Framework for Extensible, Asynchronous Task
Scheduling (FEATS) in Fortran

; 1[0000—0002—3205—2169 : 1,2[0000—0002—2344—868 X
Brad Richardson’! I, Damian Rouson®-2! I,

Harris Snyder![0000-0002-2983-4514] 51\ q Robert
Singleterry3[0000—0002—5725—8825)]

1 Archaeologic Inc., Oakland CA, USA
{brad,damian,harris}@archaeologic.codes
https://archaeologic.codes
2 Lawrence Berkeley National Laboratory, Berkeley CA, USA
rouson@lbl.gov
https://www.1lbl.gov
3 NASA Langley Research Center, Hampton, VA, USA
robert.c.singleterry@nasa.gov
https://www.nasa.gov/langley

Abstract. Most parallel scientific programs contain compiler directives
(pragmas) such as those from OpenMP [I]], explicit calls to runtime li-
brary procedures such as those implementing the Message Passing In-
terface (MPI) [2], or compiler-specific language extensions such as those
provided by CUDA [3]. By contrast, the recent Fortran standards em-
power developers to express parallel algorithms without directly refer-
encing lower-level parallel programming models [45]. Fortran’s parallel
features place the language within the Partitioned Global Address Space
(PGAS) class of programming models. When writing programs that ex-
ploit data-parallelism, application developers often find it straightfor-
ward to develop custom parallel algorithms. Problems involving complex,
heterogeneous, staged calculations, however, pose much greater chal-
lenges. Such applications require careful coordination of tasks in a man-
ner that respects dependencies prescribed by a directed acyclic graph.
When rolling one’s own solution proves difficult, extending a customiz-
able framework becomes attractive. The paper presents the design, imple-
mentation, and use of the Framework for Extensible Asynchronous Task
Scheduling (FEATS), which we believe to be the first task-scheduling
tool written in modern Fortran. We describe the benefits and compro-
mises associated with choosing Fortran as the implementation language,
and we propose ways in which future Fortran standards can best support
the use case in this paper.

Keywords: Modern Fortran - Task Scheduling - Framework - coarray

1 Introduction

Modern computing hardware has evolved to offer a variety of opportunities to
exploit parallelism for high performance — including multicore processors with


https://archaeologic.codes
https://www.lbl.gov
https://www.nasa.gov/langley

2 Brad Richardson, Damian Rouson, Harris Snyder, and Robert Singleterry

vector units, superscalar pipelines, and embedded or off-chip graphics processing
units. Exploiting the abundance of opportunities for parallel execution requires
searching for a variety of forms of parallelism. Chief among the common parallel
programming patterns are data parallelism and task parallelism [6]. Parallel pro-
gramming languages have evolved native features that support data parallelism.
In Fortran 2018, for example, such features include giving the programmer the
ability to define teams (hierarchical sets) of images (processes) that execute
asynchronously with each image having one-sided access to other team mem-
bers’ local portions of “coarray” distributed data structures [4]. These features
have now seen use in production codes running at scale for simulating systems
ranging from weather [7] and climate [8] to plasma fusion [9].

By contrast, task parallelism generally proves much more challenging for ap-
plication developers to exploit without deep prior experience in parallel program-
ming. Although data parallelism maps straightforwardly onto a bulk synchronous
programming model in which periods of computation are interspersed with pe-
riods of communication followed by barrier synchronization, efficient execution
of independent tasks generally requires asynchronous execution with more loose
forms of coordination such as semaphores. To wit, it takes roughly 15 source
lines of code to implement a bulk synchronous “Hello, world!” program using
Fortran’s barrier synchronization mechanism, the sync all statement; whereas
it takes more than three times as many lines to write a similar, asynchronous
program taking advantage of Fortran’s event_type derived type, the language’s
mechanism supporting semaphores[10].

A central challenge in writing asynchronous code to coordinate tasks centers
around task parallelism’s more irregular execution and communication patterns.
Whereas partial differential equation solvers running in a data parallel manner
typically involve a predictable set of halo data exchanges between grid partitions
at every time step, task parallelism generally enjoys no such regular communi-
cation pattern. Programmers generally represent task ordering requirements in
a Directed Acyclic Graph (DAG) of task dependencies[I1]. Tasks can execute in
any order that respects the DAG. Moreover, the DAG can change considerably
from one problem to the next and even from one execution to the next. For
example, a DAG describing the steps for building a software package will vary
over the life of the software as internal and external dependencies change.

Writing code to handle the level of flexibility needed efficiently is daunting
for most application developers, which makes the use of a task-scheduling frame-
work attractive. Fortran programmers face the additional challenge that the task
scheduling frameworks of which the authors are aware are written in other pro-
gramming languages such as C++ [12] and UPC++[I3]or target specific domains
such as linear algebra [I4]. FEATS aims to support standard Fortran 2018 with
a standard Fortran 2018 framework and is unique in these aspects.

Rumors of Fortran’s demise are greatly exaggerated. Despite longstanding
calls for Fortran’s retirement [I5] and descriptions of Fortran as an “infantile
disorder,” [16] the world’s first widely used high-level programming language
continues to see important and significant use. Fortran is arguably enjoying a



Title Suppressed Due to Excessive Length 3

renaissance characterized by a growing list of new compiler projects over the
past several years and a burgeoning community of developers at all career stages
writing new libraries [I7], including some in very non-traditional areas such as
package management [I8]. The National Energy Research Scientific Computing
Center (NERSC) used system monitoring of runtime library usage to determine
that approximately 70% of projects use Fortran [I9] and found that the vast
majority of projects use MPL.

In MPI, the most advanced way to achieve the aforementioned requirements
of loosely coordinated, high levels of asynchronous execution required for efficient
task scheduling involves the use of the one-sided MPI_Put and MPI_Get functions
introduced in MPI-3. In the authors’ experience, however, the overwhelming
majority of parallel MPI applications use MPI’s older two-sided communication
features, such as the non-blocking MPI_ISend and MPI_IRecv functions partly
due to the challenges of writing one-sided MPI. Our choice to write and support
Fortran’s native coarray communication mechanism enables us to take advantage
of the one-sided MPI built into some compiler’s parallel runtime libraries, e.g.,
in the OpenCoarrays [20] runtime used by gfortran, or whatever communica-
tion substrate a given compiler offeror chooses to best suit particular hardware.
Moreover, this choice implies that switching from one communication substrate
to another might require no more than switching compilers or even swapping
compiler flags and ultimately empowers scientists and engineers to focus more
on the application’s science and engineering and less on the computer science.

2 Implementation

FEATS itself consists of eight Fortran modules. Before they can be described,

there is one key upstream dependency which must be noted: dag, a separate

library for manipulating directed acyclic graphs in Fortran. Using dag, directed

acyclic graphs can be assembled directly in Fortran code, or as a JSON (JavaScript
Object Notation) file which is read at run time. FEATS leverages the dag library

to store the graph of tasks to be executed.

FEATS is designed around the use of Fortran coarrays to provide distributed
multiprocessing and data exchange between application images. FEATS auto-
matically assigns the first image to be the “scheduler” image, responsible for
tracking what work has been completed and which tasks can be executed next
based on the task dependency graph, and assigning work to the other (“com-
pute”) images. The image m module provides an image_t derived type, which
encapsulates the data required for the operation of an image and exposes a single
“run” procedure. That run function is given an application_t object (provided
in the module application m), which stores a list of task objects (described
below) and a dag graph, which describes the dependencies between tasks.

Tasks in FEATS are represented as objects. FEATS provides an abstract
derived type task_t, which the user should extend in their own derived type
definition, and provide the necessary “execute” function required to complete
the task. This design is convenient for the user, but a side-effect is that the tasks



4 Brad Richardson, Damian Rouson, Harris Snyder, and Robert Singleterry

will be of different types (granted, with a common base type). Since Fortran does
not allow an array to be created where the elements of the array have different
types, it was necessary to create a wrapper type, task_item_t, which stores a
class(task_t) as an allocatable member. With this wrapper type, an array of
task_item_t values can be created and stored. While an implementation detail,
in general, a user will not have to interact with task_item_t in order to simply
use FEATS.

Tasks have inputs and outputs, so there must be some mechanism by which
to transmit those inputs and outputs between images. This transmission is done
using coarrays, though it should be noted that all image control and coarray
code is internal to the FEATS library, meaning that the user need not directly
deal with any details related to parallel programming, or even understand coar-
rays. The “execute” function of each task type can accept and return payload_t
objects, which encode task inputs and outputs. Different tasks will of course
have different input and output types based on their purpose, which brings up
another difficulty of implementing FEATS as a library. Since the library code
cannot know the details of different tasks’ input and output types, it must rep-
resent these payloads in some generic way so that it can be transmitted between
images. FEATS solves the problem by storing payloads as an array of integers
(just a string of bytes in memory), and the user must use the Fortran transfer
statement to serialize their data into and out of payloads. This serialization does
come with some caveats; the user needs to ensure that the types they use as
payloads can be serialized and deserialized safely (for example, a simple derived
type with inline elements will work correctly, whereas one with pointers and
allocatable components likely will not). Although arguably an aesthetically “in-
elegant” approach, the authors see it as an acceptable engineering tradeoff in
the interest of generality.

The mailbox_m module contains the actual payload coarrays used for data
exchange, and the final task m module contains a task type that serves as a
signal to the compute images that all work has been completed. Both of these
modules are implementation details, and the user never needs to interact with
them directly.

The final module constituting FEATS is feats_result_map_m. Tasks, partic-
ularly ones at the graph’s terminal nodes, may have outputs which the user
wants to access after the whole graph has been processed. The aim of the
feats_result_map-m module is to offer a derived type that tracks which image
has the results from terminal nodes in the graph. As of this writing, implemen-
tation of the type has not yet been completed. Implementation of such a type
should be fairly straightforward, and we plan to add it.

3 Advantages, Disadvantages, and Examples

This section discusses how the features of Fortran enable/support the develop-
ment of FEATS, and aspects of the language that currently serve as impediments
to the desired features of the framework.



Title Suppressed Due to Excessive Length 5

3.1 Advantages

There are several features of the modern Fortran language that make it a natural
fit for implementing a task scheduling framework. Several aspects have featured
prominently in the implementation, but in this section we will discuss what
makes them beneficial for implementing a task scheduling framework.

Coarrays and Events The fundamental problem of task scheduling requires
methods of communicating data between tasks, and coordinating the execution
of those tasks to enforce prerequisite tasks are completed before subsequent tasks
begin. The coarray feature of Fortran provides a simple and effective method of
performing one-sided communication between the scheduler and executor images
to facilitate data transfer between tasks. While other languages and libraries
have methods of communicating data between processes, they often require two-
sided operations (i.e. both processes must participate in the communication),
require calls to external library procedures, or require significant expertise to
use correctly. Having the communication facilities as a native feature of the
language simplifies the syntax and implementation complexities and reduces the
number of external dependencies.

Although other language and library communication methods are generally
sufficient for implementing coordination mechanisms, doing so manually requires
a high level of expertise and adds complexity to the implementation. Having a na-
tive feature of the language explicitly designed for the purposes of coordination,
namely event types, again simplifies the syntax and implementation complexities
and reduces the number of external dependencies.

Teams Although there may be task scheduling algorithms that do not require a
reserved process to act as a scheduler, these algorithms generally come at the cost
of increased overhead in terms of coordination and complexity of implementa-
tion. However, having a dedicated scheduler can introduce a communication and
coordination bottleneck in cases of large tasks graphs being executed by large
numbers of processes. While we have not yet implemented it, the teams feature
of Fortran allows for a simple and natural partitioning of processes such that
multiple schedulers can coordinate with segments of executor images operating
on partitions of the task graph.

Polymorphism Although it may be possible to implement a task-scheduling
framework without polymorphism, it would require implementation of a pre-
determined set of possible task interfaces, which would likely be limiting for
potential users. By making use of abstract type definitions and type-extension,
and defining a generic interface for a task, the procedure of defining a task and
including it in a graph becomes a natural process for users, with help from the
compiler in enforcing that they have done so properly. The process of defining
new tasks involves creating a new derived type which extends from the frame-
work’s task_t type and providing an implementation for the run procedure.
A task can then be created by instantiating an object of this new type, to be
included in the dependency graph.



6 Brad Richardson, Damian Rouson, Harris Snyder, and Robert Singleterry

Fortran’s History Fortran’s long history of use in scientific computing means
that there are likely a large number of applications that could benefit from a
Fortran-specific task scheduling framework. We have already identified a po-
tential target application in NASA’s OLTARIS[2]], space radiation shielding
software. Other prime target applications are those which perform a series of
different, but long running calculations, or those which perform parallel calcu-
lations (or easily could), but which experience load balancing issues.

3.2 Disadvantages

There are some ways in which the Fortran language lacks some important fea-
tures that would allow for an even better implementation. We will discuss these
shortcomings and the ways in which the language could be improved to address
them, or how they can be worked around.

Data Communication The lack of ability to utilize polymorphism in coarrays
means that communication of task input and output data cannot be done as
seamlessly as users would like. In order to communicate the inputs and outputs
between tasks, users are forced to manually serialize and deserialize the data
into a pre-defined format for transfer between processes. This means it will also
be difficult for users to make use of polymorphism in their calculations, as de-
serialization of polymorphic objects can be done only with a predefined set of
possible result types. Further, the lack of ability to communicate polymorphic
objects via coarrays means that each image must have a complete copy of the
dependency graph and its tasks, because the tasks themselves cannot be com-
municated to the executing images later. This represents a moderate inefficiency
in data storage and in initial execution for each image to compute/construct the
dependency graph. A strategic relaxation of a single constraint in the Fortran
standard is all that would be required to enable the use of polymorphism in the
data communication.

Task Detection, Fusion or Splitting Because Fortran lacks any features for
introspection or reflection, it is not possible for the framework to automatically
detect tasks, fuse small tasks together, or split large tasks apart. All task defini-
tion must be performed manually by the user, with no help from the framework.
It would be possible to allow users to manually provide information about task
and data sizes to encourage certain sequences of tasks to be executed on one
image, but would likely be difficult and error prone. Future work could involve
exploring avenues for annotating tasks to help the scheduler more efficiently
assign tasks to images.

Task Independence Task independence is a problem for all task based ap-
plications, but Fortran provides few avenues for mitigating or catching possible
mistakes. Any data dependencies between tasks not stated explicitly in the de-
pendency graph and communicated as arguments to the task or its output allow



Title Suppressed Due to Excessive Length 7

for the possibility of data races. In other words, all tasks must be pure func-
tions with all dependencies defined. Many existing Fortran applications were
not written in this style, and may require extensive work to refactor to a form in
which they could take advantage of a task scheduling framework. It is the opin-
ion of the authors that most applications could benefit from such refactoring
to enable parallel execution regardless of the desire to use this framework, but
understand that the costs involved do not always make this refactoring feasible.
Users could make these dependencies explicit without using the framework to
transmit the data, but it may be beneficial to develop tools to help users identify
these ”hidden” dependencies.

3.3 Examples

The examples described in this section can be found in the FEATS repository at
https://github.com/sourceryinstitute/feats. In order to give the reader
a sense of the compiler landscape, we present one example that is blocked by
bugs in current compilers and one example that works correctly with at least
one currently available compiler.

A Quadratic Root Finder The typical algorithm/equation for finding the
roots of a quadratic equation can be defined as tasks and FEATS can then
be used to perform the calculations. The use of such a simple example can
be beneficial for demonstrating the use of the framework. Given a quadratic
equation of the form:

axx? +bxx+c=0 (1)

then the equation to determine the values of x which satisfy the equation (the

roots), is:
—bE Vb2 —4dxaxc

2xqa

(2)

The diagram in Figure[T]illustrates how this equation can be broken into separate
steps and shows the dependencies between them.

The equivalent FEATS application can be constructed as follows, assuming
the tasks have been appropriately defined. We also note that the dag library used
(and thus the solver object) is capable of producing (and was used to produce
nearly exactly) the graphviz source code used to generate the image in Figure

solver = dag_t( &

[ vertex_t ([integer::], 7a”) &

, vertex_t ([integer::], ”b”) &

, vertex_t ([integer::], 7¢”) &

, vertex_t ([2], 7#xx27) &

, vertex_t ([1, 3], "dx#x#") &

, vertex_t ([4, 5], 7sqrt(# — #)) &
, vertex_t ([2, 6], "—# + #") &

, vertex_t ([1], 72x#”) &


https://github.com/sourceryinstitute/feats

8 Brad Richardson, Damian Rouson, Harris Snyder, and Robert Singleterry

, vertex_t ([8, 7], "# /| #7) &
, vertex_t ([9], ”print roots”) &
1)
tasks = &
[ task_item_t(a_-t(2.0)) &
, task_item_t(b_t(—5.0)) &
, task_item_t(c_t (1.0)) &
, task_item_t (b_squared_t()) &
, task_item_t (four_ac_t()) &
, task_item_t (square_root_t()) &
, task_item_t (minus_b_pm_square_root_t()) &
, task_item_t (two_a_t()) &
, task_item_t (division_t()) &
, task_item_t(printer_t()) &

application = application_t (solver, tasks)

In order to be able to execute this example, we had to modify the payload
to have a static size. This allowed us to execute the example using gfortran and
OpenCoarrays. Unfortunately, bugs in other compilers with support for Fortran’s
parallel features prevented us from compiling the library with them.

Cr—

#**2

sqre(# - #) |- -# £ #

\
| AN
@k 4R H # / #

Fig. 1. Graphical representation of the computational tasks involved in calculating the
roots of a quadratic equation.

Compiling FEATS Compiling software projects is a common example of an
application involving tasks. By defining the dependencies between files, and
defining their compilation as a task, it becomes possible to use FEATS to com-
pile itself. The FEATS source file dependencies are described by the image in
Figure [2] and the FEATS application can be constructed as follows.

feats = dag_t(&
[ vertex_t ([integer::], name_string(assert_m)) &



Title Suppressed Due to Excessive Length 9

, vertex_t ([integer::], name_string(dag.m)) &
, vertex_t( &
[dag-m, task_item_m], name_string(application.m)) &

, vertex_t( &
[assert_m , application.m], &
name_string (application_s)) &
, vertex_t( &
[integer ::] , name_string(feats_result_map_m)) &
, vertex_t( &
[payload_m, task_m], name_string(final_task_-m)) &
, vertex_t ([final_task_m], name_string(final_task_s)) &
, vertex_t( &
[application_m , feats_result_map_m , payload m], &
name_string (image_m)) &
, vertex_t( &
[dag-m, final_task_m , image.m, &
mailbox_m, task_item_-m], &
name_string (image_s)) &

, vertex_t ([payload_m], name_string (mailbox_-m)) &
, vertex_t ([integer::], name_string(payload-m)) &
, vertex_t ([payload_m], name_string(payload_s)) &
, vertex_t( &
[payload_m, task_m], name_string (task_item_-m)) &
, vertex_t ([task_item_m], name_string(task_item_s)) &
, vertex_t ([payload_m], name_string (task.m)) &
, vertex_t ([task.m], name_string(task_s)) &
1
tasks = [(task_item_t(compile_task_t(name_string(i))), &
i =1, size(names))]

application = application_t (feats , tasks)

We were able to execute this example, as no data transfer was necessary
between dependencies, avoiding the bug preventing execution of the previous
example with one of the compilers. It produces output like the following, with
a slightly different order of execution being possible each time except that a
file is never started compiling prior to a file it depends on first completing its
compilation, and with a possibly different image executing each task.

Compiling: dag-m on image number: 3

Compiling: assert_m on image number: 4
Compiling: feats_result_map_m on image number: 2
Finished Compiling: assert_m

Compiling: payload_m on image number: 4

Finished Compiling: dag-m

Finished Compiling: feats_result_map_m

Finished Compiling: payload_-m

Compiling: mailbox_.m on image number: 4



10 Brad Richardson, Damian Rouson, Harris Snyder, and Robert Singleterry

Compiling: task_.m on image number: 2
Compiling: payload_s on image number: 3
Finished Compiling: mailbox_m

Finished Compiling: task_m

Compiling: task_item_m on image number: 2
Finished Compiling: payload_s

Compiling: task_s on image number: 3
Compiling: final_task_m on image number: 4
Finished Compiling: final_task_m
Compiling: final_task_s on image number: 4
Finished Compiling: task_item_m

Compiling: application.m on image number: 2
Finished Compiling: application_m
Compiling: application_s on image number: 2
Finished Compiling: task_s

Compiling: image.m on image number: 3
Finished Compiling: final_task_s
Compiling: task_item_s on image number: 4
Finished Compiling: task_item_s

Finished Compiling: application_s

Finished Compiling: image_m

Compiling: image_s on image number: 4
Finished Compiling: image_s

4 Conclusion

We believe the existing Fortran applications, and the Fortran ecosystem gen-
erally, would greatly benefit from a native tasking framework. The prototype
implementation of FEATS has successfully demonstrated that implementing a
task scheduling framework in Fortran is feasible. Working around limitations of
the language and the bugs in various compilers’ coarray feature implementation
has proven a challenging but not impassible barrier. With this demonstration
of a working prototype implementation, we have taken a significant first step
towards providing such a capability to Fortran users.

We look forward to working on several unresolved issues in FEATS. The
first order of business will be to implement the result map_t type to allow for
further processing of results after completed execution of a task graph. Also, we
will submit and follow up on bug reports to the writers of the compilers that we
have attempted to use for executing the examples presented. Further, we will
begin to explore the performance characteristics of the framework as we use the
framework to execute larger task graphs on machines with larger numbers of
processors.

Longer term work planned will involve collaborating with the Fortran stan-
dard committee to add capabilities to the language that will enable FEATS
behaviors such as communication of polymorphic objects between images using



Title Suppressed Due to Excessive Length 11

application. _m

payload_m

Fig. 2. Graphical representation of the tasks involved in compiling the FEATS library.

coarrays. We have identified a targeted relaxation of a specific constraint in the
standard to allow for the needed functionality. We will also explore graph parti-
tioning algorithms and the use of the Fortran 2018 teams feature to potentially
improve the ability of the framework to scale to large problems and systems. We
also hope to find potential users of the framework and help them to integrate it
into their applications. Possible initial target applications include parallel builds
with the Fortran package manager [I8] and works-stealing with the Intermediate
Complexity Atmospheric Research model [§].

References

1. Miguel, H. (2002) Parallel programming in Fortran 95 using OpenMP. Technique
Report, Universidad Politecnica De Madrid.

2. Message Passing Interface Forum (2021) MPI: A Message-Passing Interface Stan-
dard Version 4.0, https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

3. Reutsch, G., and Fatica, M. (2013) CUDA Fortran for scientists and engineers: best
pracices for efficient CUDA Fortran programming. Elsevier.

4. Numrich, R. (2018) Parallel Programming with Co-Arrays. Chapman and Hal-
1/CRC, Boca Raton.

5. Curcic, M. ((2021) Modern Fortran: Building Efficient Parallel Applications. Man-
ning Publications.

6. Massingill, B., Sanders, B., and Mattson, T. G. (2004). Patterns for Parallel Pro-
gramming. United Kingdom: Pearson Education.


https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

12 Brad Richardson, Damian Rouson, Harris Snyder, and Robert Singleterry

7. Mozdzynski, G., Hamrud, M. and Wedi, N. (2015) A partitioned global address
space implementation of the European centre for medium range weather forecasts
integrated forecasting system, The International Journal of High Performance Com-
puting Applications 29:3, 261-273.

8. Gutmann, E., Barstad, 1., Clark, M., Arnold, J. and Rasmussen, R. (2016) The
intermediate complexity atmospheric research model (ICAR), Journal of Hydrome-
teorology, 17:3, 957-973.

9. Preissl, R., Wichmann, N., Long, B., Shalf, J., Ethier, S. and Koniges, A. (2011)
Multithreaded global address space communication techniques for gyrokinetic fusion
applications on ultra-scale platforms. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, pp. 1-11.

10. Sourcery Institute (2022) Hello-world, https://github.com/sourceryinstitute/
hello-world.

11. Sourcery Institute (2022) https://github.com/sourceryinstitute/dag

12. Bauer, Lars, Artjom Grudnitsky, Muhammad Shafique, and Jorg Henkel. “PATS:
a performance aware task scheduler for runtime reconfigurable processors.* In 2012
IEEE 20th International Symposium on Field-Programmable Custom Computing
Machines, pp. 208-215. IEEE, 2012.

13. Basilio B. Fraguela, B. B., Andrade, D. (2022) “The New UPC++ DepSpawn High
Performance Library for Data-Flow Computing with Hybrid Parallelism.” In Intl.
Conference on Computational Science.

14. Song, Fengguang, Asim YarKhan, and Jack Dongarra. “Dynamic task scheduling
for linear algebra algorithms on distributed-memory multicore systems.” In Pro-
ceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, pp. 1-11. IEEE, 2009

15. Cann, D., Retire Fortran? A debate rekindled, (1992) Communications of the ACM,
35:8, 81-89.

16. Dijkstra, E. W. (1982) How do we tell truths that might hurt?, ACM Sigplan
Notices, 17:5, 13-15.

17. Kedward, L. J., Aradi, B., Certik, O., Curcic, M., Ehlert, S., Engel, P., Goswami,
R., Hirsch, M., Lozada-Blanco, A., Magnin, V., Markus, A., Pagone, E., Pribec,
I., Richardson, B., Snyder, H., Urban, J. and Vandenplas, J. (2022) The state of
fortran. Computing in Science & Engineering 24:2, 63-72.

18. Ehlert, S., Certik, O., Curcic, M., Jelinek, J., Kedward, L., Magnin, V., Pagone,
E., Richardson, B. and Urban, B. (2021) Fortran package manager, International
Fortran Conference 2021, Zurich, Switzerland, hal-03355768, v1, https://hal.
archives-ouvertes.fr/hal-03355768.

19. Austin, B. et al. (2020) NERSC-10 Workload Analysis, https://doi.org/10.
25344/54N30W.

20. Fanfarillo, A., Burnus, T., Cardellini, V., Filippone, S., Nagle, D., and Rouson,
D. (2014) OpenCoarrays: open-source transport layers supporting coarray Fortran
compilers, In Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models, pp. 1-11.

21. Singleterry, R. C., Blattnig, S. R., Clowdsley, M. S., Qualls, G. D., Sandridge, C.
A., Simonsen, L. C., Norbury, J. W., Slaba, T. C., Walker, S. A., Badavi, F. F.,
Spangler, J. L., Aumann, A. R., Zapp, E. N., Rutledge, R. D., Lee, K. T., and
Norman, R. B. (2010) OLTARIS: On-Line Tool for the Assessment of Radiation in
Space. In NASA /TP-2010-216722, http://oltaris.nasa.govl


https://github.com/sourceryinstitute/hello-world
https://github.com/sourceryinstitute/hello-world
https://github.com/sourceryinstitute/dag
https://hal.archives-ouvertes.fr/hal-03355768
https://hal.archives-ouvertes.fr/hal-03355768
https://doi.org/10.25344/S4N30W
https://doi.org/10.25344/S4N30W
http://oltaris.nasa.gov

	Framework for Extensible, Asynchronous Task Scheduling (FEATS) in Fortran

