

1 **The non-destructive separation of diverse astrobiologically relevant organic**
2 **molecules by customizable capillary zone electrophoresis and monolithic capil-**
3 **lary electrochromatography**

4 Kosuke Fujishima^{1,2‡}, Szymon Dziomba^{3,4‡}, Hajime Yano⁵, Seydina Ibrahima Kebe,³ Mohamed Guerrouache³,
5 Benjamin Carbonnier^{3*} and Lynn J. Rothschild^{6*}

6

7 ¹ Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 1528550, Japan

8 ² Universities Space Research Association at NASA Ames Research Center, Moffett Field, CA 94035 USA

9 ³ Université Paris-Est, UPEC, ICMPE (UMR7182), 94320, Thiais, France

10 ⁴ Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416
11 Gdansk, Poland

12 ⁵ Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1
13 Yoshinodai, Chuo-ku, Sagamihara 252-5210, Japan

14 ⁶ NASA Ames Research Center, Moffett Field, CA 94035 USA.

15 [‡] Contributed equally.

16 * Corresponding authors

17

18 Key words: Flyby sample return, biosignature, capillary zone electrophoresis, monolithic capillary, electrochromo-
19 matography, aerogel, astrobiology, flight instrument

20

1 **Abstract**

2 The *in situ* detection of organic molecules in space is key to understanding the variety and the
3 distribution of the building blocks of life, and possibly the detection of extraterrestrial life itself. Gas
4 chromatography mass spectrometry (GC-MS) has been the most sensitive analytical instrument for or-
5 ganic analyses in flight, and was used on missions from NASA's Viking, Phoenix, Curiosity missions to
6 ESA's Rosetta space probe. While pyrolysis GC-MS revealed the first organics on Mars, this step alters
7 or degrades certain fragile molecules that are excellent biosignatures including polypeptides, oligonucle-
8 otides and polysaccharides, rendering the intact precursors undetectable. We have identified a solution
9 tailored to the detection of biopolymers and other biomarkers by the use of liquid-based capillary elec-
10 trophoresis and electrochromatography. In this study, we show that a capillary electrochromatography
11 (CEC) approach using monolithic stationary phases with tailor-made surface chemistry can separate and
12 identify various polycyclic aromatic hydrocarbons (PAHs), nucleobases and aromatic acids that could
13 be formed under astrophysically relevant conditions. In order to simulate flyby organic sample capture,
14 we conducted hypervelocity impact experiments which consisted of accelerating peptide-soaked mont-
15 morillonite particles to a speed of 5.6 km/sec, and capturing them in an amorphous silica aerogel of 10
16 and 30 mg/cc bulk density. Bulk peptide extraction from aerogel followed by capillary zone electropho-
17 resis led to the detection of only two stereoisomeric peptide peaks. The recovery rates of each step of
18 the extraction procedure after the hypervelocity impact suggest that major peptide loss occurred during
19 the impact. Our study provides initial exploration of feasibility of this approach for capturing intact pep-
20 tides, and subsequently detecting candidate biomolecules during flight missions that would be missed by
21 GC-MS alone. As the monolith-based electrochromatography technology could be customized to detect
22 specific classes of compounds as well as miniaturized, these results demonstrate the potential of the in-
23 strumentation for future astrobiology-related spaceflight missions.

1 **Introduction**

2 There is arguably no more intriguing scientific question than whether we are the only life forms
3 that have ever evolved. We know that some of the building blocks for life that led to the origin of life on
4 Earth are still elsewhere, even in our own solar system. What about more complex molecules, such as
5 polypeptides? And, if there are polymers present, are they homochiral as they are in terrestrial life? To
6 answer these critical questions requires missions that deploy non-destructive analytical instrumentation
7 beyond the current state-of-the-art for flight. We know that the Earth has been a home to chemical evolu-
8 tion and still is. These precursor organic materials were synthesized endogenously on the Earth, as well
9 as likely delivered by extraterrestrial objects including carbonaceous meteorites, comets and interplane-
10 tary dust particles (1). Diverse organic molecules such as amino acids, alcohols, sugar, ketones, lipids,
11 various hydrocarbons have been discovered from the direct analysis of carbonaceous meteorites (2-6),
12 and through the observation of interstellar clouds using near infrared spectroscopy (7). Other weakly polar
13 organic compounds such as aliphatic hydrocarbons and monocarboxylic acids also have been identified
14 from carbonaceous meteorites. These findings show that extraterrestrial environments can produce com-
15 plex molecules. Among these extraterrestrial organics, a family of hydrocarbon molecules known as pol-
16 ycyclic aromatic hydrocarbons (PAH) were found to be dominant and ubiquitous in the interstellar me-
17 dium (ISM), contributing to the formation of small hydrocarbon radicals (8). Thus, PAHs are considered
18 the major organic carbon supplier for Earth and other planetary bodies, although the direct contribution
19 of aromatic structures to the origin of life is still under debate (9).

20 What molecules would astrobiologists ideally like to detect? Purines and pyrimidine bases are the
21 essential units of nucleotides, molecules that form base pairs to store and copy genetic information to pass

1 on to the next generation. Although a complete nucleotide molecule has not yet been found in any prebi-
2 otic context, several possible chemical pathways that lead to nucleotide formation are known (10,11).
3 Biologically-common purines such as adenine, guanine, hypoxanthine, and xanthine have been reported
4 from various carbonaceous meteorites along with nucleobase analogs that are rare on the Earth (12). The
5 mechanism of purine formation has been predicted as the oligomerization of HCN or from other observed
6 interstellar precursor molecules such as C3NH and HNCNH (13).

7 A major class of organic compounds fundamental to terrestrial life is the amino acids and their
8 precursors. It has been proposed that the Strecker reaction can occur in the interstellar medium forming
9 amino acids during the aqueous alteration of the parent body (14), suggesting that amino acids are found
10 in space. Well over 80 different amino acids have been detected from various carbonaceous meteorites
11 (15). Further, outer planet icy moons such as Europa and Enceladus are made of icy planetesimals initially
12 produced in the solar nebula, and likely harbor amino acids and their precursors in their subsurface oceans
13 (16). Amino acids have been long considered as one of the plausible molecular biosignatures for extrater-
14 restrial life detection on Mars and other planetary bodies (17), however chemical studies of extraterrestrial
15 matter have often been challenged due to the risk of terrestrial contamination. For example, several criteria
16 including amino acid distribution, enantiomeric ratio and stable isotopic analysis have been suggested to
17 assess the true origins of amino acids from a Murchison meteorite (18). The attempt to capture and return
18 extraterrestrial organic materials, as a part of cometary dust grains to the earth was first achieved by the
19 NASA Stardust spacecraft targeting the comet 81P/Wild 2 (19). The Stardust spacecraft carried an aerogel
20 known as a low-density amorphous SiO₂ to decelerate and capture particles intact. The idea of using
21 aerogel for hypervelocity capture and recovery of particles such as interplanetary dust has been previously
22 investigated from the 90's with early studies and development of techniques conducted in a laboratory set
23 up as well as in space (20-28). The analysis of the small cometary dust particle by Stardust revealed

1 signatures of diverse suites of cometary organic compounds including simplest form of amino acid glycine
2 (29,30). Hence series of HIE have been conducted after Stardust mission focusing on the fate of organic
3 molecules during and after the impact using aerogel as a capture media (31-35). However, aerogel capture
4 is a complicated process and thus impact induced alteration and inclusion (trapped inside melted silica)
5 of carbon-bearing molecules needs to be treated cautiously to access the original organic material.

6 One of the potential biosignature is peptides, which are the chains of amino acids linked by a
7 peptide bond. Terrestrial life produces polypeptides that are homochiral, thus indicative of a biological
8 synthesis on Earth. The exogenous abiotic synthesis of peptides is known by the detection of diglycine in
9 Murchison meteorite, and irradiation of interstellar model ices have demonstrated free radical formation
10 of several dipeptide and amino acids species upon irradiation (36). Impact synthesis of alanine tripeptides
11 has been shown with no enantiomeric selection (37). Peptide serves as an attractive candidate to evaluate
12 the ongoing state of abiotic chemical evolution or possible biological reaction in extraterrestrial context.
13 However, unlike terrestrial polypeptides consist of homochiral L-amino acids, separation and characteri-
14 zation of numerous peptide stereoisomers remains technically challenging. For space mission instruments,
15 gas chromatography combined with mass spectrometry (GC-MS) has a long and distinguished heritage
16 as a flight instrument, and is still one the most sensitive bioanalytical instruments. GC-MS has played a
17 major analytical role in space missions such as NASA's Viking, Phoenix, Curiosity missions to the mar-
18 tian surface and ESA's Rosetta/Philae mission to a comet nucleus. However, the pyrolytic procedure re-
19 quired in gas chromatography destroys thermally labile molecules including biologically significant pol-
20 ymers such as polypeptides, oligonucleotides and polysaccharides. Recently this became the major issue
21 for detecting organics from the Martian soil, since chlorinated organics were detected through Curiosity's
22 SAM instrument which are likely to be a derivative of organic molecules reacting with perchlorate inside
23 the oven. Thus, the very polymers that are indicative of life are rendered undetectable with GC-MS (38).

1 Other analytical strategies proposed for space missions include biosensors (39) and antibody-based sys-
2 tems such as the Life Marker Chip (40). However, these approaches lack flexibility as the instruments
3 must be built with specific molecular targets. Thus far, liquid-based separation techniques are the only
4 flexible alternative to GC.

5 Electro-migration techniques are especially advantageous due to their unquestionable separation
6 power, low consumption of solvents and ease of miniaturization. The Urey instrument, known as Mars
7 Organic Analyzer (MOA), was the first fabricated microchip electrophoresis (μ CE) system proposed for
8 the first liquid based organic detection on Mars (41). Microchip electrophoresis using a combination of
9 laser-induced fluorescence (LIF) with a fluorescent amine reactive probe can detect amino acids with
10 minute concentration of sub-parts-per-trillion as well as aldehydes, ketones, organic acids and thiols (42).
11 This system has now been adopted for exploring potential life in the Planetary In Situ Capillary Electro-
12 phoresis System (PISCES) (43,44), and on icy moons (45,46). The drawback is it lacks the capability to
13 prove the structure and mass of detected peaks. The downstream addition of MS detection is the most
14 convenient solution of this problem. However, the MS approach excludes the usage of surfactants like in
15 the Urey prototype (41) while simple capillary zone electrophoresis (CZE) mode faces difficulty to sepa-
16 rate neutral species and enantiomers that are potential biomarkers (47).

17 To overcome these difficulties, we have been developing a hybrid technique known as capillary
18 electrochromatography (CEC), allowing a combination of electro-driven migration and chromatographic
19 separation mechanism using newly developed monolithic stationary phases. Electrochromatography pro-
20 vides a chemical separation with a combination of chromatographic selectivity and electrophoretic mo-
21 bility. The ability of the monolithic column to withstand radiation, and its ability to separate neutral,

1 hydrophilic, hydrophobic and chiral molecules as well as amino acids and proteins, suggest a clear appli-
2 cation for in situ analysis during the space flight missions (48-51). Here we demonstrate the utility of
3 capillary electrochromatography through two case studies. First, we introduced the CEC technology to
4 separate neutral and biologically relevant organic molecules to evaluate the performance of CEC for fu-
5 ture biosignature detection in space. Second, we performed a diastereomeric separation of various tripep-
6 tides under CE with hypervelocity impact experiments (HIE) to explore the feasibility of capture and
7 detection of peptides using ultra-low density aerogel. This report describes combinatorial technical basis
8 for liquid-based separation and detection of various astrobiologically relevant organic compounds as well
9 as assessment on post impact alteration of short peptides as a potential biosignature.

10

11 Materials and Methods

12 Synthesis of generic monolith P(EDMA-co-NAS).

13 A generic monolith was synthesized in a capillary tube via photo-triggered free radical polymeri-
14 zation of 200 mg N-acryloylsuccinimide (NAS) and 110 μ L ethylene glycol dimethacrylate (EDMA)
15 using (700 μ L) dry toluene as porogen. Azobisisobutyronitrile (AIBN) was added to the monomer solu-
16 tion as initiator with a fraction of 1% in mass with respect to the total number of monomers. The polymer-
17 ization mixture was sonicated for about 5 min at room temperature to obtain a homogeneous solution and
18 then filtered through a polytetrafluoroethylene membrane (pore size = 0.45 μ m). The filtered mixture was
19 pushed through a UV-transparent capillary under a pressure of 3 bar by nitrogen. Prior to filling, the
20 capillary was silanized to ensure the covalent attachment of the monolithic structure onto the inner capil-
21 lary wall as previously reported (52). Both ends of the filled capillary were sealed with rubber septa. Then

1 the capillary was exposed UV irradiation (365 nm, 6×15W) for 800 s to initiate the polymerization step.
2 The monolith-containing capillary then was flushed extensively with acetonitrile (ACN) (2 μ L/min, 1h)
3 to remove the porogenic solvent. A fused silica capillary with a UV-transparent external coating (75 μ m
4 id \times 325 μ m od) from InnovaQuartz (Phoenix, ZA, USA) was used for capillary electrochromatography
5 (CEC) experiments and polyimide-coated fused silica capillaries (50 μ m id \times 363 μ m od) from Polymicro
6 Technologies (Phoenix, AZ, USA) were used for capillary zone electrophoresis (CZE) experiments. A
7 glass microfluidic 50 μ m depth device was purchased from Trianja Company (USA). The inner wall of
8 the glass chip channel was first flushed with 1.0 M NaOH for 30 min at room temperature. The micro-
9 channel was then successively flushed with deionized water for 15 min and 0.1 M HCl for 30 min, and
10 rinsed with deionized water for 10 min and then with acetone for 15 min. Thereafter, the glass chip chan-
11 nel was purged with dry nitrogen gas for 1 h at a temperature of 120 °C. (Trimethoxysilyl)propyl meth-
12 acrylate 50% (v/v) solution in acetone was allowed to react overnight with silanols present in the inner
13 wall of the glass chip channel at room temperature. Finally, the chip microchannel was rinsed with acetone
14 for 15 min and dried under a stream of nitrogen for 1 h. The pretreated microchip was then filled under
15 pressure (2 bars) with the polymerization mixture and the same polymerization conditions were used to
16 prepare the monolith inside the glass chip microchannel.

17 **Synthesis of phenyl-like monolithic stationary phase for reversed phase charge transfer CEC**
18 **P(EDMA-co-NAS)-Phe2.**

19 A solution of 3,3-diphenylpropylamine (1 M in CH₂Cl₂) was continuously (2 μ L/min) pumped
20 through the generic monolith column for 1 h at room temperature to produce monolith-bearing phenyl
21 rings attached via an aliphatic arm (Figure 1). Subsequently, the monolithic column was washed with
22 ACN (1 h, 2 μ L/min) and kept at room temperature with sealed ends until used for the CEC.

1 **Synthesis of amino-like monolithic stationary phase for hydrophilic interaction CEC P(EDMA-co-**
2 **NAS)-NH2.**

3 A solution of ethylenediamine (1 M in CH₂Cl₂) was pumped continuously (2 μ L/min) through
4 the generic monolith column for 1 h at room temperature to functionalize the surface of the monolithic
5 stationary phase with hydrophilic amino groups (Figure 1). After functionalization, the monolith column
6 was washed with acetonitrile (1 h, 2 μ L/min) and kept at room temperature with sealed ends until use in
7 the CEC.

8 **Separation of extraterrestrial organic compounds using capillary electrochromatography.**

9 All the electrochromatographic experiments were performed on a P/ACE MDQ (Beckman, Fuller-
10 ton, CA, USA) equipped with 32 Karat software (version 4.0) for data acquisition. The analyte solutions
11 (0.2 mg/mL) were introduced in the monolith capillary column by electrokinetic injection. The separation
12 runs were carried out in reversed mode while the detection wavelength was set at 214 nm and the temper-
13 ature of the cassette compartment was kept at 25 °C. A pressure of 3.5 bar was applied to both ends of the
14 capillary to prevent bubble formation during CEC analysis. The columns length was 10 cm to detector,
15 and 31 cm overall. Dimethylformamide (DMF) was selected as un-retained compound for electroosmotic
16 flow (EOF) determination.

17 **Tripeptides and montmorillonite rock sample preparation.**

18 A total 17 tripeptides enantiomers consist of N- and C-terminal L-tyrosine with various canonical
19 and non-canonical amino acid in the center (second residue), were purchased from Elim Biopharmaceuti-
20 cals, Inc. (Hayward, CA, USA) with >90% purity. Types of the peptides are as follows: L-Tyr-L-Val-
21 L-Tyr, L-Tyr-ABA-L-Tyr, L-Tyr-NorV-L-Tyr, L-Tyr-L-Ala-L-Tyr, L-Tyr-IsoV-L-Tyr, L-Tyr-GABA-

1 L-Tyr and L-Tyr- β Ala-L-Tyr, L-Tyr-L-Ser-L-Tyr, L-Tyr-AIB-L-Tyr, L-Tyr-D-Val-L-Tyr, L-Tyr-Gly-L-
2 Tyr, L-Tyr-D-Ala-L-Tyr, L-Tyr-D-Ser-L-Tyr, L-Tyr-L-Glu-L-Tyr, L-Tyr-D-Glu-L-Tyr, L-Tyr-L-Asp-L-
3 Tyr and L-Tyr-D-Asp-L-Tyr. Lyophilized peptide samples were dissolved in a 1:1 water/acetonitrile so-
4 lution at a stock concentration of 1 mg/mL. Montmorillonite rock with a mean density of 2.45 g/cm³
5 (Tantora) was crushed by a hammer into small particles. Particles between 100 to 200 μ m in diameter
6 were collected using a nylon mesh filter. Particles were rinsed with MiliQ water and dry-heat sterilized at
7 150 °C for 2 hrs. The “all tripeptide” solution was prepared by mixing an equal volume of each of the 17
8 peptide stock solutions. From this solution, 10 μ L was added to the 10 mg rock projectiles in a test tube
9 to be fully soaked resulting in 0.59 μ g of each peptide per projectile. Likewise, an 11 peptide solution
10 consisting of equal quantities of L-Tyr-(Gly, D-Ala, L-Ala, D-Asp, L-Asp, D-Glu, L-Glu, D-Ser, L-Ser,
11 D-Val, L-Val)-L-Tyr were used to make the “L+D tripeptide” solution, and 10 μ L of this solution was
12 used to soak the 10 mg rock particles resulting in 0.91 μ g input of each peptides per projectile. In both
13 cases, particles were further dried down using a centrifugal vacuum concentrator to produce a projectile.
14 Based on the mean density, a total of 10 mg of rock projectiles with a diameter distribution from 100 to
15 200 μ m consist of approximately two thousand particles was produced for each of the two peptide solu-
16 tions.

17 **Hypervelocity Impact Experiment**

18 Hypervelocity impact experiments (HIE) were performed using a two-stage light-gas gun (Figure
19 2A) at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
20 (ISAS/JAXA). A powder of microparticles containing tripeptides was placed into a spherical cavity inside
21 a double-split cylindrical “sabot” projectile. Shots were set to reach hypervelocity ranging between 5.5-6

1 km/s, a similar velocity to that experienced during collection on the NASA Stardust mission, and exceeding
2 the estimated encounter velocity of the spacecraft if flying through the plume of Encleadus while
3 orbiting Saturn at ~4 km/s (53). Further, to minimize the thermal alteration of native organic samples and
4 eliminate possible organic contaminants during intact capture, we utilized ultraclean, methylated, two-
5 layered hydrophobic amorphous silica aerogel with a bulk density of 30 mg/cc and 10 mg/cc. This aerogel
6 was originally developed for the Tanpopo mission in a class 1000 clean booth in order to capture micro-
7 meteoroids and orbital debris intact at low Earth orbit onboard the International Space Station-Japan Ex-
8 periment Module (ISS-JEM) exposed facility (EF) (54-56). So far, 10 mg/cc is the lowest density achieved
9 among all space missions utilizing silica aerogels. For the preparation, the aerogel was sliced into a work-
10 ing size of 3 x 2.5 x 4 cm cuboid using a micro-feather blade, and then stabilized with a target holder
11 designed to fit in the vacuum target chamber of the light gas gun. The aerogel holder was fixed inside the
12 vacuum chamber with atmospheric pressure reduced to < 3 torr (Figure 2A). We performed two HIEs,
13 one with the all tripeptide-soaked (shot 1), and other with L+D tripeptide-soaked (shot 2) size-selected
14 montmorillonite rocks as explained in the previous section. After the bulk shots of these peptide-contain-
15 ing microparticles hit the aerogel, the chamber was slowly pressurized to maintain the fragile structure of
16 the aerogel. The target holder with the aerogel was then removed from the vacuum chamber. Impact
17 craters and track images were recorded, and the aerogels stored in safety cases for downstream analysis.

18 **Extraction of peptides from rock and aerogel.**

19 As a control experiment, liquid-based extraction was conducted from the peptide adsorbed 10 mg
20 rock particles prepared in the previous section to explore the recovery rate of each peptides from the
21 particle. Particles were re-soaked in 50 μ L of 40% acetonitrile water in a standard 2 mL test tube, and the
22 tube sonicated for 10 min using an ultrasonic bath to enhance the diffusion speed and efficiency of the

1 extraction process. Rock sample with aerogel was prepared with same procedure, but with addition of 1
2 cm³ aerogel fragment to the test tubes. The tube then was centrifuged to remove aerogel debris. The
3 supernatant was directly analyzed with CZE.

4 The aerogel shot with rock particles soaked with the all tripeptide solution was carefully cut into
5 small pieces. The pieces were squeezed into a glass 10 mL Hamilton syringe (Hamilton, Reno, NV, USA),
6 and soaked with 2 mL of 40% acetonitrile solution inside the syringe for 5 minutes at room temperature.
7 The solution was then pushed out and subsequently back-aspirated to the syringe to perfuse the rock
8 sample trapped within the aerogel. The repetitive action was performed manually, and after 5 min the
9 piston was pushed fully to crush the aerogel in order to recover the majority of the liquid retained in
10 aerogel. The extract was centrifuged to remove aerogel debris, and the supernatant was transferred to a
11 new tube and subjected to evaporation at 50 °C. The evaporation resulted in about a 10-fold volume
12 reduction to approximately 200 µL and the removal of acetonitrile. Likewise, aerogel shot with particles
13 containing the canonical L-/D- tripeptide solution was soaked with 400 µL of 40% acetonitrile solution
14 in a syringe, repeatedly mixed with solution, and pushed out for evaporation at 50 °C. Evaporation resulted
15 in about a 10-fold volume reduction to approximately 40 µL.

16 **Peptide separation using capillary electrophoresis.**

17 All CZE experiments were conducted using an Agilent 7100 CE System (Agilent Technologies,
18 Santa Clara, CA, USA) equipped with UV diode-array detector. The analysis was monitored at 214 and
19 280 nm corresponding to the absorbance of the tyrosine aromatic ring. The separation process was per-
20 formed using bare fused silica capillaries 60 cm long with 50 µm id (Polymicro Technologies, Phoenix,
21 AZ, USA). Hydrodynamic injection of an aqueous standards solution was performed for 8 s at 50 mbar
22 with a separation buffer composed of 40 mM ammonium acetate (pH 3.65) for hydrodynamic injection

1 or 100 mM Tris, 95 mM citric acid (pH 3.65) for the head-column injection field-amplified sample injection
2 (FAFI) technique due to the fact that the concentration of peptides in samples was expected to be in
3 ng/mL level (57,58). Tripeptide standard solutions were injected at a concentration of 5 µg/mL for each
4 peptide using FAFI technique with a detection limit estimated at 40 ng/mL. In the case of standard hydro-
5 dynamic injection, the concentration of peptides used as standards were 50 µg/mL with detection limit
6 estimated at 1 µg/mL. The sample analytical matrix was composed of 20 µL tripeptide sample solution
7 (rock extract, rock + aerogel extract, post HIE aerogel extract) mixed with 5 µL of 5-fold diluted separa-
8 tion buffer adjusted to pH 2.5 using 0.1 M HCl to provide positive ionization of the analytes, and to
9 facilitate the stacking effect (59). A short plug of sample was introduced hydrodynamically (3 s, 50 mbar)
10 followed by electrokinetic sample injection at 10 kV. Injection for as long as 50 s can be performed
11 without any significant band broadening effect. Further extension of injection time resulted in loss of
12 separation efficiency and resolution. At the beginning and at the end of each day, the capillaries were
13 sequentially flushed with 0.1 M NaOH and water (2 bar, 10 min). Additionally, before the first run each
14 day, the capillary was conditioned with a separation buffer for 10 min at 2 bar. Between each analysis,
15 there was a 2 min rinse with 0.1 M NaOH, water and separation buffer.

16

17 **Results and Discussion**

18 **Synthesis of amino-like monolithic stationary phase.**

19 CZE provides for the highly efficient separation with small volumes of samples, and is adaptable
20 to miniaturization, however it is restricted to the separation and detection of ions and compounds that bear
21 charges at the running pH of the analysis. Here, we demonstrate an electrochromatographic approach
22 based on the use of monolithic stationary phases to perform separation under electroosmotic flow. The

1 generic P(EDMA-co-NAS) monolith stationary phase can be chemically grafted by different chromato-
2 graphic selectors to achieve molecular-level controlled surface properties tailored to the chemical struc-
3 ture of target organic molecules. Figure 1 illustrates the preparation of phenyl-like P(EDMA-co-NAS)-
4 Phe2 and amino-like P(EDMA-co-NAS)-NH2 monolith columns created via grafting of 3,3-diphe-
5 nylpropylamine or ethylenediamine on the surface of P(EDMA-co-NAS), respectively.

6 **Separation of PAHs, pyrimidines and aromatic acids via monolithic CEC.**

7 The chromatographic selector 3,3-diphenylpropylamine was chosen for the separation of PAHs
8 because it allows combining the hydrophobic interaction because of the presence of aliphatic spacer arm,
9 and charge transfer because of the electron-rich phenyl rings. With this setup, a mixture of nine PAHs
10 composed of toluene, indene, naphthalene, fluorene, anthracene, pyrene, chrysene, 7,12-dime-
11 thylbenz[α]anthracene and benzo[α]pyrene, was separated in fewer than four minutes and with high effi-
12 ciencies (up to 208,000 plates/m) and under a simple isocratic elution mode on the phenyl-bearing mon-
13 olithic column (Figure 3). The retention of PAHs increased with the size and the number of aromatic rings
14 in the molecules confirming the separation mechanism. Large planar aromatic structures favor interaction
15 with the phenyl ring grafted on the monolith surface via a flexible aliphatic spacer arm. Previously, the
16 direct separation of neutral PAHs was achieved in a CE by implementing negatively charged cyclodextrin
17 as a pseudostationary phase (60) or through micellar electrokinetic chromatography where neutral solutes
18 are separated based on their differential partitioning between micelles and the background electrolyte (61).
19 Such monoliths exhibit pH-dependent electro-osmotic generation ability depending on the charge state of
20 the primary amine. At pH 8, cathodic electroosmotic flow (EOF) is obtained similarly to what was ob-
21 tained in the case of the phenyl-like monolith. However, the separation mechanism of the amino-like
22 monolith is dictated by the hydrated nature of the stationary phase and such a separation mechanism is

1 well-suited to the separation of polar and hydrophilic solutes. This separation mode has been utilized in
2 hydrophilic interaction liquid-chromatography (HILIC), well known for separating biology relevant or-
3 ganic molecules such as nucleobases and nucleosides (62-64).

4 Figure 4 shows the electrochromatographic separation of four different nucleobases: thymine, ura-
5 cil, adenine and cytosine. We observed that the electrochromatographic resolution of thymine and uracil
6 increased with the acetonitrile content in the mobile phase, confirming the proposed separation mecha-
7 nism. Note that nucleobases possess different pKas and their acid-base properties depends on the solute
8 pH (65). Therefore, it has been shown that nucleobases can be separated by conventional CE at high pH
9 (pH > 10; (66). However, in this study nucleobases were separated in their neutral form at the same pH
10 value (pH 8) as the one used for the PAH separation. To further demonstrate the potential of CEC, we
11 tested the separation of a mixture of benzoic acid derivatives, namely benzoic acid, 2-hydroxy benzoic
12 acid, 4-hydroxy benzoic acid and 3,5 dihydroxy benzoic acid (Figure 5). In a first attempt, the four benzoic
13 acids were separated using a constant voltage (-15 kV) leading to a rather long analysis time of about 15
14 min. In concordance with the hydrophilic character of the P(EDMA-co-NAS)-NH2 monolithic stationary
15 phase, the dihydroxylated benzoic acid was eluted last, while benzoic acid was eluted first. The monohy-
16 droxylated benzoic acids exhibit intermediate retention and their separation can be rationalized by the
17 possibility in the case of 2-hydroxy benzoic acid of the formation of intermolecular hydrogen bonding
18 limiting the interaction with the amino group of the monolithic stationary phase. Thus 4-hydroxy benzoic
19 acid is retained more than 2-hydroxy benzoic acid. With the aim of shortening the analysis time and to
20 improve separation efficiency (narrowing of the peak width), further analyses were performed using a
21 voltage gradient (electropherograms b) and c) in Figure 5). Increasing the separation voltage from -15 kV
22 to -30 kV in a stepwise fashion decreased the analysis time by half and improved efficiency (from 26,500
23 plates/m in plot a to 40,000 plates/meter in plot c for 4-hydroxybenzoic acid).

1 **Separation of tripeptides including diastereomers using CZE.**

2 Seventeen tripeptides including five pairs of diastereomers (see Materials for detail) served as both
3 a simulant for extraterrestrial organic compounds and for analytes. Separation and identification of such
4 isomeric peptides is challenging, and requires highly efficient chromatographic or electrokinetic separa-
5 tion. Therefore, CZE was chosen as a technique that features extremely high separation efficiency and
6 whose usefulness in stereoisomeric peptide analysis has been proved in a number of studies (67-71). Sep-
7 aration of the compounds in CZE is possible because of the difference in the migration velocities of the
8 ions. Only peptides containing glutamic and aspartic acid in their structure are predicted to feature lower
9 pKa values compare to other analytes. We investigated the influence of the buffer pH in the range from
10 2.50 to 7.00 on separation. The baseline separation of eight out of eleven tripeptides containing biogenic
11 amino acids was initially achieved with 50 mM ammonium acetate buffer at pH 3.65. However, due to
12 the high electrophoretic mobility of co-migrating ammonium ions ($\mu_{\text{ammonia}} = 76.2 \text{ } 10^{-9} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$), we
13 observed peak asymmetry and deteriorated separation efficiency and resolution. This was due to the elec-
14 trophoretic dispersion phenomenon. We therefore used tris(hydroxymethyl)aminomethane (Tris) instead
15 of ammonium, as the former ions feature lower electrophoretic mobility (Tris = $29.5 \text{ } 10^{-9} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$).
16 Tris ions have been reported to coat the capillary wall dynamically, and protect peptides and proteins from
17 adsorption to silica in CZE (68). To obtain the proper buffering effect in the desired pH range, citric acid
18 was used to replace volatile acetate. An increase of buffer concentration was found to enhance separation
19 efficiency and detection sensitivity due to the stacking effect (72). Modification of this parameter also
20 had an effect on peak resolution. Dynamic coating of the capillary by Tris ions decreases electroosmotic
21 flow in the capillary simultaneously extending the separation time. Under the optimized condition of 100
22 mM Tris, 95 mM citric acid (pH 3.65) with field-amplified sample injection (FASI), we were able to
23 distinguish 16 signals originating from 17 tripeptide compounds including diastereomers (Figure 6, red

1 trace). Under this condition most compounds migrated in cationic form while Tyr-Asp-Tyr diastereomers
2 were resolved as anions. While co-migration was observed in the case of the gamma amino acid γ -ami-
3 nobutyric acid (GABA) and β -alanine-containing tripeptides, separation of the diastereomer was achieved
4 and thus the same separation condition was applied for the samples obtained from the hypervelocity im-
5 pact experiment.

6 **Extraction and detection of tripeptides resulting from the hypervelocity impact experiment.**

7 The *in situ* analysis of diverse extraterrestrial organic molecules is a challenging goal for astrobi-
8 ology, given the limitation of size, weight, types of chemicals and energy required for the on-board in-
9 strumentation. Also, any flyby space mission would require extra level of difficulty given the expected
10 trace amounts of organic molecules, which can further undergo thermal decomposition and impact alter-
11 ation during the encounter. Therefore, assessment of HIE exposed organic materials using different cap-
12 ture materials have been discussed. We used two tripeptide-soaked montmorillonite bulk particles (one
13 with all 17 tripeptides and one with 11 L+D tripeptides) as a simulant of solid material with biology
14 relevant molecules and performed independent impact experiments reaching a speed of 5.56 km/s (shot 1
15 with all tripeptides) and 5.61 km/s (shot 2 with L+D tripeptides), respectively. Microscopic observation
16 of the aerogel impact surface revealed a total 149 (shot 1) and 141 (shot 2) detectable impact craters
17 (Figure 2B). Given the initial total particle numbers to be around two thousand, we estimate approximately
18 7.5% (shot 1) and 7% (shot 2) of the bulk shot rock particles (Figure 2C) were captured in the aerogel.
19 Longer tracks were obtained from the ultra-low density 10 mg/cc aerogel compared to 30 mg/cc aerogel
20 (Figure 2D and 2E), suggesting less energy and momentum loss per unit length for lower density aerogel.
21 Indeed, clear difference in particle entrance hole area was observed between 10 mg/cc and 30 mg/cc

1 aerogel (Figure 2F). An unbiased logarithmic distribution with only several anomalies (clumped and frag-
2 mented particles) indicating that majority of the aerogel encountered particles fall within the diameter size
3 range of 100 to 200 μm .

4 After the impact, the aerogel targets were perfused with 40% acetonitrile to extract the peptides
5 according to the procedure described in the methods section. As opposed to handling and analysis of
6 individual aerogel captured grains (20), we soaked the entire aerogel to see if bulk liquid extraction and
7 concentration procedure are feasible for detection for captured organic compounds. Due to the methylated
8 surface of silica aerogel, 40% acetonitrile solution in water was selected to provide good solubility of the
9 peptides and sufficient permeability to the crushed aerogel. Prior to this experiment, we had shown that
10 the 40% acetonitrile is capable of dissolving peptides from the montmorillonite particles with a recovery
11 rate ranging from 22.1 to 56.6% (Figure 6, black trace, Table 1). Further, the dissolution of peptides from
12 the montmorillonite projectiles in the presence of blank aerogel was also tested to see if the methylated
13 silica matrix of aerogel possesses affinity toward certain peptides released from montmorillonite surface
14 (Figure 6, blue trace, Table 1). All 16 peaks were detected in the presence of both montmorillonite and
15 aerogel with a diverse recovery rate ranging from 8.5 to 36.8%. However, when we compared the recovery
16 rate of rock projectile alone vs rock projectile in the presence of a blank aerogel sample, results indicated
17 higher recovery of peptides featuring acidic amino acids (Asp and Glu) -bearing tripeptides with lower
18 mobility in electrophoretic experiments ($> 62.5\%$) as compared to faster migrating peptide ($< 50.9\%$;
19 Table 1). This could be due to ionic interactions between silanol moieties of the aerogel and peptides
20 (based on the electrophoretic results, the degree of dissociation of longer migrating species like Tyr-Glu-
21 Tyr and Tyr-Asp-Tyr was expected to be lower as compared to other peptides). The evidence of accretion
22 of compressed aerogel on captured projectiles (23) may also enhance such selective liquid extraction.
23 Furthermore, extraction from blank aerogel showed a clean CZE profile under UV spectra, suggesting no

1 contamination above the detection limit (Figure 6, green trace). Extraction of peptides from aerogel sam-
2 ple with projectiles bearing all 17 tripeptides resulted in several weak signals featuring mobility similar
3 to Tyr-Glu-Tyr diastereomers, but we were unable to resolve the peaks to provide clear answer (denoted
4 with asterisk in Figure 6, violet trace). Because most of the tripeptides were below detection limit (40
5 ng/mL/peptide = 0.22% recovery), peptide recovery rate to reach the detection limit after the impact was
6 predicted to range from 8.0% to 34.5% under our HIE condition (Figure 7). Thermal alteration is consid-
7 ered to be the main cause of change in organic contents due to the impact shock heating reaching up to
8 few thousand degrees C (73). General track model implies that organic molecules deposited on the impact
9 track will be exposed to high temperature flash heating (74), while HIE with hydrated mineral grain
10 showed that the mineralogical thermal alteration only occur on the projectile surface while interior remain
11 unaltered with just 150 nm below the rim (75). Hence, the recovery rate of the organic molecules depends
12 on their localization within the projectile (surface or interior) as well as the thermal history of the projectile
13 immediately after the impact.

14 To assess this possibility, we further examined extracts from the second aerogel sample shot with
15 11 L+D tripeptides. The majority of the tripeptides peaks were undetectable; however, two peaks were
16 detected using hydrodynamic injection (Figure 8, black trace). These peak signals showed identical mo-
17 bility to that of Tyr-Asp-Tyr diastereomer standards under the same CZE condition (Figure 8, black trace)
18 with recovery rate of 9.6% and 4.7%, respectively (Table 1) indicating extractable peptides survived the
19 impact velocity of 5.61 km/s in montmorillonite particles. Why only the anionic peptides were extracted
20 could be partly explained by the high liquid extraction efficiency of Tyr-Asp-Tyr tripeptides (Table 1),
21 but it does not explain why Tyr-Glu-Tyr tripeptides peaks were not observed. Together, these findings
22 indicate a need for better characterization of sorptive properties of target organic molecules in accordance
23 with the chemical properties of aerogel and presence of other solid materials such as minerals and salts.

1 Conclusion

2 We have provided evidence that CEC and CZE are suitable to separate various simple organic
3 compounds including some of which are found in extraterrestrial environments and are also relevant to
4 terrestrial life. Electromigration techniques can be further applied to separate and detect potential biosig-
5 natures including extraterrestrial polymers, as well as simpler organics including amino acids, amines,
6 aliphatic and aromatic hydrocarbons, sugars, phenols, alcohols, nucleobase, carboxylic acids, sulphonic
7 acids and more. While analytical detection limit shown in this work is still 100-fold poorer than what
8 would be expected for the actual trace biomarker detection (100 pg/mL), these CZE and CEC approaches
9 have the benefits of miniaturization and versatility to be coupled to high resolution MS or coupled to
10 fluorophore to further lower the detection limit. For example, we show that our generic poly(N-acryloxy-
11 succinimide-co-ethylene glycol dimethacrylate) monolith synthesis protocol can be transferred to a mi-
12 crofluidic chip to further support the application of capability of the monolithic CEC technology for future
13 spaceflight missions (Figure 9).

14 We have also performed HIE and liquid-based extraction using tripeptides as a biosignature sim-
15 ulant to validate the feasibility of sample capture and analysis for the future astrobiology-oriented flyby
16 mission to the icy moons. We deduced recovery rate of the tripeptides in each step of the HIE (Figure 7)
17 and found that extraction efficiency varies up to 4-fold among peptide samples under the presence of
18 montmorillonite and aerogel. Hence even with a 90% peptide loss after the hypervelocity impact, anionic
19 peptides could be technically detectable due to their efficient liquid extraction, which in part explains the
20 recovery of Y-D-Y diastereomers (Figure 8). Although, it is important to note that the clay mineral pro-
21 jectile used in this study is not relevant to the actual constituents of the plumes of Enceladus (ice particles
22 and salt crystals) and thus results needs to be treated as a reference to the future impact experiment. Hence,

1 clear separation of diastereomeric tripeptides using CZE is promising for further evaluation as a potential
2 biosignature for life detection in space. For future work, both the physical and chemical adsorption effect
3 of peptides and other organics on the aerogel, needs to be evaluated quantitatively to fully assess the
4 practicality of aerogel for future flight missions. Thus, extending the use of aerogel as a capture media for
5 HIE, then soaking the entire aerogel to perform liquid-based extraction, separation and detection of target
6 organic molecules will support future missions involved in the search for extraterrestrial life, which is
7 essential for answering basic astrobiology question: are we alone in the universe?

8 **Acknowledgements**

9 We are grateful to the NASA Ames Research Center Innovation fund for support. K.F was sup-
10 ported by the ELSI Origins Network (EON), through a grant from the John Templeton Foundation. The
11 impact experiments led by HY was supported by S. Hasegawa and A. Suzuki of ISAS/JAXA as a
12 collaborative program with its Hypervelocity Impact Facility. HY is thankful for the project grant of the
13 Astrobiology Center Program of National Institutes of Natural Sciences (NINS). Finally, we thank the
14 reviewer for valuable comments and constructive criticisms for improving this manuscript.

15

16

1 **Figure Legends**

2 **Figure 1.** Schematic illustration of the synthetic path applied to the synthesis of monolithic stationary
3 phases for reversed phase-charge transfer (RP-CT) and hydrophilic interaction (HI) capillary electrochromatography. The monolithic stationary phases were obtained via the surface functionalization of a generic
4 monolith P(EDMA-co-NAS) based on N-acryloxysuccinimide (NAS) and ethylene glycol dimethacrylate
5 (EDMA).

6
7

8 **Figure 2.** Hypervelocity impact experiment using hydrophobic silica aerogel as a target. (A) Schematic
9 representation of the light gas gun setup for at ISAS. Piston is powered through ignition of gunpowder
10 which propel piston to compress the downstream hydrogen gas. Once hydrogen accumulates enough pres-
11 sure, it bursts the metal disk, accelerating the sabot with projectile (montmorillonite particle with peptides)
12 inside. Sabot rotates and releases the projectile reaching a speed of up to 6 km/sec. Projectiles are captured
13 by the aerogel placed inside the holder within the vacuum chamber. (B) Light microscopy image of post
14 impact aerogel surface. Aerogel targets were shot separately with projectiles containing all tripeptides at
15 velocity of 5.56 km/s (shot 1, left) and L+D tripeptides at velocity of 5.61 km/sec (shot 2, right). Upper
16 half consist of 30 mg/cc bulk density aerogel and lower half consist of 10 mg/cc bulk density aerogel. (C)
17 Microscopy image of size-selected montmorillonite particles (100 to 200 μm in diameter) that were used
18 as a peptide carrier during the hypervelocity impact experiment. (D) and (E) represents aerogel sideview
19 after exposed to HIE (shot 1 and shot 2), respectively. Projectile impacts have resulted on “carrot shaped”
20 tracks by releasing the kinetic energy towards breaking the silica matrix of aerogel. Outermost layers of
21 the montmorillonite particles are fragmented during the impact but large particles remain intact at the end
22 of the track. (F) Cumulative flux plot for two individual HIE. Image J software (76) was used to calculate

1 the area size for all detectable entrance holes for shot1 (left) and shot 2 (right). The x axis represents
2 entrance hole area in log scale and y axis represents the cumulative flux of the projectile (cumulative
3 number of holes per total impact area). Entrance holes made in aerogel bulk density 10 mg/cc and 30
4 mg/cc are denoted as open circle and closed circle, respectively.

5

6 **Figure 3.** Electrochromatographic separation of a mixture of nine PAHs: (1) toluene, (2) indene, (3) naph-
7 thalene, (4) fluorene, (5) anthracene, (6) pyrene, (7) chrysene, (8) 7,12-dimethylbenz[α]anthracene and
8 (9) benzo[α]pyrene on a phenyl-like monolithic column (CEC conditions: mobile phase 60/40 ACN/PBS
9 (2.5 mM pH 8); injection -5 kV/5 s, voltage -30 kV, detection 214 nm, total and effective lengths of the
10 monolithic column are 31 cm and 10 cm, respectively).

11

12 **Figure 4.** Electrochromatographic separation of four pyrimidines: (1) thymine, (2) uracil, (3) cytosine
13 and (4) adenine on the amino-like monolithic column (CEC conditions: mobile phase 80/20 ACN/PBS (5
14 mM pH 8), injection -5 kV/5 s.

15

16 **Figure 5.** Electrochromatographic separations of aromatic acids. (1) benzoic acid, (2) 2-Hydroxybenzoic
17 acid, (3) 4-hydroxy benzoic acid and (4) 3,5 dihydroxy benzoic acid on the amino-like monolithic column.
18 The analyses were performed at three different voltage conditions as indicated in the Figure. The electro-
19 chromatogram a) was obtained using a constant voltage of -15 kV while electrochromatograms b) and c)
20 were obtained using voltage gradients (stepwise increase to -15 kV and -30 kV at a voltage rate of 30
21 kV/min) as indicated in the figure (other CEC conditions: mobile phase 80/20 ACN/PBS (5 mM pH 8),

1 injection -5 kV/5 s, detection 214 nm, total and effective lengths of the monolithic column are 31 cm and
2 10 cm, respectively).

3

4 **Figure 6.** Capillary zone electrophoresis separation of YNY-tripeptides. Each Peak correspond to (1) L-
5 Tyr-L-Val-L-Tyr, (2) L-Tyr-ABA-L-Tyr, (3) L-Tyr-NorV-L-Tyr, (4) L-Tyr-L-Ala-L-Tyr, (5) L-Tyr-
6 IsoV-L-Tyr, (6) L-Tyr-GABA-L-Tyr, (7) L-Tyr- β Ala-L-Tyr, (8) L-Tyr-L-Ser-L-Tyr, (9) L-Tyr-AIB-L-
7 Tyr, (10) L-Tyr-D-Val-L-Tyr, (11) L-Tyr-Gly-L-Tyr, (12) L-Tyr-D-Ala-L-Tyr, (13) L-Tyr-D-Ser-L-Tyr,
8 (14) L-Tyr-L-Glu-L-Tyr, (15) L-Tyr-D-Glu-L-Tyr, (16) L-Tyr-L-Asp-L-Tyr, (17) L-Tyr-D-Asp-L-Tyr.

9 The electrochromatograms are all tripeptide standards (red), canonical L-/D- tripeptides extracted from
10 montmorillonite sample (black), canonical L-/D- tripeptides extracted from montmorillonite rock sample
11 mixed with aerogel (blue), extract of HIE blank sample (green) and extract of HIE sample (violet). Back-
12 ground electrolyte was composed of 100 mM Tris and 95 mM citric acid (pH 3.65). The injection was
13 performed electrokinetically for 20 s using 10 kV except the HIE sample extract analysis for which 10
14 kV were applied for 50 s. *unidentified peaks.

15

16 **Figure 7.** A schematic representation of organics extraction flowchart for simulated flyby sample capture
17 and analysis. Initial peptide input (10 μ g) undergoes stepwise reduction in quantity due to the ratio of
18 particle entry into the aerogel (X), hypervelocity impact alteration/inclusion (Y) and liquid-based extrac-
19 tion efficiency (Z). Particle entry rate X: 7.5% is estimated from the number of impact holes from shot1.
20 Liquid based extraction efficiency under the presence of aerogel Z: 8.5 – 36.8% is estimated based on
21 Table 1. Accordingly, impact alteration/inclusion rate Y: 8.0 – 34.5% was estimated given the FASI de-
22 tection limit of 40 ng/mL per peptide.

1 **Figure 8.** Capillary zone electrophoresis analysis of extract of aerogel sample obtained in HIE (black)
2 and standard mixture of canonical L+D tripeptides (red). Abbreviations:(1) L-Tyr-L-Asp-L-Tyr, (2) L-
3 Tyr-D-Asp-L-Tyr. Background electrolyte was composed of 50 mM ammonium acetate (pH 3.65). The
4 injection was performed hydrodynamically (8 s, 50 mbar). Other conditions can be found in ‘Experimental’
5 section.

6

7 **Figure 9.** Scanning electron microscopy images showing cross section views of a) monolith-filled and
8 empty chip channels. Part b) shows a magnification of a monolith-filled chip channel where a
9 macroporous structure consisting of small globuli fused together characteristic of the monolithic mor-
10 phology can be easily recognized. An intimate contact between the organic monolith and inorganic chip
11 wall is seen confirming the success of the silanization pretreatment of the chip wall providing strong
12 anchoring of the monolith.

13

1 References

1. Sephton, M.A. and Botta, O. (2008) Extraterrestrial organic matter and the detection of life. *Space Sci Rev*, **135**, 25-35.

2. Pizzarello, S. (2006) The chemistry of life's origin: a carbonaceous meteorite perspective. *Acc Chem Res*, **39**, 231-237.

3. Yabuta, H., Williams, L.B., Cody, G.D., Alexander, C.M.O. and Pizzarello, S. (2007) The insoluble carbonaceous material of CM chondrites: A possible source of discrete organic compounds under hydrothermal conditions. *Meteoritics & Planetary Science*, **42**, 37-48.

4. Schmitt-Kopplin, P., Gabelica, Z., Gougeon, R.D., Fekete, A., Kanawati, B., Harir, M., Gebefuegi, I., Eckel, G. and Hertkorn, N. (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. *P Natl Acad Sci USA*, **107**, 2763-2768.

5. Cooper, G., Reed, C., Nguyen, D., Carter, M. and Wang, Y. (2011) Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. *Proc Natl Acad Sci U S A*, **108**, 14015-14020.

6. Cooper, G. and Rios, A.C. (2016) Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites. *Proc Natl Acad Sci U S A*, **113**, E3322-3331.

7. Belloche, A., Muller, H.S.P., Menten, K.M., Schilke, P. and Comito, C. (2014) Complex organic molecules in the interstellar medium: IRAM 30 m line survey of Sagittarius B2(N) and (M) (vol 559, A47, 2013). *Astron Astrophys*, **561**.

8. Tielens, A.G.G.M. (2008) Interstellar polycyclic aromatic hydrocarbon molecules. *Annu Rev Astron Astr*, **46**, 289-337.

9. Ehrenfreund, P., Rasmussen, S., Cleaves, J. and Chen, L. (2006) Experimentally tracing the key steps in the origin of life: The aromatic world. *Astrobiology*, **6**, 490-520.

10. Patel, B.H., Percivalle, C., Ritson, D.J., Duffy, C.D. and Sutherland, J.D. (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. *Nat Chem*, **7**, 301-307.

11. Powner, M.W., Gerland, B. and Sutherland, J.D. (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. *Nature*, **459**, 239-242.

1 12. Callahan, M.P., Smith, K.E., Cleaves, H.J., Ruzicka, J., Stern, J.C., Glavin, D.P., House, C.H. and Dworkin, J.P.
2 (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. *PNatl Acad Sci USA*, **108**,
3 13995-13998.

4 13. Jung, S.H. and Choe, J.C. (2013) Mechanisms of Prebiotic Adenine Synthesis from HCN by Oligomerization in
5 the Gas Phase. *Astrobiology*, **13**, 465-475.

6 14. Lerner, N.R., Peterson, E. and Chang, S. (1993) The Strecker Synthesis as a Source of Amino-Acids in
7 Carbonaceous Chondrites - Deuterium Retention during Synthesis. *Geochim Cosmochim Ac*, **57**, 4713-4723.

8 15. Glavin, D.P., Callahan, M.P., Dworkin, J.P. and Elsila, J.E. (2010) The effects of parent body processes on amino
9 acids in carbonaceous chondrites. *Meteoritics & Planetary Science*, **45**, 1948-1972.

10 16. Mousis, O., Lunine, J.I., Waite, J.H., Magee, B., Lewis, W.S., Mandt, K.E., Marquer, D. and Cordier, D. (2009)
11 Formation Conditions of Enceladus and Origin of Its Methane Reservoir. *Astrophys J Lett*, **701**, L39-L42.

12 17. Summons, R.E., Albrecht, P., McDonald, G. and Moldowan, J.M. (2007) Molecular Biosignatures. *Space Sci Rev*,
13 **135**, 133-159.

14 18. Engel, M.H. and Macko, S.A. (1997) Isotopic evidence for extraterrestrial non-racemic amino acids in the
15 Murchison meteorite. *Nature*, **389**, 265-268.

16 19. Brownlee, D., Tsou, P., Aleon, J., Alexander, C.M., Araki, T., Bajt, S., Baratta, G.A., Bastien, R., Bland, P., Bleuet,
17 P. et al. (2006) Comet 81P/Wild 2 under a microscope. *Science*, **314**, 1711-1716.

18 20. Westphal, A.J., Snead, C., Butterworth, A., Graham, G.A., Bradley, J.P., Bajt, S., Grant, P.G., Bench, G., Brennan,
19 S. and Pianetta, P. (2004) Aerogel keystones: Extraction of complete hypervelocity impact events from aerogel
20 collectors. *Meteoritics & Planetary Science*, **39**, 1375-1386.

21 21. Tsou, P., Brownlee, D.E., Sandford, S.A., Hörz, F. and Zolensky, M.E. (2003) Wild 2 and interstellar sample
22 collection and Earth return. *Journal of Geophysical Research: Planets*, **108**.

23 22. Westphal, A.J., Snead, C., Borg, J., Quirico, E., Raynal, P.I., Zolensky, M.E., Ferrini, G., Colangeli, L. and
24 Palumbo, P. (2002) Small hypervelocity particles captured in aerogel collectors: Location, extraction, handling
25 and storage. *Meteoritics & Planetary Science*, **37**, 855-865.

26 23. Hörz, F. and Zolensky, M.E. (2000) Impact Features and Projectile Residues in Aerogel Exposed on Mir. *Icarus*,
27 **147**, 559-579.

1 24. Kitazawa, Y., Fujiwara, A., Kadono, T., Imagawa, K., Okada, Y. and Uematsu, K. (1999) Hypervelocity impact
2 experiments on aerogel dust collector. *Journal of Geophysical Research: Planets*, **104**, 22035-22052.

3 25. Hörz, F., Cintala, M.J., Zolensky, M.E., Bernhard, R.B., Davidson, W.E., Haynes, G., S., T.H., Tsou, P. and
4 Brownlee, D.E. (1998) Capture of hypervelocity particles with low-density aerogel. *NASA Technical
5 Memorandum*, **98-201792**.

6 26. Burchell, M.J., Thomson, R. and Yano, H. (1998) Capture of hypervelocity particles in aerogel: in ground
7 laboratory and low earth orbit. *Planetary and Space Science*, **47**, 189-204.

8 27. Brownlee, D.E., Hörz, F., Hrubsh, L., McDonnell, J.A.M., Tsou, P. and Williams, J. (1994) Eureka! Aerogel
9 capture of meteoroids in space. *Abst. Lunar Planet. Sci. Conf*, 183-184.

10 28. Barrett, R.A., Zolensky, M.E., Horz, F., Lindstrom, D.J. and Gibson, E.K. (1992) Suitability of Silica Aerogel As a
11 Capture Medium for Interplanetary Dust. *Proceedings, 22nd Lunar and Planetary Science*, **22**, 203-212.

12 29. Elsila, J.E., Glavin, D.P. and Dworkin, J.P. (2009) Cometary glycine detected in samples returned by Stardust.
13 *Meteoritics & Planetary Science*, **44**, 1323-1330.

14 30. Sandford, S.A., Aleon, J., Alexander, C.M.O., Araki, T., Bajt, S., Baratta, G.A., Borg, J., Bradley, J.P., Brownlee,
15 D.E., Brucato, J.R. *et al.* (2006) Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. *Science*,
16 **314**, 1720-1724.

17 31. Burchell, M.J., Bowden, S.A., Cole, M., Price, M.C. and Parnell, J. (2014) Survival of organic materials in
18 hypervelocity impacts of ice on sand, ice, and water in the laboratory. *Astrobiology*, **14**, 473-485.

19 32. Nixon, A., Burchell, M.J., Price, M.C., Kearsley, A.T. and Jones, S. (2012) Aerogel tracks made by impacts of
20 glycine: Implications for formation of bulbous tracks in aerogel and the Stardust mission. *Meteoritics & Planetary
21 Science*, **47**, 623-633.

22 33. Burchell, M.J., Cole, M.J., Price, M.C., Kearsley, A.T. and Nixon, A. (2010) Glycine Survival in Hypervelocity
23 Impacts in the Laboratory into Aerogel and onto Aluminium Foil. *Lunar and Planetary Science Conference*, **41**,
24 1637.

25 34. Spencer, M.K., Clemett, S.J., Sandford, S.A., Mckay, D.S. and Zare, R.N. (2009) Organic compound alteration
26 during hypervelocity collection of carbonaceous materials in aerogel. *Meteoritics & Planetary Science*, **44**, 15-24.

1 35. Burchell, M.J., Foster, N.J., Ormond Prout, J., Dupin, D. and Armes, S.P. (2009) Extent of thermal ablation
2 suffered by model organic microparticles during aerogel capture at hypervelocities. *Meteoritics & Planetary*
3 *Science*, **44**, 1407-1419.

4 36. Kaiser, R.I., Stockton, A.M., Kim, Y.S., Jensen, E.C. and Mathies, R.A. (2013) On the Formation of Dipeptides in
5 Interstellar Model Ices. *The Astrophysical Journal*, **765**, 111.

6 37. Sugahara, H. and Mimura, K. (2015) Peptide synthesis triggered by comet impacts: A possible method for
7 peptide delivery to the early Earth and icy satellites. *Icarus*, **257**, 103-112.

8 38. Poinot, P. and Geffroy-Rodier, C. (2015) Searching for organic compounds in the Universe. *Trac-Trend Anal*
9 *Chem*, **65**, 1-12.

10 39. Coussot, G., Moreau, T., Faye, C., Vigier, F., Baqué, M., Le Postollec, A., Incerti, S., Dobrijevic, M. and
11 Vandenabeele-Trambouze, O. (2016) Biochip-based instruments development for space exploration: influence
12 of the antibody immobilization process on the biochip resistance to freeze-drying, temperature shifts and cosmic
13 radiations. *International Journal of Astrobiology*, 1-10.

14 40. Rix, C.S., Sims, M.R. and Cullen, D.C. (2011) Immunological Detection of Small Organic Molecules in the
15 Presence of Perchlorates: Relevance to the Life Marker Chip and Life Detection on Mars. *Astrobiology*, **11**, 839-
16 846.

17 41. Aubrey, A.D., Chalmers, J.H., Bada, J.L., Grunthaner, F.J., Amashukeli, X., Willis, P., Skelley, A.M., Mathies, R.A.,
18 Quinn, R.C., Zent, A.P. *et al.* (2008) The Urey instrument: An advanced in situ organic and oxidant detector for
19 Mars exploration. *Astrobiology*, **8**, 583-595.

20 42. Mora, M.F., Stockton, A.M. and Willis, P.A. (2012) Microchip capillary electrophoresis instrumentation for in
21 situ analysis in the search for extraterrestrial life. *Electrophoresis*, **33**, 2624-2638.

22 43. Creamer, J.S., Mora, M.F. and Willis, P.A. (2017) Enhanced Resolution of Chiral Amino Acids with Capillary
23 Electrophoresis for Biosignature Detection in Extraterrestrial Samples. *Anal Chem*, **89**, 1329-1337.

24 44. Willis, P.A., Creamer, J.S. and Mora, M.F. (2015) Implementation of microchip electrophoresis instrumentation
25 for future spaceflight missions. *Anal Bioanal Chem*, **407**, 6939-6963.

26 45. Mora, M.F., Jones, S.M., Creamer, J. and Willis, P.A. (2018) Extraction of amino acids from aerogel for analysis
27 by capillary electrophoresis. Implications for a mission concept to Enceladus' Plume. *Electrophoresis*, **39**, 620-
28 625.

1 46. Mathies, R.A., Razu, M.E., Kim, J., Stockton, A.M., Turin, P. and Butterworth, A. (2017) Feasibility of Detecting
2 Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer. *Astrobiology*, **17**, 902-912.

3 47. Kim, J., Jensen, E.C., Stockton, A.M. and Mathies, R.A. (2013) Universal Microfluidic Automaton for
4 Autonomous Sample Processing: Application to the Mars Organic Analyzer. *Anal Chem*, **85**, 7682-7688.

5 48. Carbonnier, B., Guerrouache, M., Denoyel, R. and Millot, M.C. (2007) CEC separation of aromatic compounds
6 and proteins on hexylamine-functionalized N-acryloxy succinimide monoliths. *J Sep Sci*, **30**, 3000-3010.

7 49. Guerrouache, M., Carbonnier, B., Vidal-Madjar, C. and Millot, M.C. (2007) In situ functionalization of N-
8 acryloxy succinimide-based monolith for reversed-phase electrochromatography. *J Chromatogr A*, **1149**, 368-376.

9 50. Guerrouache, M., Millot, M.-C. and Carbonnier, B. (2009) Functionalization of Macroporous Organic Polymer
10 Monolith Based on Succinimide Ester Reactivity for Chiral Capillary Chromatography: A Cyclodextrin Click
11 Approach. *Macromolecular Rapid Communications*, **30**, 109-113.

12 51. Guerrouache, M., Millot, M.C. and Carbonnier, B. (2011) Capillary columns for reversed-phase CEC prepared
13 via surface functionalization of polymer monolith with aromatic selectors. *J Sep Sci*, **34**, 2271-2278.

14 52. Guerrouache, M., Carbonnier, B., Vidal-Madjar, C. and Millot, M.-C. (2007) In situ functionalization of N-
15 acryloxy succinimide-based monolith for reversed-phase electrochromatography. *J Chromatogr A*, **1149**, 368-376.

16 53. Sekine, Y., Takano, Y., Yano, H., Funase, R., Takai, K., ishihara, M., Shibuya, T., Tachibana, S., Kuramoto, K.,
17 Yabuta, H. *et al.* (2014) Exploration of Enceladus' water-rich plumes toward understanding of chemistry and
18 biology of the interior ocean. *Aerosp. Technol. Jpn.*, **12**, Tk_7-Tk_11.

19 54. Yano, H., Yamagishi, A., Hashimoto, H., Yokobori, S., Kebukawa, Y., Kawaguchi, Y., Kobayashi, K., Yabuta, H.,
20 Tabata, M., Higashide, M. *et al.* (2015) Tanpopo: A New Micrometeoroid Capture and Astrobiology Exposure in
21 Leo: Its First Year Operation and Post-Flight Plan. *Meteoritics & Planetary Science*, **50**.

22 55. Tabata, M., Yano, H., Kawai, H., Imai, E., Kawaguchi, Y., Hashimoto, H. and Yamagishi, A. (2015) Silica Aerogel
23 for Capturing Intact Interplanetary Dust Particles for the Tanpopo Experiment. *Origins Life Evol B*, **45**, 225-229.

24 56. Mita, H., Yamagishi, A., Yano, H., Okudaira, K., Kobayashi, K., Yokobori, S.I., Tabata, M., Kawai, H., Hashimoto,
25 H. and Wg, T. (2009) TANPOPO: Astrobiology Exposure and Micrometeoroid Capture Experiments on the
26 KIBO, ISS. *Origins Life Evol B*, **39**, 371-372.

1 57. Dziomba, S., Kowalski, P., Slominska, A. and Baczek, T. (2014) Field-amplified sample injection coupled with
2 pseudo-isotachophoresis technique for sensitive determination of selected psychiatric drugs in human urine
3 samples after dispersive liquid-liquid microextraction. *Anal Chim Acta*, **811**, 88-93.

4 58. Zhang, C.X. and Thormann, W. (1996) Head-column field-amplified sample stacking in binary system capillary
5 electrophoresis: A robust approach providing over 1000-fold sensitivity enhancement. *Anal Chem*, **68**, 2523-
6 2532.

7 59. Quirino, J.P. and Terabe, S. (2000) Sample stacking of cationic and anionic analytes in capillary electrophoresis. *J
8 Chromatogr A*, **902**, 119-135.

9 60. Stockton, A.M., Chiesl, T.N., Scherer, J.R. and Mathies, R.A. (2009) Polycyclic aromatic hydrocarbon analysis
10 with the Mars organic analyzer microchip capillary electrophoresis system. *Anal Chem*, **81**, 790-796.

11 61. Akbay, C., Shamsi, S.A. and Warner, I.M. (1997) Phosphated surfactants as pseudostationary phase for micellar
12 electrokinetic chromatography: separation of polycyclic aromatic hydrocarbons. *Electrophoresis*, **18**, 253-259.

13 62. Marrubini, G., Mendoza, B.E. and Massolini, G. (2010) Separation of purine and pyrimidine bases and
14 nucleosides by hydrophilic interaction chromatography. *J Sep Sci*, **33**, 803-816.

15 63. Alpert, A.J. (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and
16 other polar compounds. *J Chromatogr*, **499**, 177-196.

17 64. Guo, S., Duan, J.A., Qian, D., Wang, H., Tang, Y., Qian, Y., Wu, D., Su, S. and Shang, E. (2013) Hydrophilic
18 interaction ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry for
19 determination of nucleotides, nucleosides and nucleobases in *Ziziphus* plants. *J Chromatogr A*, **1301**, 147-155.

20 65. Hiller, D.A. and Strobel, S.A. (2011) The chemical versatility of RNA. *Philos Trans R Soc Lond B Biol Sci*, **366**,
21 2929-2935.

22 66. Chen, J.H., Shi, Q., Wang, Y.L., Li, Z.Y. and Wang, S. (2015) Dereplication of Known Nucleobase and
23 Nucleoside Compounds in Natural Product Extracts by Capillary Electrophoresis-High Resolution Mass
24 Spectrometry. *Molecules*, **20**, 5423-5437.

25 67. Ali, I., Al-Othman, Z.A., Al-Warthan, A., Asnin, L. and Chudinov, A. (2014) Advances in chiral separations of
26 small peptides by capillary electrophoresis and chromatography. *Journal of Separation Science*, **37**, 2447-2466.

27 68. Kasicka, V. (1999) Capillary electrophoresis of peptides. *Electrophoresis*, **20**, 3084-3105.

1 69. Kasicka, V. (2006) Recent developments in capillary electrophoresis and capillary electrochromatography of
2 peptides. *Electrophoresis*, **27**, 142-175.

3 70. Scriba, G.K.E. (2006) Recent advances in peptide and peptidomimetic stereoisomer separations by capillary
4 electromigration techniques. *Electrophoresis*, **27**, 222-230.

5 71. Scriba, G.K.E. (2009) Recent developments in peptide stereoisomer separations by capillary electromigration
6 techniques. *Electrophoresis*, **30**, S222-S228.

7 72. Burgi, D.S. and Chien, R.L. (1991) Optimization in Sample Stacking for High-Performance Capillary
8 Electrophoresis. *Anal Chem*, **63**, 2042-2047.

9 73. Hörz, F., Cintala, M.J., See, T.H. and Messenger, K.N. (2009) Penetration tracks in aerogel produced by Al₂O₃
10 spheres. *Meteoritics & Planetary Science*, **44**, 1243-1264.

11 74. Domínguez, G. (2009) Time evolution and temperatures of hypervelocity impact - generated tracks in aerogel.
12 *Meteoritics & Planetary Science*, **44**, 1431-1443.

13 75. Okudaira, K., Noguchi, T., Nakamura, T., Sugita, S., Sekine, Y. and Yano, H. (2004) Evaluation of mineralogical
14 alteration of micrometeoroid analog materials captured in aerogel. *Advances in Space Research*, **34**, 2299-2304.

15 76. Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. *Nat
16 Methods*, **9**, 671-675.

17

18

19

20