

Hazard Perception & Avoidance (HPA)

Assured Vehicle Automation 1 Sim - Results Outbrief

January 24, 2023

HPA Background

- Hazard Perception and Avoidance (HPA) is a technical area under Advanced Air Mobility's (AAM) Automated Flight and Contingency Management (AFCM) subproject
 - Collecting human-in-the-loop simulation and flight test data to inform standards development for a tactical avoidance system for AAM
 - Building toward UML-4; assuming an onboard pilot with increased automation support
- Using the FAA's Airborne Collision Avoidance System for Rotorcraft (ACAS Xr) as our tactical conflict detection and resolution technology

ACAS Xr Background

- ACAS Xr provides Detect and Avoid (DAA) and Collision Avoidance (CA) functionality
 - DAA is caution-level, suggestive, and triggers ~90 seconds from CPA
 - <u>CA</u> is warning-level, directive, and triggers ~30 seconds from CPA
- ACAS Xr issues a variety of Collision Avoidance alerts i.e., Resolution Advisories (RAs)
 - Horizontal RAs command a target track angle
 - Vertical RAs command a target vertical speed
 - Blended RAs command a target track & vertical speed simultaneously
- ACAS Xr "Modes"
 - TA/RA Mode: similar to TCAS II; Collision Avoidance only
 - Traffic Advisories (TAs) are caution-level and issued prior to Resolution Advisories (RA)
 - DAA Mode: similar to ACAS Xu; DAA + CA
 - DAA alerting and guidance replaces TAs
 - Pilots maneuver at their discretion against DAA alerts

Study Objectives

- Present Xr in a higher-fidelity environment than previous Part Task study:
 - Full motion simulator
 - Turbulence
 - Out-the-window visual traffic
- Examine pilots' use of ACAS Xr v2 in multiple phases of flight with both Xr Modes
 - Fully leverage Xr v2 features:
 - Use radar altimeter data to inform low altitude RA behavior
 - Utilize ability to designate "terminal-area intruders" in DAA Mode
 - Display airspeed-based DAA guidance
 - Emulate "Traffic Advisories" in TA/RA Mode
 - v2 does not issue TAs, so the Corrective DAA alert was used to approximate it

Experimental Design

Independent Variables

- Phase of Flight (3 levels; within-subjects)
 - *Cruise* cruise speed of 110kts, starting altitude 500-1500ft
 - Hover hover speed of 10kts, starting altitude 500-1500ft MSL
 - Approach straight-in approach, speed 70kts, starting altitude 700-1100ft, 6° glide slope
- ACAS Xr Mode (2 levels; within-subjects)
 - TA/RA Mode: DAA alerting & guidance is suppressed; RAs issued nominally in Cruise and Hover
 - Traffic Advisory (TA) replaces the DAA guidance
 - Terminal area behavior: ACAS switched to "TA-Only" mode at start of encounter, RAs suppressed
 - Low altitude behavior: fixed Descend RA inhibit below 750ft
 - DAA Mode: DAA & RA alerting and guidance is issued nominally in Cruise and Hover
 - Terminal area behavior: DAA alerting and horizontal RAs suppressed against terminal area intruders
 - Low altitude behavior: radar altimeter used to inform Ground Point Obstacle Awareness (GPOA) feature

Experimental Design

Experimental Scenarios

- Encounters flown as ~5-minute vignettes, all in the SF bay area
 - Scripted conflicts varied by intruder angle, relative altitude, & vertical/horizontal rate
- Scenarios counterbalanced by the ACAS Xr Mode and Phase of Flight variables
 - Pilots flew with the DAA or TA/RA Mode on Day 1, and experienced the other condition on Day 2
- Ownship initialized in auto-pilot, but participants had to disengage the auto-pilot and manually respond to the ACAS Xr alerting & guidance (i.e., no automated RA response)
 - Disengaging auto-pilot only required a stick deflection in the cruise and approach phases
 - Hover scenarios required the pilot to press a button that de-activated the 'hover mode' before exiting the hover
- No ATC interaction or background traffic was included in any of the phases

Participants

• 6 participants were recruited

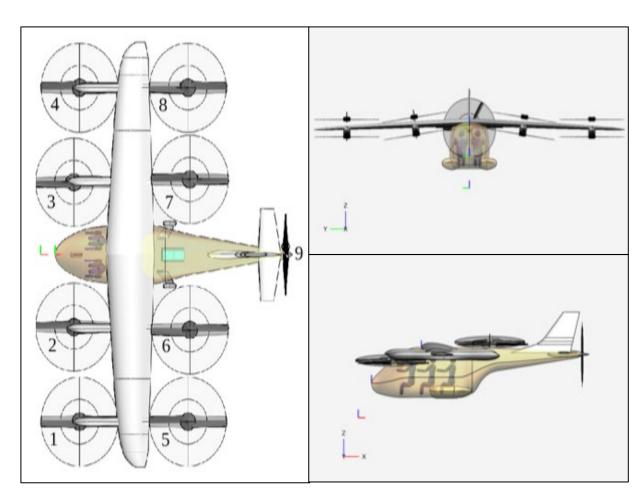
- All male
- Avg. age = 51 (SD=9)
- Each participated for 2 days total, which included ½ day of simulator & ACAS training

• Experience:

- All had rotorcraft experience
 - Avg. rotorcraft flight hours = 683 (SD=1154)
 - 5/6 also had fixed-wing experience
- Half had experience with TCAS II
- 5/6 were IFR rated
- 5/6 had nap of the earth experience for multiple environments

Aircraft Model

- Vehicle Model
 - NASA's Lift Plus Cruise (LPC) hybrid electric
 Vertical Takeoff and Landing (eVTOL) model
 - Used for ownship and intruder aircraft
- Capable of fully transitioning from thrustborne flight to wing-borne lift
- Characteristics

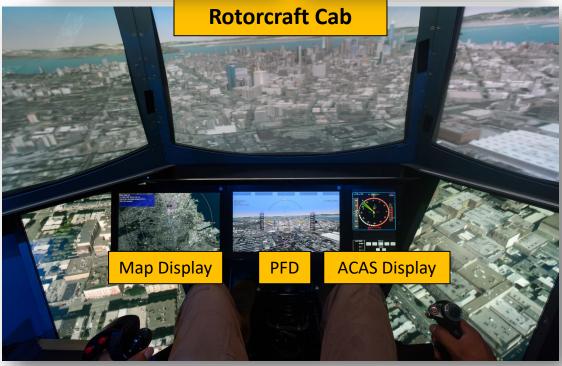

Cruise speeds: 70-110KTAS

Altitude: 500-1500ft MSL

- Max. bank: 40°

Max. climb rate: 1000fpm

- No sensor noise modeled
 - Perfect ownship and intruder data



Cab Configuration

- Study utilized NASA Ames' Vertical Motion
 Simulator (VMS) Rotorcraft Cab (R-Cab)
 - 6D motion, turbulence & out the window visual traffic
- Cab controls and displays
 - 2 side-stick controllers & rudders
 - Left = accelerate/decelerate
 - Right = commands vertical rate & bank angle
 - Deflecting right stick disengages autopilot
 - Thumb button toggles on/off hover mode
 - Top-down map display (left)
 - PFD display with camera underlay (center)
 - ACAS Xr traffic display (right)

TA/RA Mode

- Traffic Advisory (TA) issued first
 - Visual & aural alert ("Traffic, Traffic")
 - Not used to maneuver no maneuver guidance
 - Pilot can try to visually acquire traffic
- Resolution Advisory (RA) eventually issued
 - Visual & aural alert (e.g., "Climb, Climb", "Turn Right, Turn Right")
 - Vertical and/or horizontal guidance dictates how pilot maneuvers
 - Maneuver expected within 5 seconds

DAA Mode

- DAA Corrective alert issued first
 - Visual & aural alert ("Traffic, Avoid")
 - Guidance "banding" used by pilot to determine if/how to maneuver
 - Airspeed, heading and vertical speed bands
- Resolution Advisory (RA) issued if not resolved
 - Presentation same as TA/RA Mode

RESULTS

OBJECTIVE METRICS

by Phase of Flight:

RA & DAA Response Times

Losses of Well Clear (LoWC) & Near Midair Collisions (NMACs)

Instances of RA Non-Compliance

CRUISE SCENARIOS

Cruise Scenarios

Ownship parameters

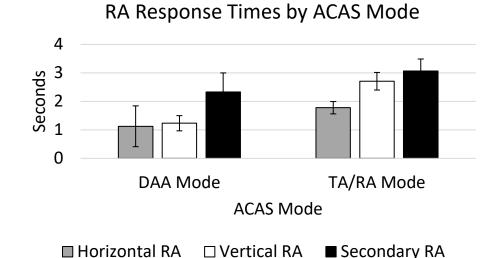
- Speed: 110 kts

Altitude: 500-1500ft MSL

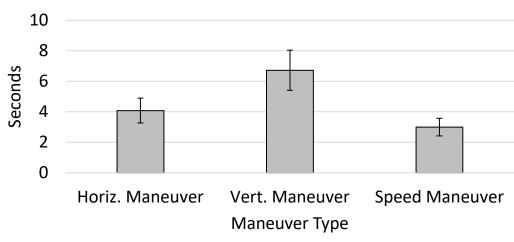
ACAS Mode Distinctions:

- TA/RA Mode: generating TAs & RAs; utilizing Descend RA inhibit starting at 750ft AGL
- DAA Mode: generating all DAA & RA alert types; utilizing GPOA functionality

DAA & RA Response Times in Cruise



• TA/RA Mode

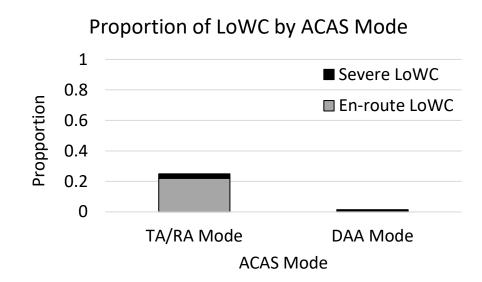

RA response times under 5 seconds

DAA Mode

- RA response times under 5 seconds
- DAA response times all under 8 seconds
 - Reminder: no ATC interaction
- DAA maneuver types:
 - > 90% of maneuvers against DAA Corrective alerts were multi-axis (horizontal + vertical)
 - < 10% of DAA maneuvers included a speed change

LoWC & NMACs in Cruise

• TA/RA Mode


- NMACs: 0

– En-Route LoWC: 15/60 (25%) / "Severe" LoWC: 2/60 (3%)

• DAA Mode

- NMACs: 0

– En-Route LoWC: 1/60 (1.5%) / "Severe" LoWC: 1/60 (1.5%)

	Horizontal Separation	Vertical Separation	modTau
En-Route LoWC	4000′	450'	35 seconds
"Severe" LoWC	4000′	450′	N/A
NMAC	500′	100′	N/A

RA Non-Compliance in Cruise

- Non-Compliance = pilot ignored RA or maneuvered in different direction/dimension
- TA/RA Mode: 11/60 total (18%)
 - 5 disregarded Level Off RA in favor of another maneuver because they felt Level Off was not appropriate
 - 3 leveled out of a Climb or Descend RA early because felt they had maneuvered sufficiently
 - 3 modified response due to proximity to terrain (e.g., stopped descend RA early)
- DAA Mode: 2/19 total (11%)
 - 1 initially descended for a Climb RA
 - 1 ignored RA because aircraft were diverging when it was issued

HOVER SCENARIOS

Hover Scenarios

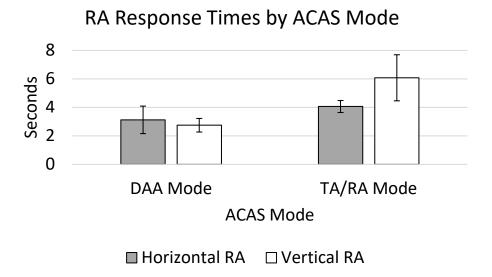
Ownship parameters

Speed: 10 kts

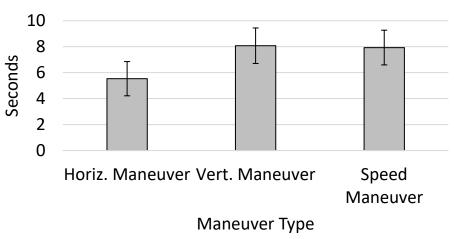
Altitude: 500-1500ft MSL

- Hover behavior: pilots trained to increase speed to at least 25kts when responding to RAs
 - Also required pilots to 'disengage' Hover mode (unique to NASA control scheme)
- ACAS Modes (same as Cruise)
 - TA/RA Mode: generating TAs & RAs; Descend RA inhibit starting at 750ft AGL
 - DAA Mode: generating all DAA & RA alert types; utilizing GPOA functionality

DAA & RA Response Times in Hover



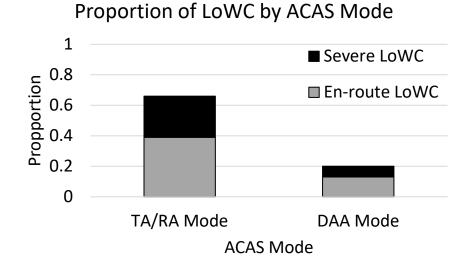
• TA/RA Mode


- Horizontal RA response times < 5 seconds
- Vertical RA response times 6 seconds
 - Requirement to disengage 'hover mode' slowed pilots down

DAA Mode

- RA response times < 5 seconds
- DAA response times < 10 seconds
 - Reminder: no ATC interaction
- DAA maneuver types:
 - Nearly all DAA maneuvers were in made in all 3 dimensions (horizontal, vertical, and speed)

LoWC & NMACs in Hover


• TA/RA Mode

- NMACs: 0
- En-Route LoWC: 40/60 (66%) / "Severe" LoWC: 16/60 (27%)
 - Additional time required to disengage and accelerate to 25kts (avg. 17 seconds)
 - 4 were stuck between an intruder above and terrain below
 - 2 lost well clear when returning to course

- NMACs: 0
- En-Route LoWC: 12/60 (20%) / "Severe" LoWC: 4/60 (7%)
 - Additional time required to disengage and accelerate to 25kts
 - 4 stuck between intruder above and terrain/obstacles below

	Horizontal Separation	Vertical Separation	modTau
En-Route LoWC	4000′	450′	35 seconds
"Severe" LoWC	4000′	450'	N/A
NMAC	500′	100′	N/A

RA Non-Compliance in Hover

- TA/RA Mode: 8/60 total (13%)
 - 3 climbed or descended during Level Off RA
 - 2 leveled out of a Climb RA early
 - 1 initially climbed for a Descend RA
 - 1 preferred climb over Left Turn RA
- DAA Mode: 15/35 total (43%)
 - 9 leveled out of a Descend RA early due to terrain
 - 4 climbed during Descend RA

APPROACH SCENARIOS

Approach Scenarios

Ownship parameters

Speed: 70 kts (approach speed)

Altitude: ~1000ft MSL (starting)

Approach path: straight in, with 6° glide slope

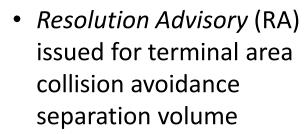
Pilots were told to perform go-around if they decide to abandon the approach

ACAS Modes

- TA/RA Mode: TA-Only mode was manually engaged upon start of approach scenarios
- DAA Mode: Preventive & Corrective alerts and horizontal RAs suppressed, only generating vertical RAs with, per UAS DAA MOPS (DO-365B)

Approach Configuration

TA/RA Mode

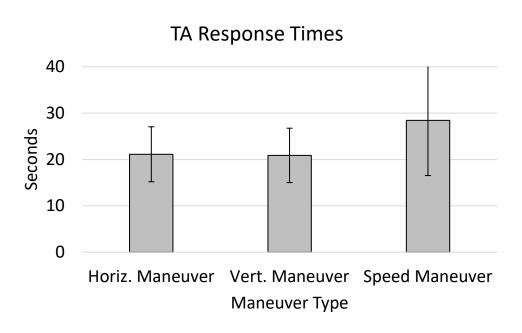

- Traffic Advisory (TA) issued first
 - Visual & aural alert ("Traffic, Traffic")
 - Used to maneuver at pilots' discretion - no maneuver guidance
 - Pilot can try to visually acquire traffic
- Resolution Advisory (RA) eventually issued
 - Visual & aural alert (e.g., "Climb, Climb", "Turn Right, Turn Right")
 - Vertical and/or horizontal guidance dictates how pilot maneuvers
 - Maneuver expected within 5 seconds

DAA Mode

- DAA Corrective alert issued first
 - Visual & aural alert ("Traffic, Avoid")
 - Guidance "banding" used by pilot to determine if/how to maneuver
 - Airspeed, heading and vertical speed bands

- Only vertical directives are issued
- Otherwise, presentation same as TA/RA Mode

DAA & RA Response Times on Approach



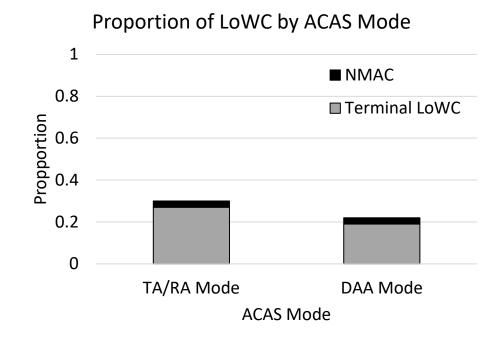
• TA/RA Mode

- TA response times 20-30 seconds
 - ~10 seconds slower than DAA Corrective response times observed in Cruise and Hover

• DAA Mode

– RA Response Times < 5 seconds</p>

LoWC & NMACs on Approach



• TA/RA Mode

- NMACs: 2/60 (3%)
 - Both pilots chose to maneuver after the intruder was visually acquired
- Terminal Area LoWC: 18/60 (30%)
 - Split between pilots maneuvering too late or not at all

DAA Mode

- NMACs: 2/60 (3%)
 - Pilots complied with Level Off RA
- Terminal Area LoWC: 13/60 (22%)
 - Generally complied with RAs that led to LoWC

	Horizontal Separation	Vertical Separation
Terminal Area LoWC	1500′	450′
NMAC	500′	100′

RA Non-Compliance on Approach

- TA/RA Mode: Pilots did not experience RAs
 - 6 cases where a pilot did not maneuver at all against the TA (only 2 pilots)
 - All were Terminal LoWC, but not NMACs

- DAA Mode: 11/60 total (18%)
 - 9 climbed or descended against a Level Off RA
 - 1 leveled out of Climb RA early

SUBJECTIVE RESULTS

Overall Feedback

General DAA Feedback

General RA Feedback

OWG-Related Questions

Overall Feedback

- No consistent differences in pilots' ratings of DAA vs TA/RA Mode
 - Half preferred DAA Mode, and half TA/RA Mode
- In Hover and Approach, pilots noted that fewer Level Off RAs and more Horizontal RAs would have led to higher rates of compliance/better performance
 - Pilots rated Xr as least effective in Hover encounters
- Alerting and guidance effective for maintaining sufficient separation (avg. 4.5 out of 5)
- Xr's DAA Mode useful in current-day, VFR rotorcraft operations (avg. 4.2 out of 5)

General DAA Feedback

- All stated that the presence of DAA banding affected their maneuver decisions
 - Made maneuvers easier (provided options & confirmed or corrected pilots' initial reactions)
 - Provided more situational awareness

Most useful:

- DAA aural cues (avg. 4.7 out of 5)
- DAA vertical band (avg. 4.3 out of 5)
- DAA heading band (avg. 4.2 out of 5)

• Less useful:

- DAA text banners (avg. 3.8 out of 5)
- DAA airspeed band (avg. 3.2 out of 5)

General RA Feedback

- 5 of 6 pilots found the 3° per second turn rate acceptable
- Even split on the ideal default vertical rate:
 - 3 of 6: 1000 ft/min
 - 3 of 6: 500 ft/min
- Most useful:
 - Horizontal RAs (avg. 4.6 out of 5)
 - Vertical RAs (avg. 4.5 out of 5)
 - Blended RAs (avg. 4.6 out of 5)
- Less useful
 - RA text banners (avg. 3.3 out of 5)

• Clear of conflict aural would have been useful (avg. 4 out of 5)

WRAP UP

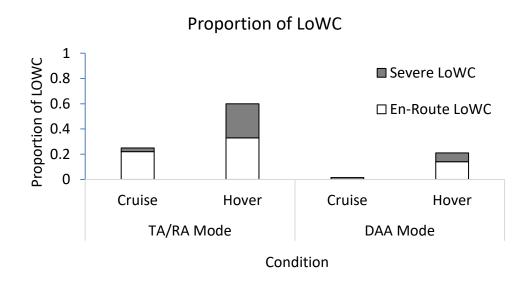
Wrap Up

Cruise

- RA response times consistently under 5 seconds in both ACAS modes
- DAA response times in the DAA Mode were especially fast (3-8 seconds)
 - Due to lack of ATC coordination and hands-on controls
- 90% of DAA maneuvers were vertical + horizontal but did not include speed
- "Severe" loss of well clear rare in both modes, but DAA Mode had far fewer En-Route LoWC

	TA/RA Mode	DAA Mode
En-Route LoWC	25%	1.5%
Severe LoWC	3%	1.5%

- Pilot non-compliance in Cruise was primarily in response to:
 - Pilots disagreeing with Level Off RA commands
 - Pilots ending Descend RA maneuvers early due to terrain proximity

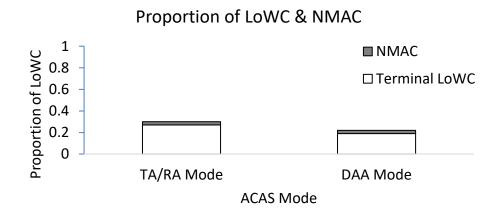


Wrap Up

Hover

- Similar response times findings as in Cruise
- Proportion of LoWC increased substantially in Hover relative to Cruise for both ACAS Modes
 - Result of extra time required to increase speed to 25+ knots

- Pilot non-compliance in the terminal area was much more common for the DAA Mode
 - Result of a greater number of Descend RAs issued in DAA Mode compared to TA/RA Mode
 - Pilots felt they got too close to terrain and frequently leveled off/climbed while Descend RA was active



Wrap Up

Terminal Area

- Observed response times of 20-30 seconds against TAs in TA Only Mode
- ACAS Mode had little effect on LoWC, despite no RAs being issued in TA/RA Mode
 - Difficulty of encounters partially to blame, but ineffective RA guidance led to LoWC and NMACs in multiple encounters (e.g., Level Off RAs against co-alt intruder)

Non-compliance in the DAA Mode was primarily due to pilots disagreeing with Level Off RAs

Overall

- Pilots rated ACAS as effective, especially in Cruise encounters
- Pilots rated the DAA Mode as useful in general but half said they would prefer to fly
 with the TA/RA Mode due to less perceived clutter
 - DAA airspeed guidance was rarely utilized and ranked as least effective element
- Pilots overall found RA guidance reasonable, however:
 - 1/2 felt default vertical rate should be 500fpm
 - Level Off RAs frequently led to 'non-compliance' in all phases of flight*
 - Descend RAs in DAA Mode (which utilized GPOA function) often brought pilots too close to terrain, resulting in numerous non-complies**

^{*}Xr v3 will not issue Level Off RAs against terminal area intruders

^{**}Xr v3 will have increased sensitivity to/buffer against terrain/obstacles

Next Steps

- Our next study will examine ACAS Xr in a live-flight environment
- Integration of Automated Systems (IAS) flight tests scheduled May-September 2023
 - Utilizing Sikorsky Autonomous Research Aircraft (SARA; an S-76B)
 - Similar encounter set Cruise, Hover, and Approach against ADS-B Out intruder
 - Automating the RA maneuvers with onboard pilot monitoring

Questions?