Overview of Ablation Modeling at NASA

Justin Haskins,¹ Michael Barnhardt,¹ Eric Stern,¹ Jeremie Meurisse,¹ Arnaud Borner,¹ Federico Semeraro,¹ Adam Amar,² Joshua Monk,¹ Brody Bessire,¹ Jay Feldman¹

¹NASA Ames Research Center
²NASA Johnson Space Center

Ablation Workshop 2022 | November 9th, 2022
Teams and Modeling Efforts
Entry Systems Modeling (ESM) Leadership
ESM/Icarus Team
ESM/Predictive Material Modeling Team
ESM/Certification by Analysis Team
JSC Ablation Modeling Team
ARC Ablation Subject Matter Experts
ARC Experimentalists

NASA ARC/JSC Contributors
Michael Barnhardt
Aaron Brandis, Eric Stern
Joseph Schulz
Georgios Bellas-Chatzigeorgis
Jeremie Meurisse
Arnaud Borner
Federico Semeraro
Sergio Izquierdo Fraile
Joseph Ferguson
Jon Thornton
Krishnan Swaminathan Gopalan
Nagi Mansour
Lauren Abbott
BJ Tucker
Andrew Santos
Simon Schmitt
Adam Amar
Justin Cooper
Brandon Oliver
Frank Milos
YK Chen
Joshua Monk
Brody Bessire
Jay Feldman

Contribution Acknowledgement
Outline

• Stakeholders

• Ablation Tools and Applications

• University Support

• Takeaways
Ablation modeling at NASA has a broad range of stakeholders – government organizations, research & flight projects, and universities/institutes

**Government Organizations**
- NASA Ames Research Center
- NASA Langley Research Center
- NASA Johnson Space Center
- NASA Glenn Research Center
- Sandia National Laboratories
- Lawrence Livermore National Laboratory
- Air Force Research Laboratory

**Missions/Flight Projects**
- Dragonfly/DrEAM
- Commercial Crew/Orion
- Mars2020/MEDLI2
- Mars Sample Return
- DAVINCI
- KREPE

**NASA Research Projects**
- Entry System Modeling Project (ESM)

**Universities/Institutes**
- University of Colorado Boulder
- University of Kentucky
- University of Illinois Urbana Champaign
- Stanford University
- University of Minnesota
- University of California Los Angeles
- Purdue University
- Von Karman Institute for Fluid Dynamics
- Missouri University of Sci. & Tech.
- University of Virginia
- University of North Carolina
A Few Mission Timelines

- **Mars2020/MEDLI2**
- **Mars Sample Return (MSR)**
- **Dragonfly/DrEAM**
Entry/Ablation Challenges Challenges

**Challenge**
Flight data from instrumentation showed influence of silicone overcoat on ablation – required development of models accounting for new chemistry

**Challenge**
Strict reliability requirements and use of new woven TPS for the Earth Entry System (EES) – requires quantifying property variability and understanding MMOD risks

**Challenge**
Unique high radiation environment at Titan heats main seal beyond qualified limits – requires multi-D modeling of complicated geometries.
Recent investments in TPS ablation tool development focused on meeting challenges of flight projects – mediated by the Entry Systems Modeling (ESM) and flight projects.

**Modernizing Material Response Codes**
- Icarus
- CHAR
- PATO

**Maturing Microscale Capabilities**
- PuMA
- SPARTA
- Damage Models
Recent investments in TPS ablation tool development focused on meeting challenges of flight projects – mediated by the Entry Systems Modeling (ESM) and flight projects.

**Modernizing Material Response Codes**

- Icarus
- CHAR
- PATO

**Maturing Microscale Capabilities**

- PuMA
- SPARTA
- Damage Models
Material Response Code Timeline

**CMA**
- Charring Materials Ablation
- Moyer & Rindal (1968)
- Aerotherm
- Finite Difference
- Node-dropping ablation

**FIAT**
- Fully Implicit Ablation and Thermal response program
- Chen & Milos (1999)
- Implicit time stepping
- Finite Volume
- Grid Compression
- MSL, Stardust, Mars2020, many others

**Titan & 3dFIAT**
- 2D & 3D FIAT
- Chen & Milos (2001, 2005)
- Coupled with GASP/DPLR

**PATO**
- Lachaud & Mansour (2014)
- multi-D, finite volume, OpenFOAM
- Simple to implement new models
- Collaborate with partners

**CHAR**
- Amar et al. (2016)
- multi-D, finite element
- Used for Orion/Commercial Crew

**Icarus**
- Schulz et al. (2017)
- multi-D, finite volume, parallel
- US3D integration
- mission design tool
Principal NASA user base is focused on design for science missions and other flight projects
  • Design for Dragonfly and MSR-EES
  • Limited distribution on an as-need basis for primarily government/contractor use

Three-dimensional, unstructured, finite volume material response solver
  • NASA developed through ESM with efficient suite of solvers and parallelism developed
  • Models ablating, pyrolyzing, vaporizing, or melting materials with wide-ranging boundary conditions
  • Other enabling features include coupling to US3D, Mutation++, and DAKOTA/SALib

Current research activities include examination of MMOD effects on ablation, integration of dust erosion effects, and refinement of coupling to US3D packages

PICA “tooth” design being traded for Dragonfly heatshield to provide protection of main seal – performance assessment requires multi-D capability

POCs: Stern and Schultz
Icarus Material Response Solver

Principal NASA user base is focused on design for science missions and other flight projects
- Design for Dragonfly and MSR-EEV
- Limited distribution on an as-need basis for primarily government/contractor use

Three-dimensional, unstructured, finite volume material response solver
- NASA developed through ESM with efficient suite of solvers and parallelism developed
- Models ablating, pyrolyzing, vaporizing, or melting materials with wide-ranging boundary conditions
- Other enabling features include coupling to US3D, Mutation++, and DAKOTA/SALib

Current research activities include examination of MMOD effects on ablation, integration of dust erosion effects, and refinement of coupling to US3D packages

Talks on Icarus:

**Eric Stern** – Overview and recent developments of Icarus

**Joseph Schulz** – Material response simulations of the Dragonfly capsule using Icarus

**Olivia Schroeder** – Ares: A multi-physics modeling framework for entry systems
PATO – Porous material Analysis Toolbox based on OpenFOAM

Principal NASA user base is focused on developing new models for TPS material analysis
- Evaluated the influence of NuSil coating on ablation
- Open distribution and a collaborative platform for interacting with industry/academia

One-, two-, and three-dimensional, unstructured, finite volume material response solver
- NASA developed through ESM and built on OpenFOAM
- Rich array of boundary conditions with finite-rate capability and advanced material models (fracture)
- Other enabling features include coupling to DPLR, Mutation++, and DAKOTA

Current development efforts include new physical models accounting for shear erosion, RTV fencing, and coating surface chemistry as well as improved coupling to CFD for reconstruction analysis

PATO characterization of NuSil coating on PICA in arc jet test conditions – geared to develop better models for recession of MSL and Mars2020
PATO – Porous material Analysis Toolbox based on OpenFOAM

Principal NASA user base is focused on developing new models for TPS material analysis

- Evaluated the influence of Nusil coating on ablation
- Open distribution and a collaborative platform for interacting

One-, two-, and three-dimensional, unstructured, finite volume material response solver

- NASA developed through ESM and built on OpenFOAM
- Rich array of boundary conditions with finite-rate capability
- Other enabling features include coupling to DPLR, Mutation++, and DAKOTA

Current development efforts include new physical models accounting for shear erosion, RTV fencing, and coating surface chemistry as well as improved coupling to CFD packages

Posters on PATO:

**Jeremie Meurisse** – Arc jet CFD/ablation simulations using a plasma flow model in the arc heater

**John Thornton** – Coupling CFD and Material Response for Analysis of Mars Entry

**Sergio Fraile Izquierdo** – Mechanical Erosion Modeling of TPS Materials
CHAR – Charring Ablator Response Code

Principal NASA user base is in Orion and Commercial Crew Programs
- Vehicle design, ground testing, flight data analysis
- Licensed across industry only to US govt. contractors

One-, two-, and three-dimensional direct and inverse unstructured finite element thermal and ablation solver
- NASA-led development with contributions from ATA Engineering and Corvid Technologies
- Rich suite of boundary conditions including surface-to-surface radiation exchange, contact interfaces, and multiphysics coupling (ATA led)
- Other features include adaptive mesh refinement, and coupled thermo-electric solver

Current development efforts include mesh motion, in-depth chemical non-equilibrium and condensation, mechanistic decomposition modeling, and automatic differentiation

POCs: Amar, Cooper, Oliver
Recent investments in TPS ablation tool development focused on meeting challenges of flight projects – mediated by the Entry Systems Modeling (ESM) and flight projects.

Modernizing Material Response Codes:
- Icarus
- CHAR
- PATO

Maturing Microscale Capabilities:
- PuMA
- SPARTA
- Damage Models
PuMA – Porous Microstructure Analysis

Principal NASA user base is focused on improved characterization of TPS material properties

- Treats fibrous, woven, Avcoat-type, foam TPS
- Open distribution and a collaborative platform for interacting with industry/academia

Finite volume, microstructure-based property calculations

- NASA developed through ESM support
- Structures generated through micro-CT or artificially generated (woven, fibrous, etc)
- Properties computed include porosity, permeability, thermal conductivity, and elastic mechanical

Current development efforts include extension to more complex thermo-mechanical properties and to treatment of emerging TPS materials (weaves, additively manufactured, etc)

POCs: Fraile Izquierdo and Semeraro
PuMA – Porous Microstructure Analysis

Principal NASA user base is focused on improved characterization of TPS material properties
- Treats fibrous, woven, Avcoat-type, foam TPS
- Open distribution and a collaborative platform for interacting with researchers and others

Finite volume calculations
- NASA developed through ESM support
- Structures generated through micro-CT or artificially generated (woven, fibrous, etc)
- Properties computed include porosity, permeability, thermal conductivity, and elastic mechanical

Current development efforts include extension to more complex thermo-mechanical properties and to treatment of emerging TPS materials (weaves, additively manufactured, etc)

Posters on PuMA:

Federico Semeraro – Computing the effective elasticity of anisotropic porous media from X-ray computed micro-tomography images
Principal NASA user base is focused on improved characterization of rarefied flows (surface and in-depth) and gas-surface interactions

- Evaluating surface pressure, stresses, and reaction rates
- Open distribution from SNL with select developments being limited distribution

Direct simulation Monte Carlo solver

- Initiated at SNL, co-developed at NASA through ESM support
- Massively parallel and treated flow of billions of particles and grid cells
- Used to characterize flow, gas-surface collisions, finite-rate reactions, and recession in porous media

Current development efforts include extension to include oxidation influence on mechanical degradation of carbon materials and improving description of finite rate reactions

POCs: Swaminathan Gopalan and Borner
Principal NASA user base is focused on improved characterization of rarefied flows (surface and in-depth) and gas-surface interactions

- Evaluating surface pressure, stresses, and reaction rates
- Open for development

Direct simulation Monte Carlo solver

- Initiated at SNP, co-developed at NASA through ESM support
- Massively parallel and treated flow of billions of particles and grid cells
- Used to characterize flow, gas-surface collisions, finite-rate reactions, and recession in porous media

Current development efforts include extension to include oxidation influence on mechanical degradation of carbon materials and improving description of finite rate reactions

Talk on SPARTA:

Krishnan Swaminathan Gopalan – Implementation of active sites to capture pitting of oxidizing carbon materials in DSMC
Damage Modeling

Lauren will talk about this.

Principal NASA user base is focused on treatment of damage in woven TPS for MSR-EES

- Supported through ESM
- Investigating mechanical failure, damage influence on properties, and impact

Variety of codes in development to characterize damage progression and failure in TPS materials

- Code developments through ESM support
- LAMMPS – particle-based impact/crack propagation for MMOD damage and discrete element models of woven TPS
- NASMAT – cell-based approach for treatment of properties and progressive damage in TPS materials
- HYDRA – in-house code with specialized damage models for woven TPS materials

LAMMPS and HYDRA employed to study mechanical-mediated failure of weaves and the damage and propagation resulting from ballistic testing impacts

POCs: Abbott, Santos, Haskins
Principal NASA user base is focused on treatment of damage in woven TPS for MSR-EES

- Supported through ESM
- Investigating mechanical failure and influence

Variety of code developments through ESM support

- LAMMPS – particle-based impact/crack propagation for MMOD damage and discrete element models of woven TPS
- NASMAT – cell-based approach for treatment of properties and progressive damage in TPS materials
- HYDRA – in-house code with specialized damage models for woven TPS materials

Talk on Property/Damage:

Lauren Abbott – TPS certification by analysis: model-driven characterization of properties and failure in woven TPS
University Partnership Highlights

**NASA Space Technology Research Institute (STRI)**

Advanced Computational Center for Entry Systems Simulation (ACCESS)

Five-year institute dedicated to advancing the computational state-of-the-art of entry systems simulations. Four main thrusts investigated by a consortium of universities:
- Iain Boyd, Director (CUB)
- Alexandre Martin, TPS Lead (UK)
- Marco Panesi, Kinetics & Flow Physics Lead (UIUC)
- Graham Candler, Integration Lead (UMN)
- Alireza Doostan, UQ & Reliability Lead (CUB)

**NASA Space Technology Graduate Research Opportunity (NSTGRO)**

10+ current students at Stanford, UIUC, CUB, UK, and UMN with focuses ranging from dust erosion to influence micrometeoroid impact on ablative response

**Early Career Faculty (ECF) / Early Stage Innovations (ESI)**

- Enhanced Diagnostics for Characterizing Entry Aerothermal Environments in High-enthalpy Impulse Facilities (Purdue, UCLA and University of Virginia)
- Modeling Shock Layer Radiation and Chemical Kinetics for Planetary Entry (Montana State University and University of Illinois Urbana Champaign)

**NASA Center-Specific Summer Internship Programs**

ARC regularly hosts 20-40 summer interns focused on entry systems

**NASA Established Program to Stimulate Competitive Research (EPSCoR)**

Kentucky EPSCoRs have been awarded on topics ranging from better characterizing TPS radiation response to design, manufacture, and entry testing of probes (KRUPS/KREPE)
Takeaways

• Strategy of modernizing macroscale and maturing microscale ablation modeling tools
• Developed tools addressing entry challenges of slated flight projects/missions
• Robust network of universities providing fundamental developments and talent pipeline
• Future challenges include preparing tools to treat aggressive entry scenarios associated with outer planet missions
Questions?