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I. Supplementary Sections  
 
S1. Marine airmass source attribution and covariation in Greenland [MSA] records 
a. Marine airmass source attribution by site 
A notable degree of low-frequency covariability is observed amongst preexisting methanesulfonic acid-
concentration ([MSA]) records from Greenland (Extended Data Fig. 4). Prior authors have independently 
identified a c. 150-200 year decline in [MSA] in the 19th-20th centuries across several ice core [MSA] 
records18,31,34, though its attribution has thus far remained uncertain. Due to i) the particularly short 
atmospheric residence time of MSA (~7 days, a function of the species’ high hygroscopicity and 
susceptibility to particle scavenging62), and ii) known differences in the primary moisture source of 
airmasses arriving to Greenland63,64, broad covariation of [MSA] across Greenland is not necessarily 
expected65. 

In order to better understand the physical basis behind the observed [MSA] covariation, we 
analyzed summertime (JJA) trajectory patterns of atmospheric air parcels arriving at each ice core site in 
our Greenland array using the Hybrid Single-Particle Lagrangian Integrated Trajectory model 
(HYSPLIT), version 4.9 (ref. 50). We assumed the primary source region of Greenlandic-deposited MSA 
to be commensurate with the most-probable summertime (JJA) trajectory path(s) taken by low-lying, 
oceanic (i.e., existing within the marine boundary layer) air parcels traveling en route to each ice core site. 
Due to positioning errors of individual trajectories, which increase with distance from the particle 
receptor sites46, we adopted a probabilistic approach here, in which a large-number of 7-day back-
trajectories were computed (one particle released each day at 12:00:00 PM from AD 1948-2013) for each 
site and integrated into probabilistic marine airmass transport density maps. These maps, normalized on a 
0-1 relative scale, provide an index of the relative probability (0-1 = least to most probable, respectively) 
that a given atmospheric particle would travel over a given oceanic grid box at a given time. Using 
information of atmospheric height (above sea level) recorded for each particle, we similarly computed 
mean trajectory elevations for each latitude-longitude bin. 

The JJA marine-airmass transport density maps for each site can be viewed in Extended Data 
Figure 5. Qualitatively, the sites appear to lie along a spectrum, whereby sites situated more southerly in 
Greenland receive predominantly easterly- to southeasterly-sourced (the Irminger Sea and Subarctic Gyre 
(SPG) regions) trajectories, while sites situated further north on the GrIS exhibit a predominantly 
westerly-sourced trajectory pattern.  

To more-objectively differentiate the sites by their varying airmass transport densities (Extended 
Data Figure 4), we performed factor analysis with varimax rotation66 on each site’s airmass transport 
density field under the a priori assumption of two underlying airmass source regions, or “factors”.  The 
two inferred factors, as qualitatively identified above, are assumed to represent either 1) the Irminger 
Sea/SPG or 2) Baffin Bay/Labrador Sea as primary airmass sources. The results of the experiment are 
summarized by analysis of the squared loadings, or communalities, shown in Fig. 1b, which represent the 
fraction of the variance explained by each factor (columns) at each site (rows). For 11/12 sites, over 90% 
of the variance is explained, indicating our a priori assumption of retaining two primary MSA source 
regions to be sufficient (the remaining site, 20D, has >80% of its variability explained). As expected, the 
factor analysis correctly identifies the most southerly GrIS sites (20D and GC; Extended Data Figure 4) as 
having the highest Factor #1 scores, while the most northerly GrIS sites (e.g., NGTB20, NGTB26, 
TUNU) score highest on the Factor #2 loading. Grouping the sites as either Factor #1 or #2 sites based on 
the highest communality score achieved by each site indicates the seven most-southerly GrIS sites – 20D, 
GC, D4, Summit2010, GRIP93a, NGRIP, and B16 – are primarily derived from the Irminger Sea/SPG, 
while airmasses arriving at the five most-northerly GrIS sites – NGTB18, NGTB20, NGTB21, NGTB26, 
and TUNU – may be of predominantly Baffin Bay/Labrador Sea origin (notwithstanding notable 
similarities in all sites’ median atmospheric elevation grids; Extended Data Figure 5). 

Importantly, analysis of the Factor #1 and Factor #2 communalities also indicate that airmass 
sources across GrIS sites are not wholly independent, but instead represent variable mixtures of easterly 



(Factor 1) vs. westerly (Factor 2) sourced airmasses. As summarized by Figure 1b, a Factor #1 score of 1 
roughly represents 100% of airmass trajectories sourced from the Irminger Sea, while a Factor #2 score of 
1 roughly indicates 100% of airmass trajectories sourced from Baffin Bay/Labrador Sea. Since no sites 
displayed a communality score as high as 1, this – in combination with similarities found between the 
median particle elevation maps – suggests a common [MSA] signal should be embedded within all 
Greenlandic sites. In the following section, we explore this prediction more explicitly by analyzing the 
[MSA] records produced for each site. 
 
b. Exploratory principal component analysis of Greenlandic [MSA] records 
To explore the degree of similarity amongst the Factor #1 and Factor #2 sites’ [MSA] records, we plot in 
Extended Data Figure 6 the unit-variance standardized and mean-centered [MSA] time series (relative to 
A.D. 1821– 1985) for all 12 sites over the time period A.D. 1767 – 2013, the oldest year still containing 
≥75% (at least 9/12) of the original records.  If composited into either Factor #1 or Factor #2 sites, 
remarkably high coherence, even at interannual-scales, is found in the two time series (r2 = 0.40, p < 
0.0001; ref. 55). A notable feature amongst records from both airmass source regions is the conspicuous 
~150-200 year decline in [MSA], beginning at c. A.D. 1800-1850, and occurring into the late 20th century.  

To better extract mode(s) of covariability amongst individual records, we performed an 
exploratory principal component analysis (PCA; Section S2) using records from both airmass source 
regions. PCA is a commonly used Eigen decomposition technique, which allows one to linearly re-project 
a dataset as a new set of basis vectors, whereby each new projection represents a mutually-orthogonal 
representation of the former while representing a progressively smaller variance fraction of the original 
dataset (e.g., ref. 67). We again limited the analysis from the most-recently available data (i.e., A.D. 
2013) until A.D. 1767. As some records have missing data at their extremities, a statistical data-infilling 
procedure was used for the PCA analysis42, as elaborated in the Methods portion of the main text, and the 
next section (S2).   

Results of the PCA for the Factor #1 and Factor #2 [MSA] records, revealed a slightly improved 
degree of similarity (not shown; r2 = 0.43, p < 0.0001; ref. 55) amongst each factor’s first principal 
components (PC1), which capture ~50 and 33% of the variability, respectively. The significant correlation 
found between the two PC1’s is also impervious to linear detrending (ref. 55), underscoring the high 
degree of interannual-decadal scale covariability captured by the Eigen decomposition. Conversely, no 
tailing modes of [MSA]-variability (including permutations therein) were significantly correlated, 
suggesting these modes represent locally confined bioproductivity signals, or “noise”, amongst the 
records. The analysis provides robust evidence that PC1 successfully captures a common mode of 
Greenlandic-wide MSA variability, as independently predicted by the joint distributions of each Factor’s 
airmass transport probability densities. As such, using the combined Greenlandic PC1 signal (capturing a 
median/mode of ~44% of the variability amongst the 12 records) we consider the Greenlandic sites as a 
single “MSA receptor” (Fig. 2). 
 
c. Spatiotemporal stability of marine-airmass trajectories and Arctic-influence 
While recent reconstructions have suggested more frequent and intense intrusions of upper-atmosphere 
Arctic “jet stream” meanders into the mid-latitudes since the mid 1960’s (e.g., ref. 68), current evidence 
does not suggest such changes have had a discernable effect on the background state of subarctic Atlantic-
derived bioaerosol deposition over the GrIS during our ~250-year study period.  We explored this 
argument explicitly over the period AD 1948 to 2013 by systematically cataloguing the annual percentage 
of hourly oceanic trajectory-endpoints situated at latitudes further north than each ice core site’s location. 
We found no sites showing long-term trends in northern-derived trajectories significantly different than 
zero (p < 0.05), nor evidence of shifting intensities in Arctic-derived airmasses, despite the existence of 
multidecadal trends in GrIS-[MSA] over the same time period.  More broadly, our results underscore 
prior studies that have analyzed the source of precipitating Greenland airmasses in equable69-70, as well as 
substantially varied, background climate states71 that each show consistency in the North Atlantic as a 
stable source of marine aerosols and moisture to Greenland.  



 
S2. Comparison of data infilling methodologies for [MSA]-PC1 computation 
Prior to computing the PCA of the 12 Greenland [MSA] records over the period A.D. 1767-2013, 
multiple records required data infilling at their extremities.  The method for data infilling used is 
described at length in the Methods portion of the main text.  Here, we compare two additional methods 
for data infilling in order to test the veracity of [MSA]-PC1: 1) a Probabilistic PCA (“PPCA”) algorithm 
is tested, which relies on the expectation maximization (EM) algorithm72, as well as 2) a nested PCA-
compositing approach, a hybrid methodology incorporating the EOF-based imputation algorithm42 
discussed in the main text.  

We briefly describe the steps taken in applying the two methodologies for computation of 
[MSA]-PC1 and its uncertainty: 
PPCA: Details on the PPCA algorithm (including its derivation and technical considerations for 
implementation) are described at length in multiple previous studies73.  In general, PPCA can be viewed 
as a probabilistic extension of classical PCA, one that iteratively seeks the principal q axes of an observed 
d-dimensional dataset (where q < d) that maximizes variance within a projected subspace, by explicitly 
incorporating maximum likelihood estimates of an isotropic (Gaussian) error model74. We take advantage 
of the MATLAB™ function “ppca.m” (available since R2013a in the Statistics and Machine Learning 
Toolbox) for implementation of the PPCA algorithm. As described in the Methods, we use a PCA-
bootstrap routine (n = 10,000 realizations of [MSA]-PC1 based on random sampling with replacement of 
the 12 [MSA] records43) to estimate confidence limits from the PPCA-derived [MSA]-PC1 signal. 
Nested EOF:  The nested PCA approach combines classical PCA, and the EOF data infilling routine.  
Specifically, we take an approach identical to that described in the main text for the imputation of missing 
values42, of missing values since A.D. 1821, the oldest year represented by all 12 records (as such, the 
infilled data represents the leading modes of variance for the period A.D. 1821-2013). Following infilling 
of missing values (for which m = 1,000 realizations were conducted, see Methods), we conducted PCA 
analysis within a nested loop, in which for each nest a PCA was conducted using a successively smaller 
number of records, based on temporal availability of the records. Following computation of the principal 
components in each nest, each PC1 was checked for qualitative and statistical consistency during periods 
of common overlap with the former nest’s PC1. Provided consistency, the PC1 components were then 
spliced together. In total, our criterion of >75% record retention for computation of [MSA]-PC1 required 
only 4 nests to be computed.  We again use the PCA-bootstrap routine (random sampling with 
replacement of n [MSA] records, where n = 12, 11, 10, and 9 for successive nests43) for confidence level 
estimation. 

All three methods for PCA with missing data are essentially identical (r > 0.99), although PPCA 
generally tends to produce slightly more conservative uncertainty estimates (not shown). While we 
ultimately chose to use the EOF-based infilling routine42 for its slightly more transparent methodology 
and interpretation (relying, at its core, only on fundamental concepts of linear algebra), conclusions of the 
study do not appear overly sensitive to which PCA-method is used in calculating [MSA]-PC1. 
  
S3. Satellite-derived net primary productivity (NPP) and temporal trends (1998 – 2016) 
In this section, we provide a brief overview, including a model- and satellite-based inter-comparison, of 
NPP trends in the subarctic Atlantic.  NPP is the rate of photosynthetic derived carbon fixation minus the 
rate of (bioavailable) carbon respiration by autotrophic communities. It has been estimated using satellite 
observations (~8 day reoccurring) for nearly ~2 decades, though is by itself not a property that can be 
measured directly from satellite platforms. Rather, estimates of NPP are based on empirically derived 
algorithms incorporating satellite-retrieved estimates of ocean physical properties such as (albeit not 
necessarily including or limited to) temperature, color (reflected wavelength), and (or) incident 
(photosynthetically-active) radiation. 

We compared NPP using output from two independent algorithms: i) the (standard) Vertically 
Generalized Production Model (VGPM, ref. 12), and ii) the Carbon-based Production Model (CbPM; ref. 



57). Both products include overlapping estimates of (monthly-contiguous) NPP estimates (SeaWiFS: Oct 
1997 – Dec 2007; MODIS-Aqua: Jul 2002 – Dec 2017), and are available at mean-monthly 1/6˚x1/6˚ 
gridded resolution. Models i) and ii), and variants therein, are among the most commonly used models of 
NPP75-76. The VGPM model is primarily chlorophyll- 𝛼𝛼  based and temperature dependent 
(parameterization of photosynthetic efficiency with sea-surface temperature based on a polynomial 
relationship12; for a comparison of VGPM variants incorporating different parameterizations, see ref. 76). 
Model ii) represents a complimentary, chlorophyll-independent description of NPP. The CbPM relates 
satellite-retrieved particle back-scattering variations to planktonic biomass concentration, which is in turn 
related to planktonic growth rate (i.e., NPP) via chlorophyll-carbon (planktonic biomass) ratios57. More 
details on the intercomparison of the models, and additional references therein, can be found linked via 
the URL in Table S3, or in the supplementary of ref. 75.  

We assessed trends in subarctic Atlantic (50-65˚N, 60-10˚W) NPP using both models (VGPM 
and CbPM) and satellite sensors (SeaWiFS and MODIS-Aqua). The results are encapsulated in Extended 
Data Fig. 1. All models and satellite sensors show peak subarctic Atlantic productivity occurring during 
the summer months, Jun-Aug; note that partial polar darkness occurs over the subarctic Atlantic during 
the months Nov-Dec-Jan-Feb, which results in underestimates of NPP during those months. 
Inconsistencies between MODIS and SeaWiFS-derived NPP estimates (temporal overlap c. 2003-2007) 
are greatest for the CbPM-based NPP estimates, which show substantially higher NPP yields in the 
MODIS-based estimates. Note however, that although discrepancies between SeaWiFS and MODIS are 
comparatively minor for the VGPM-based NPP estimates, SeaWiFS-based annual NPP yields are 
systematically ~2-7% higher than MODIS-derived yields during all years of overlap. In Extended Data 
Figure 1 we also show alternate realizations of the weighted-least squares regression analysis of Fig. 3b 
(see methods of main text), comparing the SeaWiFS-VGPM, MODIS-VGPM, SeaWiFS-CbPM and 
MODIS-CbPM against contemporaneous [DMSSW] measurements. Our results show that VGPM-NPP 
estimates are more closely related to [DMSSW] than CbPM-NPP estimates, and SeaWiFS-based NPP 
estimates are more closely related to [DMSSW] than MODIS-based NPP estimates. All four regressions, 
however, show statistical significance at the p < 0.001 level. 

Due to superior inter-satellite sensor comparisons and improved covariation with [DMSSW] 
(Extended Data Fig. 1), we report NPP trends deriving from the standard VGPM product within the main 
text. Due to the strong spatiotemporal consistency in both SeaWiFS and MODIS-derived subarctic 
Atlantic VGPM NPP estimates (Extended Data Figure 1), we spatially-composited (via averaging) 
monthly SeaWiFS and MODIS-Aqua sensor data over their years of common overlap (A.D. 2003-2007) 
to produce a single satellite VGPM-NPP product. Using this composited product we find generally 
positive trends in subarctic Atlantic NPP over the first decade of satellite monitoring, and generally 
negative trends over the subsequent (most-recent) decade (Extended Data Figure 2). However, it is noted 
that substantial spatial heterogeneity does occur. Note that sensitivity analyses pertaining to our decision 
to composite SeaWiFS and MODIS-Aqua derived VGPM estimates can be found in Extended Data 
Figure 2.  

 
S4. Processing of Continuous Plankton Recorder (CPR) survey data 
A brief overview of the CPR survey, including the survey’s data-collection methodology, potential biases 
(and associated adjustments), as well as limitations, can be found in the Methods portion of the main text 
(for an extensive review see ref. 53).  Here, we provide specific detail on i) the availability of CPR survey 
data within the subarctic Atlantic (A.D. 1958-2016) and an intercomparison of summertime vs. annual 
averaging of CPR data, as well as ii) a comparison of data reduction techniques for estimating (spatially-
integrated) subarctic Atlantic planktonic abundance trends from CPR data. 
 
Record availability by standard CPR region: summer vs. annual data 



We only considered data from CPR standard regions situated over the subarctic Atlantic (50-65˚N, 60-
10˚W), limiting our analysis to the following 14 (out of the 41) standard CPR regions: A6, A8, B5-8, C5-
8, D5-8 (ref. 53).  

Because few years have data for all months out of the year in most subarctic Atlantic-situated 
standard regions, the convention for estimating interannual variability using CPR data is to average across 
years with ≥8 months of data (i.e., ≥2/3 of a year), though annual estimates can typically be improved 
when the remaining ≤4 months (i.e., ≤1/3 of a year) are first estimated prior to annual averaging53. Ref. 53 
suggests the following method for estimating a missing month (𝑀𝑀) of data: 
𝑀𝑀 = 𝑀𝑀� ∗  𝑌𝑌

𝑌𝑌�
          eq. S1 

where 𝑀𝑀�  is the climatological monthly mean, and 𝑌𝑌 is the annual mean which is normalized by 𝑌𝑌�, the 
climatological annual mean. In Extended Data Fig. 3, we show the data availability in the subarctic 
Atlantic for the annual averaged CPR data (i.e., the percentage of years per standard region where number 
of months were ≥8) over the period A.D. 1958-2016. 

We compare CPR data representing (conventionally) annually-averaged data to summertime-
averaged data, that is, the mean for CPR data collected in the months (Apr-May-June-July-August-Sept). 
Following ref. 53, in this case we required ≥4 months (i.e., ≥2/3 of a summer) to compute the 
summertime average, whereby the missing summer months are estimated via eq. S1 (such that 𝑌𝑌 now 
represents the annual summer mean and 𝑌𝑌� the climatological summer mean) prior to averaging. As can be 
seen in Extended Data Fig. 3a-b, withholding wintertime data facilitates marginal increases in the number 
of available years of data for most standard regions, particularly across the relatively poorly-sampled 
(albeit less-productive; Fig. 3a) central to western subarctic Atlantic.  

We explore correlations of summertime- and annually-averaged CPR data to alternate subarctic 
Atlantic bioproductivity and climatological indices, reminiscent to the procedure highlighted in Extended 
Data Figure 8a. The results of the correlation analysis (not shown) reveal that the CPR correlations using 
annual-averages are highly similar to summertime averages, suggesting both approaches are reasonable 
for estimating long-term variability in CPR abundance data.  In the following section, we extend our 
comparison of annually- vs. summertime averaged CPR time series to also compare methods of 
compositing time series between CPR standard regions. 
 
Comparison of methods for determining CPR temporal variation 
The availability of 14 CPR standard regions for the subarctic Atlantic necessitated a spatially- and 
statistically- representative dimensional reduction technique to compute annual indices of PCI, diatom, 
dinoflagellate, and coccolithophore abundance, respectively. We considered three approaches: area-
weighted averaging (AWA), inverse squared distance-infilling (ISD) averaging17, and an empirical 
orthogonal function (EOF)-based statistical infilling method42.  
 The AWA method provides the simplest approach, incorporating an area-weighted mean planktonic 
abundance estimate of all available CPR regions in a given year. Given that each CPR region entails 
varying amounts of missing data (e.g., due to year-to-year differences in shipping route coverage; see 
above section or ref. 53), some underlying (non-stationary) spatial bias may be introduced when 
estimating annual planktonic abundance with the AWA method. To help alleviate these potential biases, 
we explored ISD-infilling to first estimate missing years of data (e.g., ref. 17) prior to area-weighting 
averaging of the CPR regions’ abundances. This approach relies on the physical rationale that planktonic 
abundances in CPR regions of closer proximity are, ostensibly, more closely-related than CPR regions 
farther afield. This deterministic data-infilling approach (i.e., ISD averaging) is contrasted by a 
probabilistic EOF-based infilling methodology42. Following ref. 17, for this procedure we first omitted 
CPR standard regions missing ≥20 years of data from the analysis, in order to remove spurious signals 
and thus improve convergence of the EOF-algorithm42. For the remaining CPR regions, EOF-based 
imputation of missing years of data42 was conducted in a manner identical to that described in Methods 
(i.e., for the infilling of missing [MSA] data), prior to area weighted averaging. 



A qualitative comparison of the annual time series resulting from all three compositing 
procedures can be found in Extended Data Fig. 3. Correlation analysis of both the summertime vs. 
annually time series for all three compositing techniques suggests that, in general, the EOF-data infilling 
technique provides the most internally consistent results (Table S2). Nonetheless, all three techniques 
show a notable degree of similarity across multidecadal timescales, suggesting that decadal-scale and 
longer productivity trends measured by the CPR survey are robust independent of which compositing 
approach is used. Due to its simplistic and intuitive approach, we highlight in Figure 4a and Extended 
Data Figure 8a of the main text CPR abundance time series using AWA.  
 
S5. Comparison of [MSA]-PC1 to regional sea ice behavior 
Due to the reigning presupposition behind the use of ice core [MSA] as a proxy for sea ice extent34,65, we 
compared trends in near-Greenlandic sea ice extent (SIE; defined as the summed area of sea-ice 
concentration grids that are ≥15%) against the [MSA]-PC1 time series. We used the updated National 
Snow and Ice Data Center (NSIDC) Historical Arctic Sea Ice gridded sea ice concentration product77, 
which extends from A.D. 1850 to present and is available at monthly temporal resolution.  We explored 
trends in SIE for both March and September, typically the months of maximum and minimum SIE in the 
Arctic, and across four distinct regions listed subsequently in order of decreasing presumed association to 
Greenland MSA deposition (see Section S1, above). Region 1 (60-70˚N, 315-340˚E) encompasses the 
vicinity of the Denmark Strait/Icelandic Basin, and is situated over the southeast margin of Greenland.  
This is the region over which the highest [MSA]-PC1 airmass transport probability density is situated 
(Fig. 1). Region 2 (60-85˚N, 315-15˚E) defines the entire eastern margin of Greenland extending west to 
Svalbard.  Region 3 (45-85˚N, 280-315˚E) covers Baffin Bay, extending southward into the Labrador Sea 
beyond the southernmost mean SIE maximum reached over the period A.D. 1900-2013. Region 4 
comprises the sum of Region 2 and 3, capturing both eastern and western Greenlandic sea-ice behavior.  
 As a rough test of causality (i.e., assuming a priori that annual production and the ease of subsequent 
airborne deposition of MSA onto the Greenland Ice Sheet is in some way modulated by the extent of sea 
ice proximal to Greenland65), we computed the lag-0 ordinary least squares linear regression of annual 
[MSA]-PC1 to regional SIE in both September and March over four different tests: Test 1) the satellite-
era correlations (1979-2009; n = 31 years; representing the best-resolved period of satellite sea-ice 
observation); Test 2) the long term non-detrended annual-scale correlations (1850-2009; n = 160); Test 3) 
the long term linearly-detrended annual-scale correlations (1850-2009; n = 160; note that both [MSA]-
PC1 and regional SIE were linearly-detrended prior to regression analysis); Test 4) correlations following 
10-yr lowpass (Butterworth) filtering of the time series (1850-2009; n = 160 decades). Results of the four 
tests, provided in full in Table S1, show that only 2/32 tests, both for Region 3 in September, resulted in a 
significant [MSA]-PC1 – SIE correlation (p ≤ 0.05) when adjusting for serial correlation amongst the 
paired time series54. 

In addition to the correlation analyses, we point out two additional qualitative discrepancies 
between [MSA]-PC1 and SIE (not shown). First, multidecadal-scale phasing between [MSA]-PC1 and 
SIE does not appear stationary for any of the four SIE regions. For example, the generally positive 
association between SIE and [MSA]-PC1 trends during the earlier half of the sea-ice satellite-
observational period (1979 to mid-1990’s) is not preserved into present. For example, since A.D. 1979, 
summertime and wintertime SIE has declined at an accelerating rate73, while the [MSA]-PC1 series shows 
a generally-increasing trend. Second, a conspicuous increase in SIE found across all four regions during 
the late 1960’s to early 1970’s (reflecting the Great Salinity Anomaly, a period of elevated Arctic-basin 
sea ice export into the Barents/Greenlandic Seas78), does not have an appropriate analogue in the [MSA]-
PC1 series. 

Overall, our analysis suggests SIE variability is not the primary signal captured by [MSA] 
variations across interior Greenland, in contrast to prior suggestions34. While the use of [MSA] as a sea 
ice proxy appears to be robust for records from low-lying ice caps in Svalbard79, situated at the 
summertime ice marginal extent of the Barents Sea, we argue that the leading mode of interior-
Greenlandic [MSA] variability more likely reflects spatially-integrated variations in DMS production 



centered around the central to northeastern subarctic Atlantic, a region largely removed from the 
summertime sea ice margin. 
 
S6. NOAA Global Surface Seawater DMS Database measurements 

In Extended Data Figure S7b, we plot a global comparison of [DMSSW] to VGPM-derived NPP.  
The binning and regression methodology is described in the Methods of the main text. The results clearly 
show that [DMSSW] variations within the subarctic Atlantic (Extended Data Figure 7a reproduced from 
Fig. 3b in the main text) capture a much larger fraction of NPP variability (51% using an OLS regression 
with n = 224 points; 57% using a WLS regression with n = 186 points (where the difference in n between 
the two regressions discriminates between 1˚x1˚x1-month binned [DMSSW] values representing >1 
measurement) than exhibited on a global scale (r = 0.32 and r = 0.33 for the WLS and OLS, respectively).  

Due to the large number data used in the global regression (n = 3045 observations for OLS, n = 
2221 observations for WLS), both the WLS and OLS regressions for global [DMSSW]-NPP data are 
highly significant (p << 0.0001) despite the substantially smaller Pearson r values. To adjust for this 
potential statistical artifact, a large number (10,000) of global [DMSSW]-NPP WLS regressions were 
conducted, whereby for each iteration n = 186 samples were randomly drawn (with replacement) from the 
n = 2221 global WLS [DMSSW]-NPP pairings in order to approximate the degrees of freedom used in the 
subarctic Atlantic WLS regression.  The results of this procedure indicated a median r = 0.33, and 99th 
percentile of r = 0.56, indicating the globally-integrated [DMSSW]-NPP relationship to be less robust than 
in the subarctic (Extended Data Figure 7c). 

 
S7. Defining the subarctic Atlantic “warming hole” (SST) and calculation of the 
observational AMOC index 
Broad portions of the observational subarctic Atlantic SST (or, near-equivalently, SAT) record are 
characterized by long term cooling in spite of global long-term warming6-7,80-81. Due to the conspicuous 
nature of this so-called Atlantic “warming hole” and its relationship to both atmospheric forcing81, lateral 
convection22, and, across longer timescales, thermohaline overturning strength6, we target this region as 
an indicator for linking primary productivity trends within the context of subarctic Atlantic climate 
dynamics. Trends in sea-surface temperatures (SST) were first analyzed using the ERSST (v5; ref. 30) 
and HadISST- (v1.1; ref. 58) mean-monthly reanalysis datasets over the period A.D. 1870-2016. We 
defined grid cells showing a linear decrease over this 146-yr period within the subarctic Atlantic (50-
65˚N, 60-10˚W) as the Atlantic warming hole region. Despite some discrepancies between the spatial 
extent of the warming hole between the two datasets – likely a result of differences in grid-cell resolution 
(2˚x2˚ for ERSSTv5; 1˚x1˚ for HadISSTv1.1) – both area-weighted mean annual SST anomalies reveal a 
high degree of consistency (bottom panel; r = 0.91; Extended Data Figure 9), indicating temperature 
covariability across the subarctic Atlantic is generally coherent between datasets. 

Following ref.’s 6-7, we used the Atlantic warming hole region to calculate the observational 
AMOC index from A.D. 1870-2016 as the difference between the mean annual warming hole SST 
anomaly and the mean annual northern hemisphere SST anomaly. As shown in the supplementary 
information of ref. 6, primary features of the AMOC index are preserved when using either SST (i.e., only 
oceanic grid points) or SAT (i.e., both oceanic and continental grid points) as the base unit. Similar to the 
warming hole comparison above, we find minor differences between the ERSSTv5 derived- and the 
HadISSTv1.1 derived AMOC indices. Further, both indices – following 10-yr lowpass filtering – show 
strong (Pearson product-moment) correlation with the (10-yr lowpass filtered) reconstructed AMOC 
index of ref. 6 (A.D. 1870-1995.; rERSST = 0.81; rHadISST = 0.82; Extended Data Fig. 9). Due to differences 
in base unit (SAT vs. SST) and reference datasets used, small magnitudinal offsets between the observed 
SST AMOC index and the reconstructed SAT AMOC index of ref. 6 do exist. As such, the observational 
ERSSTv5 AMOC index provided in Figure 3a of the main text was bias corrected and adjusted to the 
reconstructed SAT AMOC index of ref. 6 to improve visual clarity. The adjustment does not affect the 
correlation analyses listed above or within the main text. 
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III. Supplementary Tables 
 

Table S1. Explorative correlation analysis of [MSA]-PC1 to SIE in regions proximal to Greenland. Values are the 
correlation values (Pearson r) of [MSA]-PC1 with March SIE (~maximum extent), while values in parentheses 
represent September (~minimum extent) SIE correlations. Bolded values represent significance at the p < 0.05 
confidence level following a Monte Carlo Fourier-phase randomization procedure (10,000 tests per pairing), used to 
empirically account for serial correlation amongst paired time series54. 
 

 Region 1 Region 2 Region 3 Region 4 
Test 1: Annual satellite period 

(A.D. 1979-2009; n = 31) 0.03 (-0.23) -0.05 (-0.08) -0.08 (-0.02) -0.09 (-0.06) 

Test 2: Annual reanalysis 
period (A.D. 1850-2009; n = 

160) 
0.06 (0.04) 0.25 (0.17) 0.03 (0.37) 0.21 (0.31) 

Test 3: Annual, linearly 
detrended (A.D. 1850-2009; n 

= 160) 
-0.11 (-0.07) -0.11 (-0.06) 0.05 (-0.00) 0.06 (-0.04) 

Test 4:  10-yr lowpass filtered 
(A.D. 1850 – 2009; n = 16) 0.08 (0.11) 0.31 (0.29) -0.04 (0.58) 0.28 (0.46) 

 
  



Table S2. Linear correlation analysis of three methods of CPR-based compositing for i) diatom, ii) dinoflagellate, 
and iii) coccolithophore abundances, comparing both summer vs. annual averaging. Numbers represent Pearson 
product-moment correlations (r; A.D. 1958-2016), with Monte Carlo-based54 significance level in parentheses.  A 
significance level of “<10-4” represents an observed r-value whose magnitude was greater than (10,000) correlations 
created using pseudo-random surrogate data (see Methods). 
 
Functional 
group: i) Diatom ii) Dinoflagellate iii) Coccolithophore 

Summer 
AWA 

0.91  
(2.1x10-4) 

0.30  
(0.19) 

0.68  
(1.5x10-

2) 

0.83  
(4.7x10-4) 

0.06  
(0.40) 

0.66  
(6.0x10-

4) 

0.63  
(0.10) 

0.77  
(5.4x10-

2) 

0.74  
(7.5x10-

2) 

Summer 
ISD 

0.50  
(2.4x10-2) 

0.96  
(<10-4) 

0.84  
(<10-4) 

0.17  
(0.28) 

0.94  
(<10-4) 

0.38  
(6.6x10-

2) 

0.69  
(7.2x10-2) 

0.82  
(2.8 x10-

2) 

0.80 
 (4.6 x10-

2) 

Summer 
EOF 

0.77 
 (4.6x10-

3) 

0.78  
(<10-4) 

0.98  
(<10-4) 

0.69 
 (2.9x10-

4) 

0.42 
(4.0x10-2) 

0.96  
(<10-4) 

0.81 
 (2.9 x10-

2) 

0.89  
(1.0 x10-

2) 

0.99 
 (<10-4) 

 Annual 
AWA 

Annual 
ISD 

Annual 
EOF 

Annual 
AWA 

Annual 
ISD 

Annual 
EOF 

Annual 
AWA 

Annual 
ISD 

Annual 
EOF 

 
  



Table S3. Overview of climatic indices, reanalysis, and biological data used. 
Variable Dataset name URL (as of Feb. 

2018) 
Time period covered Resolution Regridding 

performed? 
Citation 

Sea surface 
temperature 
(SST) 

NOAA ERSST 
(v5) 

https://www.esrl.noaa.
gov/psd/data/gridded/d
ata.noaa.ersst.html 

Jan 1854 – (monthly) 2˚ N 30 

 HadISST (v1.1) https://www.metoffice.
gov.uk/hadobs/hadisst/ 

Jan 1870 – (monthly) 1˚ N 58 

Sea-ice extent 
(SIE) 

NSIDC 
Gridded 
Historical Sea 
Ice (v1) 

https://nsidc.org/data/g
10010  

Jan 1850 – Dec. 2013  
(monthly) 

0.25˚ N 73 

Dimethylsulfide 
sea-surface 
concentration 

NOAA Global 
Surface 
Seawater DMS 
Database 

https://saga.pmel.noaa.
gov/dms/ 

1972 – (Inconsistent 
sampling) 

n/a Y (1˚ CPR 
standard 
region-wise 
binning) 

23,52 

Phytoplankton 
Color Index 
(PCI), Diatom, 
Dinoflagellate, & 
Coccolithophore 
abundance 

SAHFOS 
Continuous 
Plankton 
Recorder (CPR) 
survey  

https://www.sahfos.ac.
uk/ 

1958 – (monthly) n/a n/a 53 
 

North Atlantic 
Oscillation 
(NAO) index 

CRU Station-
based  

https://crudata.uea.ac.u
k/cru/data/nao/ 

n/a n/a n/a 24 

 NAO – proxy 
based 
reconstruction 

https://www1.ncdc.noa
a.gov/pub/data/paleo/c
ontributions_by_autho
r/ortega2015/ortega20
15nao.txt 

1767 – 1969 n/a n/a 25 

Subpolar Gyre 
(SPG) Index 

Merged 
MICAM 
(model) and 
AVISO SSH 
(observed) 

Observed: 
https://data.marine.gov
.scot/dataset/sub-polar-
gyre-index; model: 
received upon request 
from H. Hatun, Feb. 
2018 

1960-2003 (modeled; 
ref. 22); 1993-2012 
(observed; ref. 82); r = 
0.96 for 11 years of 
overlap; A.D. 1993-
2003).  Note that the 
observed series was 
truncated due to 
recent, ongoing 
discussion on defining 
the SPG index across 
recent years83.  

n/a n/a 22; 82 

AMOC Index AMOC – proxy 
based 
reconstruction 

http://www.pik-
potsdam.de/%7Estefan
/amoc_index_data.htm
l 

1767 – 1995  n/a n/a 7 

Dimethylsulfide 
monthly 
climatology 

SOLAS Project https://www.bodc.ac.u
k/solas_integration/im
plementation_products
/group1/dms/ 

n/a (monthly 
climatology) 

1˚ N 23 

Ocean Net 
Primary 
Productivity 

Vertically 
Generalized 
Production 
Model (VGPM) 
using 
SeaWiFS-r2018 
reprocessing 

http://orca.science.oreg
onstate.edu/1080.by.21
60.monthly.hdf.vgpm.s
.chl.a.sst.php 

Oct. 1997 – Dec. 2007 
(monthly) 

1/6˚ Y (1˚) 12  

 Vertically 
Generalized 
Production 
Model (VGPM) 
using MODIS-
r2018.0 (GSM) 
reprocessing 

http://orca.science.oreg
onstate.edu/1080.by.21
60.monthly.hdf.vgpm.
m.chl.m.sst.php 

Jul. 2002 – Dec. 2017 
(monthly) 

1/6˚ Y (1˚) 12 

 Carbon-based 
Productivity 
Model using 
GSM-v8; 
SeaWiFS-r2018 

http://orca.science.oreg
onstate.edu/1080.by.21
60.monthly.hdf.cbpm2
.s.php 

Oct. 1997 – Dec. 2007 
(monthly) 

1/6˚ Y (1˚) 57 



reprocessing 
 Carbon-based 

Productivity 
Model using 
MODIS-
r2018.0 
reprocessing 
(GSM) 

http://orca.science.oreg
onstate.edu/1080.by.21
60.monthly.hdf.cbpm2
.m.php 

Jul. 2002 – Dec. 2017 
(monthly) 

1/6˚ Y (1˚) 57 
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