left-hand corner of the Statistics page.
As shown if Figure 3, this page displays a graphic of the different modules of HDTN as well as information
on where the bundled data is coming from and where it is going. In the top row are adjustable settings for
users to make the information more legible. On the left of the page are the IP addresses and IPN numbers
from which data is being received. On the right is displayed the Nodes and IPN numbers to which data
is being sent from this HDTN node. The graphic displays the data rate as data comes into into Ingress,
between the different modules of HDTN (Ingress, Storage, and Egress), and the rate as it leaves Egress. The
Storage graphic displays the percentage and amount of storage space being used.

Users can also hover over each HDTN module and a pop-up graphic will appear displaying data for that
module. An example is shown in Figure 4 which shows this information for the Storage module.

6.4 Config Page

This page is not configured yet.

6.5 Statistics Logging

HDTN telemetry can be automatically logged to CSV files by compiling HDTN with the DO STATS LOGGING
CMake option. The command for enabling this is: cmake -DDO STATS LOGGING:BOOL=ON. Files will be
created in the /stats directory of the source code root. Statistics are logged on a 1 second interval. The
following statistics are currently supported:

• ingress data rate mbps

NASA/TM-20230000826 13

Figure 3.—System View Page of the Web Interface.

Figure 4.—Pop-up Graphic Displaying Data from the Storage Module.

NASA/TM-20230000826 14

• ingress total bytes sent

• ingress bytes sent egress

• ingress bytes sent storage

• storage used space bytes

• storage free space bytes

• storage bundle bytes on disk

• storage bundles erased

• storage bundles rewritten from failed egress send

• storage bytes sent to egress cutthrough

• storage bytes sent to egress from dis

• egress data rate mbps

• egress total bytes sent success

• egress total bytes attempted

7 Simulations

HDTN can be simulated using DtnSim, a simulator for delay tolerant networks built on the OMNeT++
simulation framework. Use the “support-hdtn” branch of DtnSim which can be found in the official DtnSim
repository. HDTN simulation with DtnSim has only been tested on Linux (Debian and Ubuntu). Follow the
readme instructions for HDTN and DtnSim to install the software. Alternatively, a pre-configured Ubuntu
VM is available for download here (the username is hdtnsim-user, and the password is grc). More Details
about the installation steps can be found here.

8 HDTN Applications

8.1 BPGen

BPGen is a tool that generates bundles of any specified size, and it is intended to be used with its receiving
tool BPSink. It is not a component of HDTN, but it does share the same codebase and libraries as HDTN;
hence it can use any of the convergence layers available to HDTN. Additionally, the config file that BPGen
uses shares the outductsConfig part of the HDTN config file. If a user desires BPv6 custody transfer
support, BPGen supports passing in an additional separate config file containing the inductsConfig part of
an HDTN config file; this additional config file is necessary when using unidirectional (non-bidirectional)
convergence layers. The BPGen source code is very small because it derives from a helper C++ class called
BPSourcePattern and overrides two virtual methods. Users who wish to write a utility that generates bundles
as fast as possible and then terminates can model after the BPGen source code.

8.2 BPSink

BPSink receives and validates the bundles sent from BPGen (and possibly bundles that were forwarded from
the HDTN Egress). It is not a component of HDTN, but it does share the same codebase and libraries
as HDTN; hence it can use the convergence layers available to HDTN. Additionally, the config files that
BPSink uses shares the inductsConfig part of the HDTN config file. If a user desires BPv6 custody transfer
support, BPSink supports passing in an additional separate config file containing the outductsConfig part
of an HDTN config file; this additional config file is necessary when using unidirectional (non-bidirectional)
convergence layers. The BPSink source code is very small because it derives from a helper C++ class called

NASA/TM-20230000826 15

https://bitbucket.org/lcd-unc-ar/dtnsim/src/master/
https://bitbucket.org/lcd-unc-ar/dtnsim/src/master/
https://drive.google.com/file/d/1dSjxKIZ03U-gsAnMMzcizHAw_gFkDZDe/view
https://docs.google.com/document/d/1KrKyO_pr-v9CeS5n_ectpfWtwkYL40PdLICGh-24zZY/edit

BPSinkPattern and overrides one virtual method; any users that want to write their own utility that receives
bundles indefinitely and terminates cleanly with a SIGINT signal can simply model after the BPSink source
code.

8.3 BPSendFile

BPSendFile is a tool that sends either a single file or a directory of files (with recursion), and it takes those
file(s) and breaks them into max specified size bundles, and it is intended to be used with its receiving
tool BPReceiveFile. It can remain open after all files have been sent to monitor those directories (up to a
user-specified max recursion depth) for newly added files. It (like BPGen) is not a component of HDTN,
but it does share the same codebase and libraries as HDTN; hence it can use any of the convergence layers
available to HDTN. The config files used are the same as BPGen. The BPSendFile source code is very small
because it derives from a helper C++ class called BPSourcePattern and overrides three virtual methods;
any users that want to write their utility that generates bundles as fast as possible and then remains open
and episodically sends new bundles can model after the BPSendFile source code.

8.4 BPReceiveFile

BPReceiveFile tool receives the bundles sent from BPSendFile in any order and reassembles the file fragments,
closes the file when all file fragments have been received and writes them to a user-specified directory. It is
not a component of HDTN, but it does share the same codebase and libraries as HDTN; hence it can use
any of the convergence layers available to HDTN. The config files used and the derived C++ classes used
are the same as BPSink.

8.5 BPing

BPing is a tool that generates ping bundles intended to be used with any bundling agent that supports an
echo service. HDTN has an echo service with a service number specified in its config as myBpEchoServiceId.
All HDTN apps (BPSink and BPReceiveFile) that inherit from BPSinkPattern have an echo service number
of 2047. BPing is not a component of HDTN, but it does share the same codebase and libraries as HDTN;
hence it can use any of the convergence layers available to HDTN. The config files used are the same as
BPGen. BPing does not support custody transfer, but it must also use the same config file BPGen would
use for BPv6 custody transfer support in order for BPing to receive an echo bundle back; this additional
config file is necessary when using unidirectional (non-bidirectional) convergence layers. The BPing source
code is very small because it derives from a helper C++ class called BPSourcePattern and overrides two
virtual methods; any user that wants to write their own utility that generates a single bundle, waits for a
response, and then either terminates or continues can simply model after the BPing source code.

9 Runscript

One run script file (in JSON format) is required per each instance of HDTN. Each file starts with assigning
path variables, starting up Egress (the outduct), and the bpsink (the method of where bundles will be
received). Each file ends with starting up Ingress, assigning bpgen (the process by which bundles can be
generated), and a cleanup procedure (optional). Within each file, two different setups can be found depending
if the setup is cut-through, i.e. by-passes Storage or utilizes Storage and, in turn, the Scheduler. The cut-
through option requires the link to be up and no BPv6 custody. Note: To avoid starting up Egress and
Ingress separately, a method called hdtn-one-process combines the two with one command. An example
runscript can be found at HDTN/runscript.sh.

9.1 Path Variables

The Path Variables section of each run script file points to the locations of all required configuration files.
This way, one needs only to edit this section instead of each section if only changing a configuration file.
The path variables contain locations of:

NASA/TM-20230000826 16

https://github.com/nasa/HDTN/blob/master/common/util/src/FragmentSet.cpp

• config files

• hdtn config

• sink config

• gen config

The section ends with a cd $HDTN SOURCE ROOT an already declared variable in your linux path. This
command is here if the run script is not in the HDTN source root directory (where HDTN runs).

9.2 bpsink

A typical instantiation of bpsink is:
./build/common/bpcodec/apps/bpsink-async --my-uri-eid=ipn:2.1 --inducts-config-
file=$sink config &

The command has three main parts: (1) the location of the bpsink code within HDTN, (2) the endpoint
ID number, and (3) the inducts configuration file location. The ipn:2.1 shows, in this particular case, the
receiving node is the second endpoint. The $sink config response ties to the respectable Path Variable. For
more information about the sink configuration file see section 10.2. To end bpsink, it is recommended to
insert a 3 second pause command to initialize before the configuration file starts the next section, i.e. sleep
3.

9.3 Egress

A typical instantiation of Egress is:
./build/module/egress/hdtn-egress-async --hdtn-config-file=$hdtn config &

The command has two main parts: (1) the location of the egress code within HDTN and (2) the HDTN
configuration file that the egress code requires. For more information about the HDTN configuration file see
section 10.1. To end Egress, it is recommended to insert a 3 second pause command to initialize before the
configuration file starts the next section, i.e. sleep 3.

9.4 Scheduler

A typical instantiation of the scheduler in a runscript is: ./build/module/scheduler/hdtn-scheduler
--contact-plan-file=contactPlan.json --hdtn-config-file=$hdtn config &

The command has three main parts: (1) the location of the Scheduler code within HDTN, (2) the contact
plan and (3) the same HDTN configuration file that the Egress required. For more information about the
HDTN configuration file see section 10.1. To end the Scheduler, it is recommended to insert a 1 second
pause command to initialize before the configuration file starts up the next section, i.e. sleep 1.

9.5 Router

A typical instantiation of the Router is: ./build/module/router/hdtn-router --contact-plan-
file=contactPlan.json --dest-uri-eid=ipn:2.1 --hdtn-config-file=$hdtn config & The
command has four main parts: (1) the location of the router code within HDTN, (2) the contact plan (3)
the destination endpoint ID and (4) the same HDTN configuration file that the Egress required. For more
information about the HDTN configuration file see section 10.1. To end the Scheduler, it is customary to
wait 1 seconds to initialize before the configuration file starts up the next section, i.e. sleep 1. An example
of a Routing scenario test with 4 HDTN nodes was added under $HDTN SOURCE ROOT/test/test scri
pts linux/Routing Test

NASA/TM-20230000826 17

9.6 Ingress

A typical instantiation of Ingress is:
./build/module/ingress/hdtn-ingress --hdtn-config-file=$hdtn config &

The command has two main parts: (1) the location of the Ingress code within HDTN and (2) the HDTN
configuration file that the ingress code requires. For more information about the HDTN configuration file
see section 10.1. To end Ingress, it is recommended to insert a 3 second pause command to initialize before
the configuration file starts the next section, i.e. sleep 3.

9.7 Storage

A typical instantiation of Storage is:
./build/module/storage/hdtn-storage --hdtn-config-file=$hdtn config &

The command has two main parts: (1) the location of the storage code within HDTN and (2) the HDTN
configuration file that the storage code requires. For more information about the HDTN configuration file
see section 10.1. To end Storage, it is recommended to insert a 3 second pause command to initialize before
the configuration file starts the next section, i.e. sleep 3.

9.8 bpgen

A typical instantiation of bpgen is:
./build/common/bpcodec/apps/bpgen-async --bundle-rate=100 --my-uri-eid=ipn:1.1 -
-dest-uri-eid=ipn:2.1 --duration=40 --outducts-config-file=$gen config &

The command has six main parts: (1) the location of the bpgen application code within HDTN, (2)
the bundle rate, (3) the endpoint ID, (4) the destination endpoint ID, (5) the duration, and (6) the gen
configuration file that the bpgen code requires. For more information about the gen configuration file see
section 10.3. In the example instantiation, the bundle rate was designated for 100 bundles per second with
the bpgen’s endpoint ID being the first node (ipn:1.1) and is sending to the second node (ipn:2.1), which
matches the bpsink’s endpoint ID. The duration value is in seconds, and in this case, 40 seconds. To end
bpgen, it is recommended to insert a 8 pause command to initialize before the configuration file starts the
next section, i.e. sleep 8.

9.9 bping

A typical instantiation of bping is:
./build/common/bpcodec/apps/bping --my-uri-eid=ipn:1.1 --dest-uri-eid=ipn:2.2047
--outducts-config-file=$ping config &

The command has six main parts: (1) the location of the bping application code within HDTN, (2) the
endpoint ID, (3) the destination endpoint ID, and (4) the configuration file that the bping code requires is
the same as BpGen config file. For more information about the gen configuration file see section 10.3. In the
example instantiation, node is sending ping bundles to the node 2 (using the echo service number 2047).

9.10 CleanUp

If HDTN only needs to run for a certain amount of time and then end, add a line under all other sections
(minus the path variables) after the instantiation command in the format of < SectionName > PID = $!
For example, after bpgen’s instantiation, the cleanup command will be: bpgen PID=$!

Within the clean-up section, wait for HDTN to run. Then, from the bottom to the top of the configuration
file sections, end them via format of kill − 2 $ < PID name >. A wait statement for at least 2 seconds
between each kill command is included. Clean-up script example:
sleep 30
echo "\nkilling bpgen..." && kill -2 $bpgen PID
sleep 2
echo "\nkilling HDTN storage..." && kill -2 $storage PID
sleep 2

NASA/TM-20230000826 18

echo "\nkilling HDTN ingress..." && kill -2 $ingress PID
sleep 2
echo "\nkilling scheduler..." && kill -9 $scheduler PID
sleep 2
echo "\nkilling egress..." && kill -2 $egress PID
sleep 2
echo "\nkilling bpsink..." && kill -2 $bpsink PID

This example will run HDTN for 30 seconds before closing HDTN.

9.11 HDTN One Process

A typical instantiation of hdtn-one-process is:
./build/module/hdtn one process/hdtn-one-process --hdtn-config-file=$hdtn config
--contact-plan-file=contactPlanCutThroughMode.json &

The command has three main parts: (1) the location of the hdtn-one-process code within HDTN, (2)
the HDTN configuration file that the hdtn-one-process code requires and (3) the contact plan. For more
information about the HDTN configuration file see section 10.1.

The following options can be added: (1) –use-unix-timestamp to use a contact plan with unix times-
tamp and (2) –use-mgr to use Multigraph Routing Algorithm instead of the default CGR Dijkstra routing
Algorithm.

To end hdtn-one-process, it is recommended that users insert a 10 second pause command to initialize
before the configuration file starts the next section, i.e. sleep 10.

Note: When using the hdtn-one-process, the runscript does not need to instantiate the Egress, Storage,
Ingress, Scheduler and Router separately.

10 Config Files

10.1 hdtn config

The typical HDTN configuration file instantiation can be seen below. All values are default and changeable.
More information on each line can be seen bulleted.
"hdtnConfigName": my hdtn config,

- User description of config file
"userInterfaceOn": true,

- When compiled determines if the interface is displayed
"mySchemeName": "unused scheme name",

- DTN scheme name
- Deprecated, still needs to be defined

"myNodeId": 10,
- Node running ID
- Must be an integer

"myBpEchoServiceId": 2047,
- Service number to ping if user wants to ping HDTN
- Must be an integer

"myCustodialSsp": "unused custodial ssp",
- Custodial scheme specific part
- Deprecated, still needs to be defined

"myCustodialServiceId": 0,
- Service ID where custody reports are sent to HDTN
- Must be an integer

"isAcsAware": true,
- Aggregate Custody Signals (ACS)
- Specifies if HDTN is to use ACS

NASA/TM-20230000826 19

- Must be a Boolean
"acsMaxFillsPerAcsPacket": 100,

- How many custody signals to be packed into one ACS packet
- Must be an integer

"acsSendPeriodMilliseconds": 1000,
- Aggregation time in ms
- Must be an integer

"retransmitBundleAfterNoCustodySignalMilliseconds": 10000,

"maxBundleSizeBytes": 10000000,
- The maximum size of the bundle HDTN can receive or send in Bytes
- NOTE: if the bundle is larger than this, the bundle will be dropped.

"bufferRxToStorageOnLinkUpSaturation": false,
-
- Must be a Boolean

"maxIngressBundleWaitOnEgressMilliseconds": 2000,
- During Cut-through, if egress cannot finish a bundle within this time it will give up cut-through and
send to storage; in ms

"maxLtpReceiveUdpPacketSizeBytes": 65536,
- Maximum packet size in bytes that can be received by HDTN
- Set to the largest datagram the protocol will see on the network.
- 65536 is the typical max size of a local UDP packet will support
- This is a Don’t Care if not using LTP

"zmqBoundSchedulerPubSubPortPath": 10200,
- ZMQ bound port of the scheduler ZMQ pub-sub socket
- Must be an integer

"zmqBoundTelemApiPortPath": 10305,
- ZMQ bound port of the API socket
- Must be an integer

"inductsConfig": {
"inductConfigName": "myconfig",
"inductVector": [

{
"name": "stcp ingress",
"convergenceLayer": "stcp",
"boundPort": 4556,
"numRxCircularBufferElements": 200,

}
]

},
- inductConfigName and name are for user comment
- Can choose within the convergence layer: stcp, tcpcl v3, tcpcl v4, udp, ltp over udp
- boundPort and numRxCircularBufferElements must be integers
- NOTE: numRxCircularBufferElements differs for each convergence layer. STCP this represents the
number of bundles to buffer up; TCPCL this is the number of bundles or data fragments; LTP this is
the number of UDP packets; UDP this is the number of packets/bundles.

"outductsConfig": {
"outductConfigName": "myconfig",
"outductVector": [

{
"name": "stcp egress",

NASA/TM-20230000826 20

"convergenceLayer": "stcp",
"nextHopNodeId": 2,
"remoteHostname": "localhost",
"remotePort": 4558,
"maxNumberOfBundlesInPipeline": 50,
"maxSumOfBundleBytesInPipeline": 50000000,
"finalDestinationEidUris": [

"ipn:2.1"
],

}
]

},
- outductConfigName and name are for user comment
- Can choose within the convergence layer: stcp, tcpcl v3, tcpcl v4, udp, ltp over udp
- remoteHostname is the IP or hostname that HDTN is sending bundles to. remotePort is the port
HDTN is sending bundles to.

- Final destination IDs can be multiple or one IPN URIs. IPN service number can be an * for a service
wildcard.

- nextHopNodeID, remotePort, maxNumberOfBundlesInPipeline, and maxSumOfBundleBytesInPipeline
must be integers.

"storageConfig": {
"storageImplementation": "asio single threaded",
"tryToRestoreFromDisk": false,
"autoDeleteFilesOnExit": true,
"totalStorageCapacityBytes": 8192000000,
"storageDiskConfigVector": [

{
"name": "d1",
"storeFilePath": ".\/store1.bin"

},
{

"name": "d2",
"storeFilePath": ".\/store2.bin"

},
]

},
- storageImplementation has 2 options: asio single threaded and stdio multi threaded. Default to
asio single threaded.

- tryToRestoreFromDisk: if the bundle storage was left used, when HDTN reloads it can restore the
state

- autoDeleteFilesOnExit: tells HDTN, when cleanly closed, to delete or save all storage bundles
- totalStorageCapacityBytes: storage module capacity or quota for bundles, in Bytes. NOTE: each
storage item in the storageDiskConfigVector must be able to hold totalStorageCapacityBytes divided
by the number items in the total storageDiskConfigVector

- storageDiskConfigVector is a striping scheme similar to RAID 0 but not using RAID itself. NOTE:
can have unlimited storage vector siz i.e. number of storeFilePath(s).

Miscellaneous notes for the HDTN configuration file:

• Depending on the convergence layer there may be additions to the “inductVector”, “outductVector”.
See section 12 for details.

• Ingress, Egress, and/or storage are optional additions to the HDTN configuration file depending on
the HDTN node need.

NASA/TM-20230000826 21

10.2 sink config

A typical sink configuration file includes an “inductConfigName” and an “inductVector”. The ”inductVec-
tor” requires the name, convergence layer, the bound port number, and the number of received circular
buffer elements. For details about this section, see 10.1 since the bp sink config file is a copy of the
inductConfigName/inductVector of the hdtn config file. This is because the bp sink config file goes to
the BPSink application detailed in section 8.2. Note: Depending on the convergence layer there may be
additions to the ”inductVector”. See section 12 for details. Structure example:
"inductsConfig": {

"inductConfigName": "myconfig",
"inductVector": [

{
"name": "stcp ingress",
"convergenceLayer": "stcp",
"boundPort": 4556,
"numRxCircularBufferElements": 200,

}
]

},

10.3 gen config

A typical gen configuration file includes an “outductConfigName” and an “outductVector”. The “out-
ductVector” requires: the name, convergence layer, next hop, remote hostname, remote port, bundle
pipline limit, and the final destination endpoint ID. For details about this section see 10.1 since the
gen config file is a copy of the outductConfigName/outductVector of the hdtn config file. This is due
to the gen config file going to the BPGen application detailed in section 8.1 Note: depending on the
convergence layer there may be additions to the “outductVector”. See section 12 for details. Structure
example:
{
"outductConfigName": "myconfig",
"outductVector": [

{
"name": "bpgen",
"convergenceLayer":"tcpcl v3",
"nextHopNodeId": 10,
"remoteHostname": "localhost",
"remotePort": 4556,
"maxNumberOfBundlesInPipeline": 5,
"maxSumOfBundleBytesInPipeline": 50000000,
"finalDestinationEidUris": [

"ipn:1.1",
"ipn:2.1",
"ipn:3.1"

],
}

]
},

10.4 distributed config

If you are running HDTN in distributed mode, you will need to add a command line argument --hdtn-
distributed-config-file as shown in https://github.com/nasa/HDTN/blob/master/tests/
test scripts linux/runscript distributed.sh to https://github.com/nasa/HDTN/blob/

NASA/TM-20230000826 22

https://github.com/nasa/HDTN/blob/master/tests/test_scripts_linux/runscript_distributed.sh
https://github.com/nasa/HDTN/blob/master/tests/test_scripts_linux/runscript_distributed.sh
https://github.com/nasa/HDTN/blob/master/config_files/hdtn/hdtn_distributed_defaults.json
https://github.com/nasa/HDTN/blob/master/config_files/hdtn/hdtn_distributed_defaults.json
https://github.com/nasa/HDTN/blob/master/config_files/hdtn/hdtn_distributed_defaults.json

master/config files/hdtn/hdtn distributed defaults.json.

"zmqIngressAddress": "localhost",
- IP or hostname of the machine running the Ingress module of HDTN

"zmqEgressAddress": "localhost",
- IP or hostname of the machine running the Egress module of HDTN

"zmqStorageAddress": "localhost",
- IP or hostname of the machine running the Storage module of HDTN

"zmqSchedulerAddress": "localhost",
- IP or hostname of the machine running the scheduler module of HDTN

"zmqRouterAddress": "localhost",
- IP or hostname of the machine running the router module of HDTN

"zmqBoundIngressToConnectingEgressPortPath": 10100,
- ZMQ bound TCP port of the Ingress module for internal messages sent from Ingress to Egress
- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqConnectingEgressToBoundIngressPortPath": 10160,
- ZMQ bound TCP port of the Ingress module for internal messages sent from Egress to Ingress
- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqBoundEgressToConnectingSchedulerPortPath": 10162,
- ZMQ bound TCP port of the scheduler module for internal link down messages sent from Egress to
Scheduler

- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqConnectingEgressBundlesOnlyToBoundIngressPortPath": 10161,
- ZMQ bound TCP port of the Ingress module for internal TCPCL opportunistic bundles sent from
Egress to Ingress

- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqBoundIngressToConnectingStoragePortPath": 10110,
- ZMQ bound TCP port of the Ingress module for internal messages sent from Ingress to Storage
- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqConnectingStorageToBoundIngressPortPath": 10150,
- ZMQ bound TCP port of the Ingress module for internal messages sent from Storage to Ingress
- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqConnectingStorageToBoundEgressPortPath": 10120,
- ZMQ bound TCP port of the Egress module for internal messages sent from Storage to Egress
- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqBoundEgressToConnectingStoragePortPath": 10130,
- ZMQ bound TCP port of the Egress module for internal messages sent from Egress to Storage
- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqConnectingRouterToBoundEgressPortPath": 10210,

NASA/TM-20230000826 23

https://github.com/nasa/HDTN/blob/master/config_files/hdtn/hdtn_distributed_defaults.json
https://github.com/nasa/HDTN/blob/master/config_files/hdtn/hdtn_distributed_defaults.json
https://github.com/nasa/HDTN/blob/master/config_files/hdtn/hdtn_distributed_defaults.json

- ZMQ bound TCP port of the Egress module for internal messages sent from Router to Egress
- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqConnectingTelemToFromBoundIngressPortPath": 10301,
- ZMQ bound TCP port of the Ingress module for internal messages sent from Ingress to Telemetry
module (GUI)

- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqConnectingTelemToFromBoundEgressPortPath": 10302,
- ZMQ bound TCP port of the Egress module for internal messages sent from Egress to Telemetry
module

- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

"zmqConnectingTelemToFromBoundStoragePortPath": 10303
- ZMQ bound TCP port of the Storage module for internal messages sent from Storage to Telemetry
module

- NOTE: This value is unused when using hdtn-one-process; still needs to be defined.
- NOTE: TCP is unidirectional in ZMQ
- Must be an integer

11 Contact Plans

The contact plan is a JSON file which has a list of all forthcoming contacts for all the nodes in the
network. The contact plans are accessible under HDTN/module/scheduler/src

11.1 JSON Fields

"contact": 1
- Identification number of the contact.
- Integer

"source": 10
- Source node number for that contact.
- Integer

"dest": 2
- Destination node number for that contact or next hop.
- Integer

"finalDestination": 2
- The end node where bundles are destined via that contact.
- Integer

"startTime": 25
- The time after which the link is UP for that contact
- Integer

"endTime": 38
- The time after which link will be DOWN for that contact
- Integer

"rateBitsPerSec": 1000
- The data rate in bits per second
- Integer

"owlt": 1
- One Way Light Time

NASA/TM-20230000826 24

- Integer

12 Convergence Layers and Routing Protocols

12.1 Overview of Compatible Convergence Layers

BP (Bundle Protocol) is used in space and other areas that experience intermittent connectivity and/or
long latencies. Figure 5 shows how BP fits into the protocol stack. The BP software included two major
revisions between version 6 and version 7. The HDTN software can understand both versions depending
if it is being used with current and legacy assets or future assets slated to use BPv7. Users may select
from the convergence layers listed below based on several factors, including the estimated round trip time,
estimated link rates, need for reliable transport, security requirements, and underlying network protocol
stack specific to their use-case.

TCPCL (Transmission Control Protocol (TCP) Convergence Layer) is utilized in space applications for
users using Internet Protocol (IP). In addition, this convergence layer provides a bridge from the Bundle
Protocol(BP), if hops are required, to get to the destination. TCP requires acknowledgment before the
message is sent and, for space, can be inefficient. HDTN currently uses TCP version 4.

UDP (User Datagram Protocol) is like TCP, except UDP does not require acknowledgment before
sending a message. This protocol is over IP but can be used with BP to enable hops, like TCP.

LTP (Licklider Transmission Protocol) is the main transport layer for BP. Therefore, no matter how
many hops or delays the message goes through to arrive at its destination, the message will remain intact.
The HDTN’s LTP is compatible with BP version 6 with and without custody.

STCP (Simple TCP) is a DTN simplified TCP convergence-layer adapter. This means STCP utilizes
standard TCP connections but is topologically adjacent in the BP network to transmit BP bundles
between nodes.

Figure 5.—Simplified Protocol Stack.

NASA/TM-20230000826 25

12.2 Additions to Config Files

Each convergence layer has additional “inductVector” and “outductVector” configuration fields. These
additions apply to all config files that utilize “inductVector” and “outductVector”, e.g. hdtn config,
sink config, and gen config. The additions are listed in the sections below.

12.2.1 TCPCLv3

Common induct and outduct fields:
"keepAliveIntervalSeconds": 15

- This is the minimum interval, in seconds, to negotiate as the Session Keepalive. See RFC7242
Section 5.6.

- Integer
"tcpclV3MyMaxTxSegmentSizeBytes": 200000

- This is the maximum segment size, in bytes, to use for transmitting data segments.
- Integer

Induct fields:
"numRxCircularBufferBytesPerElement": 100

- This is the maximum size, in bytes, of each element in the circular receive buffer.
- Integer

Outduct fields:
"tcpclAllowOpportunisticReceiveBundle": false

- This is whether to allow receiving opportunistic bundles.
- Boolean

12.2.2 TCPCLv4

Common induct and outduct fields:
"keepAliveIntervalSeconds": 15

- This is the minimum interval, in seconds, to negotiate as the Session Keepalive. See RFC7242
Section 5.6.

- Integer
"tcpcl4MyMaxTxSegmentSizeBytes": 200000

- This is the maximum segment size, in bytes, to use for transmitting data segments.
- Integer

"tlsIsRequired": false
- This is whether TLS (Transport Layer Security) is required.
- Boolean

Induct fields:
"numRxCircularBufferBytesPerElement": 100

- This is the maximum size, in bytes, of each element in the circular receive buffer.
- Integer

""tcpclV4MyMaxRxSegmentSizeBytes": 20000,
- This is the maximum segment size, in bytes, to use for transmitting data segments.
- Integer

"certificatePemFile": "C:hdtn ssl certificatescert.pem"
- This is a path to the file containing the certificate for SSL (Secure Socket Layer).

"privateKeyPemFile": "C:hdtn ssl certificatesprivatekey.pem"
- This is a path to the file containing the private key for SSL.

"diffieHellmanParametersPemFile": "C:hdtn ssl certificatesdh4096.pem"
- This is a path to the file containing the Diffie-Hellman parameters for TLS.

NASA/TM-20230000826 26

Outduct fields:
"tryUseTls": false

- This is whether TLS is required.
- Boolean

"useTlsVersion1 3": false
- This is whether TLS version 1.3 is required. If not specified, version 1.2 will be used.
- Boolean

"doX509CertificateVerification": false
- This is whether to do X.509 certificate validation is required.
- Boolean

"verifySubjectAltNameInX509Certificate": false
- This is whether to verify the subject alternative name in the X.509 certificate is required.
- Boolean

"certificationAuthorityPemFileForVerification":
"C:hdtn ssl certificatescert.pem"

- This is a path to the file containing the certificate authority.

12.2.3 UDPCL

Induct fields:
"numRxCircularBufferBytesPerElement": 100

- This is the maximum size, in bytes, of each element in the circular receive buffer.
- Integer

Outduct fields:
"udpRateBps": 800000

- This is the UDP bitrate.
- Integer

12.2.4 LTP

Common induct and outduct fields:
"clientServiceId": 1

- This is the ID of the client service.
- Integer

"ltpDataSegmentMtu": 1360
- This is the maximum size of the data portion (excluding LTP headers and UDP headers and IP
headers) of an LTP sender’s Red data segment being sent. Set this low enough to avoid exceeding
ethernet MTU to avoid IP fragmentation.

- Integer
"ltpMaxRetriesPerSerialNumber": 500

- This is the maximum number of retries/resends of a single LTP packet with a serial number before
the session is terminated.

- Integer
"ltpMaxUdpPacketsToSendPerSystemCall": 1

- This is the maximum number of UDP packets to send per system call.
- Integer

"ltpRandomNumberSizeBits": 64
- This is whether to use a 32 or 64 bit random number is required.
- Integer (32 or 64)

"oneWayLightTimeMs": 1000
- This is the one way light time. Round trip time (retransmission time) is computed by (2 * (oneWay-
LightTime + oneWayMarginTime)).

- Integer

NASA/TM-20230000826 27

"oneWayMarginTimeMs": 200
- This is the one way margin (packet processing) time. Round trip time (retransmission time) is
computed by (2 * (oneWayLightTime + oneWayMarginTime)).

- Integer
"remoteLtpEngineId": 20

- This is the ID of the remote LTP engine.
- Integer

"thisLtpEngineId": 10
- This is the ID of this LTP engine.
- Integer

"delaySendingOfReportSegmentsTimeMsOrZeroToDisable": 20
- Time in milliseconds to defer data retransmision in order to efficiently handle out-of-order report
segments.

- Integer
"keepActiveSessionDataOnDisk": false

- Supports the running of LTP sessions (both for receivers and senders) from a solid-state disk drive
in lieu of keeping session data-segments in memory.

- If this feature is enabled, it also uses the added configuration values activeSessionDataOnDiskNew-
FileDurationMs and activeSessionDataOnDiskDirectory to determine where on the drive
to temporarily store sessions.

- As this is still experimental, if a LTP link goes down, bundles don’t yet get transferred to storage
and get dropped.

- Boolean

Induct fields:
"ltpMaxExpectedSimultaneousSessions": 500

- This is the number of expected simultaneous LTP sessions for this engine.
- Integer

"ltpRemoteUdpHostname": "localhost"
- This is the remote IP address or hostname.

"ltpRemoteUdpPort": 4556
- The remote UDP port
- Integer

"ltpRxDataSegmentSessionNumberRecreationPreventerHistorySize": 1000
- This is the number of recent LTP receiver history of session numbers to remember. If an LTP
receiver’s session has been closed and it receives a session number, within the history, the receiver
will refuse the session to prevent a potentially old session from being reopened, which has been
known to happen with IP fragmentation enabled.

- Integer
"preallocatedRedDataBytes": 200000

- ESTIMATED BYTES TO RECEIVE PER SESSION
- The number of Red data contiguous bytes to initialized on a receiver. Make this large enough to
accommodate the max Red data size so that the LTP receiver does not have to reallocate, copy,
and/or delete data while it is receiving Red data. Make this small enough so that the system does
not have to allocate too much extra memory per receiving session.

- Integer

Outduct fields:
"ltpCheckpointEveryNthDataSegment": 0

- This enables accelerated retransmission for an LTP sender by making every Nth UDP packet a
checkpoint.

- Integer
"ltpMaxSendRateBitsPerSecOrZeroToDisable": 0

- This is rate limiting UDP send rate in bits per second.

NASA/TM-20230000826 28

- Integer
"ltpSenderBoundPort": 1113

- This is the bound port of the LTP sender.
- Integer

"ltpSenderPingSecondsOrZeroToDisable": 15
- This is the number of seconds between LTP session sender pings during times of zero data segment
activity. An LTP ping is defined as a sender sending a cancel segment of a known non-existent
session number to a receiver, in which the receiver shall respond with a cancel ACK in order to
determine if the link is active.

- Integer

12.2.5 STCP

Common induct and outduct fields:
"keepAliveIntervalSeconds": 17

- This is the minimum interval, in seconds, to negotiate as the Session Keepalive.
- Integer

13 Test Configurations and Instructions

13.1 TCP Loopback Test

To run this simple Loopback Test as shown in Figure 6, from the HDTN source directory run the
command:

./runscript.sh
This works by running 3 modules for about 30 seconds:

- BPGen - Generates the bundles and sends them to the Ingress module.

- HDTN One Process - Launches the modules for HDTN as a single process. Since this is a cutthrough
mode test, Storage is not used. Ingress, Egress, Router and Scheduler are run.

- BPSink - Receives the bundle data from Egress.

Figure 6.—HDTN Loopback test.

NASA/TM-20230000826 29

Figure 7.—HDTN 2 nodes test.

13.2 Two Node LTP Test

This test, shown in Figure 7 relies on having two machines running HDTN: the sender and the receiver.
The sender will run BPGen, and HDTN One Process. The receiver will run BPSink, and HDTN One Pro-
cess. Example scripts for this can be found under HDTN/tests/test scripts linux/LTP 2Nodes Test.

Separate machines with HDTN installed can each run either the send or receiver. If using these
runscripts this way, users should update the remoteHostname field in each config file to the proper IP ad-
dresses. The config files for these scripts can be found under HDTN/config files/hdtn/hdtn Node1 ltp.json
and HDTN/config files/hdtn/hdtn Node2 ltp.json.

When running this test, users should start the receiver script before the sender script.

13.3 Four Nodes STCP Test

Shown in Figure 8, this test relies on having 4 machines running HDTN and uses the router module.
Node 1 runs BPGen and HDTN One Process. Node 2 and 3 only run HDTN One Process. The final
destination Node 4 will run HDTN One Process and BPSink.

In Node 1’s HDTN config file, the next hop is configured to node 3 originally. After the router
computes the optimal route to the final destination, the outduct will select node 2 as next hop instead. At
initialization, the HDTN json config file for each node has all possible next hops. If we have multiple hops
leading to the same final destination, only one Outduct should be initialized with the final destinations
vector, and the other next hops Outducts should be dormant, ie having no values initialized in their final
destinations json fields. Router will compute the best route and send an event to Egress to update the
Outduct to use the nextHop for that optimal route leading to the final destination.

The runscripts for each node can be found under HDTN/tests/test scripts linux/Routing Test.
The config files for Node 1 can be found at HDTN/config files/hdtn/hdtn node1 cfg.json with
the other node config files immediately following it. If running on separate machines, make sure to update
the remoteHostname field in each config file to the proper IP addresses. Users should start the runscript
for each node ordered from receiver to sender, i.e start Node 4, then Nodes 3, 2, and 1.

NASA/TM-20230000826 30

https://github.com/nasa/HDTN/tree/master/tests/test_scripts_linux/Routing_Test

Figure 8.—HDTN Four Node STCP Routing test.

13.4 Integrated Tests

A series of integrated tests were added using Boost Test Framework. These tests are automatically run as
part of our CI/CD pipeline. The main tests currently included are HDTN Loopback tests in cutthrough
and storage modes (using contact plans with or without link disruptions).

14 Containerization

HDTN currently supports the use of Docker and Kubernetes to deploy containers with HDTN built with
all of its required dependencies.

14.1 Docker Instructions

First make sure docker is installed.
• apt-get install docker

Check the service is running.
• systemctl start docker

There are currently two Dockerfiles for building HDTN, one for building an Oracle Linux container and
the other for building an Ubuntu. This command will build the Ubuntu one:

• docker build -t hdtn ubuntu containers/docker/ubuntu/.

The -t sets the name of the image, in this case hdtn ubuntu. Check the image was built with the
command:

• docker images

Now to run the container use the command:
• docker run -d -t hdtn ubuntu

Check that it is running with:
• docker ps

To access it, you’ll need the CONTAINER ID listed with the ps command

NASA/TM-20230000826 31

https://github.com/nasa/HDTN/blob/master/tests/integrated_tests/src/integrated_tests.cpp

• docker exec -it container id bash

Stop the container with
• docker stop container id

The same container can either be restarted or removed. To see all the containers Use:
• docker ps -a

These can still be restarted with the run command above. To remove one that will no longer be used:
• docker rm container id

14.2 Docker Compose Instructions

Docker compose can be used to spin-up and configure multiple nodes at the same time. This is done
using the docker compose file found under HDTN/containers/docker/docker compose.

• cd containers/docker/docker compose

This file contains instructions to spin up two containers using Oracle Linux. One is called hdtn sender
and the other hdtn receiver. Start them with the following command:

• docker compose up

On another bash terminal these can be accessed using the command:
• docker exec -it hdtn sender bash
• docker exec -it hdtn receiver bash

This setup is perfect for running a test between two hdtn nodes. An example script for each node can
be found under HDTN/tests/test scripts linux/LTP 2Nodes Test/. Be sure to run the receiver script first,
otherwise the sender will have nowhere to send to at launch.

14.3 Kubernetes Instructions

Download the dependencies
• sudo apt-install docker microk8s

The first step is to create a docker images to be pushed locally for kubernetes to pull:
• docker build docker/ubuntu/. -t myhdtn:local

Check that it was built:
• docker images

Next we build the image locally and inject it into the microk8s image cache
• docker save myhdtn > myhdtn.tar
• microk8s ctr image import myhdtn.tar

Confirm this with:
• microk8s ctr images ls

Now we deploy the cluster, the yaml must reference the injected image name
• microk8s kubectl apply -f containers/kubernetes/hdtn 10 node cluster.yaml

There should now be ten kubernetes pods running with HDTN. See them with:
• microk8s kubectl get pods

NASA/TM-20230000826 32

To access a container in a pod, enter the following command:
• microk8s kubectl exec -it container name -- bash

When you’re finished working with this deployment, delete it using:
• microk8s kubectl delete deployment hdtn-deployment

Use the get pods command to confirm they’ve been deleted
• microk8s kubectl get pods

15 Troubleshooting

By default HDTN is built in Release mode. To enable DEBUG mode during build use: cmake .. -
DCMAKE BUILD TYPE=Debug

15.1 Logging

Logging is controlled by CMake cache variables. Build (or rebuild) HDTN after making the following
changes under HDTN/build/CMakeCache.txt. By default logging to a file is turned off to reduce resource
draw.

- LOG LEVEL TYPE controls which messages are logged. The options, from most verbose to least
verbose, are TRACE, DEBUG, INFO, WARNING, ERROR, FATAL, and NONE. All log statements
using a level more verbose than the provided level will be compiled out of the application. The
default value is INFO.

- LOG TO CONSOLE controls whether log messages are sent to the console. The default value is
ON.

- LOG TO ERROR FILE controls whether all error messages are written to a single error.log file.
The default value is OFF.

- LOG TO PROCESS FILE controls whether each process writes to their own log file. The default
value is OFF.

- LOG TO SUBPROCESS FILE controls whether each subprocess writes to their own log file. The
default value is OFF.

15.2 LTP Tuning Recommendations

There are several fields in the LTP configuration that will impact performance.

• Client service id corresponds to the LTP Client Service Identifiers as described in RFC7116. In gen-
eral, select 1 for compatibility with most DTN implementations. See https://www.iana.org/assignments/ltp-
parameters/ltp-parameters.xhtml. The following values are common for the client service id.

1. 0 - Reserved

2. 1 - Bundle Protocol

3. 2 - LTP Service Data Aggregation

4. 3 - CCSDS File Delivery Service

• The following parameters must match on the sender and receiver:

1. OneWayLightTimeMs

2. OneWayMarginTimeMs

NASA/TM-20230000826 33

3. LtpMaxRetriesPerSerialNumber

• To properly tune LTP for a system with appreciable delay, make sure 2 x (oneWayLightTimeMs +
oneWayMarginTimeMs) is slightly larger than the expected round trip time.

• Set ltpRandomNumberSizeBits to 32 for compatibility with DTNME. For HDTN to HDTN testing
use 64.

• Set ltpMaxRetriesPerSerialNumber to a larger number (around 100) on a system that has significant
disruptions. For a system that does not experience significant loss, 5 or less should be acceptable.

• If LTP is being used on a lower-rate communication system that does not provide flow control (for
example a radio that supports several Mbps) it is important to set ltpMaxSendRateBitsPerSecOrZe-
roToDisable to slightly lower than the expected link rate. Failure to do so may cause dropped
packets since LTP is based on UDP. Alternatively, the max rate can be set per contact in the
contact plan by setting rateBitsPerSec to a nonzero value. If both fields are set, rateBitsPerSec in
the contact plan will take precedence.

• For a particular outduct, the max data it can hold in its sending pipeline shall not exceed, whatever
comes first, either

1. More bundles than maxNumberOfBundlesInPipeline

2. More total bytes of bundles than maxSumOfBundleBytesInPipeline

• An error is thrown on startup if (maxBundleSizeBytes * 2) is greater than maxSumOfBundleBytesIn-
Pipeline.

• Worst case RAM memory usage is given by summation of all outduct maxSumOfBundleBytesIn-
Pipeline. The sum should not exceed the system memory.

• If using Ethernet small frames, it is recommended to set the LTP MTU to 1360 to prevent IP
fragmentation.

• Please see LtpEngineConfig.h docstrings for specific details related to LTP configuration.

1. https://github.com/nasa/HDTN/blob/master/common/ltp/include/LtpEngineConfig.h

16 Notes

16.1 TLS Support for TCPCL Version 4

TLS Versions 1.2 and 1.3 are supported for the TCPCL Version 4 convergence layer. The X.509 certificates
must be version 3 in order to validate IPN URIs using the X.509 ”Subject Alternative Name” field. HDTN
must be compiled with ENABLE OPENSSL SUPPORT turned on in CMake. To generate (using a single
command) a certificate (which is installed on both an outduct and an induct) and a private key (which is
installed on an induct only), such that the induct has a Node Id of 10, use the following command:
openssl req -x509 -newkey rsa:4096 -nodes -keyout privatekey.pem -out cert.pem -
sha256 -days 365 -extensions v3 req -extensions v3 ca -subj "/C=US/ST=Ohio/
L=Cleveland/O=NASA/OU=HDTN/CN=localhost" -addext "subjectAltName =
otherName:1.3.6.1.5.5.7.8.11;IA5:ipn:10.0" -config /path/to/openssl.cnf

Note: RFC 9174 changed from the earlier -26 draft in that the Subject Alternative Name changed
from a URI to an otherName with ID 1.3.6.1.5.5.7.8.11 (id-on-bundleEID).

• Therefore, do NOT use: -addext “subjectAltName = URI:ipn:10.0”

• Instead, use: -addext “subjectAltName =

otherName:1.3.6.1.5.5.7.8.11;IA5:ipn:10.0”

To generate the Diffie-Hellman parameters PEM file (which is installed on an induct only), use the
following command:

openssl dhparam -outform PEM -out dh4096.pem 4096

NASA/TM-20230000826 34

16.2 BP Version 6 and Version 7

Both versions of BP, BP version 6 (BPv6) and BP version 7 (BPv7), are similar in their core layout.
Bundles are made up of various blocks of information that are necessary for nodes in a DTN network
to execute store-and-forward and routing behavior. There are only two required blocks in a bundle: a
primary block (the beginning of a bundle), and a payload block (the end of a bundle). Besides these
required blocks, there are optional extension blocks between the primary and payload block. These
extension blocks can include information such as hop limits, information about the previous/sender node,
and class of service. While BPv6 and BPv7 bundles have the same bundle block structure, the details
of included fields and field encoding within these blocks varies greatly. This section will discuss major
differences relevant to processing both Bundle Protocol versions.1

16.2.1 Bundle Protocol Version 6

This section highlights unique characteristics of BPv6 and details relevant to parsing BPv6 bundles in a
resource-constrained parser. Figure 9 provides a general diagram of the layout of BPv6 bundles.

Figure 9.—Layout of BPv6 bundles.

1This section is an excerpt from (https://www.mdpi.com/2673-8732/3/1/2).

NASA/TM-20230000826 35

Figure 10.—Example SDNV encoding. The Most Significant Bit (MSB) or leftmost bit in the first two
octets are a 1 indicating that this is not the last octet within this piece of data.

BPv6 uses the Self-Delimiting Numeric Value (SDNV) encoding scheme. Compared to network pro-
tocols that have fields with pre-defined bit lengths, SDNV preserves bandwidth (by avoiding a minimum
length), and allows for future extensibility and scalability (by avoiding a maximum length). The SDNV
encoding scheme encodes any data into several octets of bits, where the 7 least significant bits (LSB)
encodes the original data, and the most significant bit (MSB) of an octet determines whether or not it is
the last octet of data. A MSB with a value of 0 indicates that it is the last octet of data, with all other
octets having a MSB of 1. Figure 10 shows the decimal value 86,400 encoded using SDNV.

BPv6’s SDNV encoding adds significant complexity to a parser compared to other networking protocols
(e.g. IP, UDP, and TCP) that have fields with known fixed-length with additional unknown options. For
example, IP includes optional fields, but the length of these optional fields can be determined by examining
the Internet Header Length (IHL) field which has a pre-determined position and length. With BPv6 and
SDNV encoding, it is impossible to parse subsequent blocks or fields without examining all fields in order.
Additionally, when parsing an individual SDNV-encoded field, it is impossible to know the length of this
field until all bits of the field are examined. This prevents a hardware-constrained parser from having
known compile-time behavior about a protocol, which introduces potential bugs and sub-optimal runtime
performance.

Another complexity in parsing BPv6 are endpoint IDs (EID), which are names for destinations of
bundles. EIDs are represented as Uniform Resource Identifiers (URI), of which there are currently two
standardized URI schemes for DTN EIDs: the dtn scheme and the ipn scheme. The dtn scheme is more
permissive and allows for arbitrarily complex character strings, looking similar to web URLs. However,
the ipn scheme uses pairs of unsigned integers. Both of these schemes are able to represent an identifier
for a bundle node and a demultiplexing token.

As EIDs can potentially be arbitrarily long, BPv6 utilizes EID dictionaries, an array of value pairs
representing EIDs (pair of scheme name and scheme-specific value) in the primary block, that specifies all
relevant EIDs for a given bundle. This can minimize bandwidth by allowing fields that need to reference
an EID to simply reference offsets or indices in this dictionary, rather than encoding the actual endpoint
ID.

Introduced four years after the BPv6 specification, Compressed Bundle Header Encoding (CBHE)
is a mechanism to further preserve bandwidth, by avoiding encoding EID dictionaries. In a situation
that meets the requirements for CBHE, encoding a dictionary can be skipped, with important EID
information encoded as ipn scheme EIDs in the primary block’s source EID, destination EID, report-
to EID, and custody EID offset fields. With CBHE, bundles can be transmitted without a dictionary,
and the dictionary can then be rebuilt at the receiving node. This introduces complexity to a resource-
constrained parser, as a parser must now be able to handle two different versions of a primary block. The
CBHE version not only removes the EID dictionary, but changes the meaning of the EID fields, requiring
significantly more logic to be programmed into a parser to properly handle both versions of the primary

NASA/TM-20230000826 36

Figure 11.—Layout of BPv7 bundles.

block.

16.2.2 Bundle Protocol Version 7

This section highlights unique characteristics of BPv7 and details relevant to parsing BPv7 bundles in a
resource-constrained parser. A general diagram of the layout of BPv7 bundles is shown in Figure 11.

BPv7 changes the encoding of bundles from SDNV-formatted to ”Concise Binary Object Representa-
tion” (CBOR). CBOR provides a structured serialization format, while maintaining flexibility and com-
pactness. The layout of the CBOR data model is a superset of JavaScript Object Notation (JSON),
containing several data types (e.g. integers, strings, maps, and arrays). An instance of a CBOR data type
is a data item. In BPv7, a single bundle is a CBOR indefinite-length array, comprised of an indefinite
number of blocks which are encoded as CBOR definite-length arrays. The end of a bundle is terminated
by a stop code (0xff). An example BPv7 bundle and a decoding of its primary block is shown in Figure
12. This CBOR encoding introduces complexity to a parser as it must now maintain more metadata
about the bundle, and additional logic is required to parse each unique possible CBOR data type.

NASA/TM-20230000826 37

Figure 12.—Decoding of BPv7 bundle (left: Wireshark capture of BPv7 bundle with primary block bytes
highlighted; right: CBOR decoding).

Alongside an encoding change, a couple important components were removed from the BP specification
in BPv7. A removed feature in BPv7 is class of service. Through bundle processing flags, a BPv6 bundle
requests either bulk, normal, or expedited service throughout the network. Another removed feature is
custody transfer, also implemented through bundle processing flags, which is used to request another
node to take responsibility for a given bundle. Successful custody transfer allows DTN nodes to clear
space that was used for a bundle, knowing that another node is now responsible for its end-to-end delivery.
BPv7 removes both of these features from the BP specification, however, they are now handled in different
locations. In the future, class of service may be handled as an extension block, and custody transfer in the
bundle-in-bundle encapsulation (BIBE) specification. Removing these features from the BP specification
adds complexity for a BP parser and translator. A BP parser must recognize that the bundle processing
flag bits for these removed features are still present in BPv7 but not used, and that BPv7 no longer
retains information about a custody EID. Lastly, BPv7 adds optional error detection to bundle blocks
through the form of Cyclic Redundancy Check (CRC) error-detecting codes (CRC-16 and CRC-32). This
enables DTN nodes to ensure the data integrity of received bundle.

NASA/TM-20230000826 38

	High-rate Delay Tolerant Networking Overview
	Architecture
	Ingress
	Scheduler
	Storage
	Router
	Egress
	Web Interface

	Requirements
	Tested Platforms
	Dependencies
	Linux Dependencies
	Windows Dependencies

	 Known Issues

	Build HDTN
	Notes on HDTN CMake
	Build HDTN on Linux
	Optional X86 Hardware Acceleration
	 Storage Capacity Compilation Parameters
	Build HDTN on Windows with its Dependencies
	HDTN Developers:
	Setup Instructions for Developers Using Installed HDTN Libraries within their own Projects

	Build HDTN on Raspberry Pi
	Debugging Errors/Problems

	Building for ARM on x86
	Setting up ARM Chroot on x86 Desktop
	Setting up HDTN Dependencies in the Chroot Environment
	Compiling HDTN
	Useful Commands

	Running HDTN
	Directory Structure
	Unit Tests
	Integrated Tests

	Web User Interface
	Running the Web User Interface
	Statistics Page
	System View Page
	Config Page
	Statistics Logging

	Simulations
	HDTN Applications
	BPGen
	BPSink
	BPSendFile
	BPReceiveFile
	BPing

	Runscript
	Path Variables
	bpsink
	Egress
	Scheduler
	Router
	Ingress
	Storage
	bpgen
	bping
	CleanUp
	HDTN One Process

	Config Files
	hdtn_config
	sink_config
	gen_config
	distributed_config

	Contact Plans
	JSON Fields

	Convergence Layers and Routing Protocols
	Overview of Compatible Convergence Layers
	Additions to Config Files
	TCPCLv3
	TCPCLv4
	UDPCL
	LTP
	STCP

	Test Configurations and Instructions
	TCP Loopback Test
	Two Node LTP Test
	Four Nodes STCP Test
	Integrated Tests

	Containerization
	Docker Instructions
	Docker Compose Instructions
	Kubernetes Instructions

	Troubleshooting
	Logging
	LTP Tuning Recommendations

	Notes
	TLS Support for TCPCL Version 4
	BP Version 6 and Version 7
	Bundle Protocol Version 6
	Bundle Protocol Version 7

