1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

M. Hesse
NASA Ames Research Center, Mountain View, CA, 94043, USA
L. B. Wilson III
NASA Goddard Space Flight Center,
Heliophysics Science Division, MD 20771, USA.
and J. Ng
Department of Astronomy, University of Maryland, College Park,
MD 20742, USA; NASA Goddard Space Flight Center,
Heliophysics Science Division, MD 20771, USA.

(Dated: March 22, 2022)

Strong reconnection electric fields in shock-driven turbulence

N. Bessho^{*}

Department of Astronomy, University of Maryland, College Park,

MD 20742, USA; NASA Goddard Space Flight Center,

Heliophysics Science Division, MD 20771, USA.

L.-J. Chen

NASA Goddard Space Flight Center,

Heliophysics Science Division, MD 20771, USA.

J. E. Stawarz

Department of Physics, Imperial College London, London, UK SW7 2AZ

S. Wang

Department of Astronomy, University of Maryland, College Park,

MD 20742, USA; NASA Goddard Space Flight Center,

Heliophysics Science Division, MD 20771, USA.

1

Abstract

Turbulent magnetic reconnection in a quasi-parallel shock under parameters relevant to the Earth's bow shock is investigated by means of a two-dimensional particle-in-cell simulation. The addressed aspects include the reconnection electric field, the reconnection rate, and the electron and the ion outflow speeds. In the shock transition region, many current sheets are generated in shock-driven turbulence, and electron-only reconnection as well as reconnection where both ions and electrons are involved can occur in those current sheets. The electron outflow speed in electron-only reconnection shows a positive correlation with the theoretical speed, which is close to the local electron Alfvén speed, and a strong convection electric field is generated by the large electron outflow. As a result, the reconnection electric field becomes much larger than those in the standard magnetopause or magnetotail reconnection. In shock-driven reconnection that involves ion dynamics, both electron outflows and ion outflows can reach of the order of 10 times the Alfvén speed in the X-line rest frame, leading to a reconnection electric field the same order as that in electron-only reconnection. An electron-only reconnection event observed by the Magnetospheric Multiscale (MMS) mission downstream of a quasi-parallel shock is qualitatively similar to those in the simulation and shows that the outflow speed reaches approximately half the local electron Alfvén speed, supporting the simulation prediction.

^{*} naoki.bessho@nasa.gov

25 I. INTRODUCTION

Electron-only reconnection is a new type of magnetic reconnection that has been gathering attention recently. In such reconnection, only electrons show outflow jets, and no ion jets are generated. Electron-only reconnection was first detected by NASA's Magnetospheric Multiscale (MMS) mission in the Earth's magnetosheath [1], where a large number of current sheets are generated due to the shock turbulence in the downstream region of a quasi-parallel bow shock. Since the size of these current sheets is much smaller than ion gyro-radii, ions cannot respond to the sudden change of magnetic fields in those current sheets, and only electrons participate in magnetic reconnection. As a result, electron jets are generated, but ions are just passing through those regions without generating jets.

Later, MMS observed electron-only reconnection in the shock transition region [2–5], the magnetosheath [6, 7], and the foreshock region [8, 9] of the Earth's bow shock. In addition, possible signatures of electron-only reconnection were found in the magnetic spectrum in turbulence in the magnetosheath [11]. On the other hand, electron-only reconnection was also observed in the Earth's magnetotail [10], and it is interpreted to be the early stage of regular reconnection. In the early stage, the size of the diffusion region is small and only electron jets are generated. The ion jets are generated in the subsequent stage after the electron jets grow, and regular reconnection proceeds with both ions and electrons.

Electron-only reconnection has been studied by numerical simulations as well, by means of at particle-in-cell (PIC) simulations [12–16] and hybrid Vlasov-Maxwell simulations [17, 18]. In at our previous studies by two-dimensional (2-D) PIC simulations, to understand the physics of deelectron-only reconnection, we investigated quasi-parallel shocks whose shock normal angle at is 25 degrees [13, 14]. In those studies, we demonstrated that when the Alfvén Mach number $(M_A = v_{sh}/v_{A0}, \text{ where } v_{sh} \text{ is the shock speed, and } v_{A0} \text{ is the upstream Alfvén speed}) is around$ 10 and when the shock speed is smaller than the electron thermal speed, many current sheetswith their thicknesses a few ion skin depths are generated in the shock transition regiondue to the ion-ion non-resonant beam instability, and the subsequent secondary instabilityfor the shock speed is magnetic fields and current sheets with theirthicknesses several electron skin depths, in which electron-only reconnection can occur. Inthe electron-only reconnection, electron distribution functions show that the temperature ishigher than the upstream region, and electrons are accelerated in the direction opposite to ⁵⁶ the reconnection electric field. Due to the acceleration, the electron outflow speed almost
⁵⁷ reaches the electron Alfvén speed.

In contrast, regular reconnection, where both ions and electrons are involved, also occurs in shocks, and both species can be accelerated. In the same shock simulation with the 25degree shock angle, one of the regions of regular reconnection, where the ion-ion non-resonant beam instability generates ion-scale modulations in magnetic fields, was investigated, and we observed that both ion and electron jets are generated.

In this study, we analyze the properties of reconnection electric fields in electron-only reconnection and regular reconnection in the Earth's quasi-parallel bow shock, using a 2-D PIC simulation. We will statistically investigate outflow speeds in both electron-only reconnection and regular reconnection, and the magnitude of the reconnection electric field as well as reconnection rates. Sec. II explains the simulation method. In Sec. III, we investigate reconnection in the shock transition region, and discuss the analysis results. In Sec. IV, we show an example of observation by MMS for electron-only reconnection. Sec. V summarizes this study.

71 II. SIMULATION METHOD

⁷² We perform a two-and-a-half dimensional electromagnetic PIC simulation for a quasi-⁷³ parallel shock, where the simulation domain is in 2-D but three vector components in field ⁷⁴ quantities and particle velocities are treated. Details of the simulation method is explained ⁷⁵ in the previous papers [13, 14]. The mass ratio of the ion to the electron is $m_i/m_e = 200$. ⁷⁶ The densities of both ions and electrons are uniform and they are $n = n_0$ (100 particles per ⁷⁷ cell for each species) at the initial time t = 0. The magnetic field is also uniform at t = 0, ⁷⁸ and $\mathbf{B}_0 = [B_0 \cos \theta, B_0 \sin \theta, 0]$, where θ is the shock normal angle and we use $\theta = 25$ degrees. ⁷⁹ The simulation domain has a size $L_x \times L_y = 375d_i \times 51.2d_i$, where d_i is the ion skin depth ⁸⁰ based on the initial density n_0 ($d_i = c/(4\pi n_0 e^2/m_i)^{1/2}$, where e is the elementary charge, ⁸¹ and c is the light speed). The ratio of the plasma frequency ($\omega_{pe} = (4\pi n_0 e^2/m_e)^{1/2}$) and the ⁸² electron cyclotron frequency ($\Omega_e = eB_0/m_ec$) is $\omega_{pe}/\Omega_e = 4.0$, which gives $v_{A0}/c = 1/56.6$, ⁸³ where v_{A0} is the Alfvén speed based on B_0 and n_0 . The beta values at t = 0 for the ions and ⁸⁴ the electrons are $\beta_i = 1.0$ and $\beta_e = 1.0$, respectively. With these parameters, the electron ⁸⁵ thermal speed becomes $v_{Te} = 14.1v_{A0}$. Conducting walls are placed at x = 0 and $x = L_x$, where particles are specularly reflected, while we use periodic boundaries in the y direction. To drive a shock wave, we impose a uniform electric field E_z and give a negative x speed $v_d = -9.0v_{A0}$ to all the particles, where $E_z = -v_d B_0 \sin \theta / c$. The conducting wall at x = 0reflects all the particles, which generates strong disturbances in the magnetic field, and eventually a shock wave is generated, propagating in the x direction with a positive speed. Since all the particles are drifting to the negative x direction throughout the simulation time, we inject new particles from the boundary at $x = L_x$. The shock speed v_{sh} is determined by the speed of the largest magnetic pulse in the x direction, adding the drift speed $|v_d|$.

94 III. OUTFLOW SPEEDS AND RECONNECTION ELECTRIC FIELDS IN THE95 SHOCK TRANSITION REGION

96 A. Categorization of reconnection X-lines

⁹⁷ We investigate reconnecting current sheets generated in the shock transition region. De-⁹⁸ tails of several reconnecting current sheets in the shock transition region in the same sim-⁹⁹ ulation have already been documented in the previous papers [13, 14]. In this paper, our ¹⁰⁰ focus is the outflow speed and the reconnection electric field, which is the magnitude of E_z ¹⁰¹ field at the X-line in each reconnection region.

Fig. 1(a) shows the current density J_z and magnetic field lines in a simulation domain, 102 $40 < x/d_i < 55$ and the whole y range $0 < y/d_i < 51.2$, at $\Omega_i t = 18.75$, where Ω_i is the 103 ion cyclotron frequency based on B_0 . The gray lines are magnetic field lines, which are the 104 contour of the vector potential A_z , and the color contour shows J_z . The plotted region is the 105 shock transition region. The right side $(55d_i < x)$ is the upstream region, while the left side 106 $(x < 40d_i)$ is the downstream region. The Alfvén Mach number $(M_A = v_{sh}/v_{A0})$ is 11.4, and 107 the magnetic field strength becomes almost six times larger in the shock than the upstream 108 value. For details of the shock evolution, please refer to the previous studies [13, 14]. Those 109 ¹¹⁰ current sheets are generated due to two types of instabilities: a non-resonant ion-ion beam ¹¹¹ instability (in which the fastest growing mode does not resonate with the reflected ions but ¹¹² with the incoming solar wind), and the secondary instability due to multiple electron and 113 ion beams.

In the right panel (b), the positions of X-lines are marked by Xs. We identified 43 X-lines

¹¹⁵ in this region, and traced the motion of these 43 X-lines for 100 time steps from $\Omega_i t = 18.75$ ¹¹⁶ to 18.78. In these 43 X-lines, we only analyze 32 X-lines that are stable during the time ¹¹⁷ interval. The rest 11 X-line regions have one or multiple magnetic islands disappeared within ¹¹⁸ the 100 time steps, difficult to analyze, and hence they are not included. Fig. 1(b) shows ¹¹⁹ these 32 X-lines.

For these 32 X-lines, we determine whether there exist electron jets in each reconnection 120 ¹²¹ region. When no electron jets are confirmed around an X-line, we categorize the region 122 as "no active reconnection", which indicates that either reconnection has already ceased, or reconnection has just begun and no jet has been developed yet. For the X-lines where 123 electron jets are observed, we investigate whether there are ion jets. When no ion jet is 124 observed around an X-line with electron jets, we categorize the X-line as "electron-only 125 reconnection". In X-lines where ion jets are confirmed, there are some X-lines where the 126 electron jet points to a direction different from the ion jet. For example, there is an X-line 127 where the electron jet and the ion jet are almost counter streaming. Since there is a shock 128 turbulence, strong ion flows can be generated without reconnection, and such strong ion flows 129 can pass through a small-scale electron-only reconnection region. Therefore, we categorize 130 those X-lines as "electron-only reconnection", because electron and ion jet motions are 131 decoupled. When an X-line shows both electron and ion jets pointing in the same direction 132 (the angle between the electron and ion jets less than 10 degrees) or similar directions (the 133 angle ≤ 45 degrees) from the X-line, and when the ion speed increases from the X-line to 134 the downstream region, we categorize the X-line as "regular reconnection". In Fig. 1(b), 135 136 magenta Xs show the positions of electron-only reconnection, yellow Xs show the positions ¹³⁷ of regular reconnection, and white Xs mark the positions of no active reconnection. In these ¹³⁸ 32 X-lines, 18 X-lines show electron-only reconnection, 7 X-lines show regular reconnection, ¹³⁹ and 7 X-lines show no active reconnection.

In the shock-driven turbulence, the shape of each reconnection region is significantly 141 distorted, and most reconnection shows asymmetry in both the inflow direction and the 142 outflow direction. As a result, many reconnection regions show only a one-sided jet, which 143 points in a certain direction without the counterpart of the jet pointing in the opposite 144 direction. Later in Sec.IIID, we will discuss asymmetry in the outflow direction in such 145 a reconnection site with a one-sided jet. In the 18 sites of electron-only reconnection, 9 146 reconnection sites show only one-sided jets, and the rest 9 sites show two-sided jets. In the ¹⁴⁷ 7 regular reconnection sites, only one site shows both two-sided electron jets and two-sided
¹⁴⁸ ion jets. There are 3 sites that show two-sided electron jets and one-sided ion jets. The rest
¹⁴⁹ 3 sites show one-sided electron jets and one-sided ion jets.

Comparing Fig. 1(a) and (b), we notice that regular reconnection (yellow Xs) occurs 150 where there are large-scale magnetic islands. For example, there is a large-scale island 151 (whose size is a few d_i) around $x = 50d_i$ and $y = 42d_i$, and there are two yellow X-lines at 152 $(x, y) = (49.45d_i, 38.275d_i)$ and $(49.925d_i, 41.825d_i)$. Another one is found near a large-scale 153 island around $x = 49d_i$ and $y = 2d_i$, and there is a regular reconnection site whose X-line 155 is at $(x, y) = (48.975d_i, 0.925d_i)$. This is because regular reconnection is often associated with the non-resonant ion-ion beam instability, which generates a magnetic field modulation 156 whose size is of the order of d_i . Magnetic field lines bend more and more as the waves grow, 157 and eventually reconnection occurs when the bent field lines generate a loop-like structure 158 where two oppositely-directed field lines are in contact at a point. If reconnection occurs 159 due to this instability, regular reconnection is realized because ions can respond to such a 160 ¹⁶¹ large-scale (ion-scale) structure. The positions of yellow Xs in Fig. 1 (b) are seen near large-¹⁶² scale magnetic flux ropes (magnetic islands). In contrast, electron-only reconnection sites (magenta Xs) are distributed in regions with fine-scale current structures. For example, 163 164 in the region around $x = 50d_i$ and $y = 30d_i$, there are fine structures of current sheets (intricate patterns of red and black regions, see panel (a)), where several magenta Xs are 165 seen. Another region with turbulent current sheets is seen near $x = 47d_i$ and $y = 10d_i$, 166 and there are many magneta Xs. These regions are where the secondary instability occurs 167 after the non-resonant ion-ion beam instability, and many small-scale (sub- d_i scale) current 168 sheets are generated. Please refer to Ref. [14] for more details about the instabilities in the ¹⁷⁰ shock. In these regions, since ions cannot respond quickly to such small-scale changes of ¹⁷¹ magnetic fields, electron-only reconnection can occur.

172 B. Electron-only reconnection

Fig. 2 shows an example of a reconnecting current sheet where electron-only reconnection 174 occurs. The plots are: (a) the current density J_z , (b) the out-of-plane electric field E_z , (c) 175 the in-plane electron fluid velocity $V_e = (V_{ex}^2 + V_{ey}^2)^{1/2}$ multiplied by the sign of V_{ey} , (d) the 176 in-plane ion fluid velocity $V_i = (V_{ix}^2 + V_{iy}^2)^{1/2}$ multiplied by the sign of V_{iy} , (e) the out-of177 plane magnetic field B_z , and (f) one-dimensional (1-D) plots of the magnetic field B_L and ¹⁷⁸ the electron density n_e across the current sheet. For the in-plane electric field E_x and E_y , ¹⁷⁹ please see supplementary material. The coordinates L and N are shown in panel (d). These 180 quantities are in the X-line rest frame, where the X-line position is stationary. To obtain the ¹⁸¹ X-line rest frame, we measured the velocity of the X-line motion in the simulation (for 100 $_{182}$ time steps from $\Omega_i t = 18.75$ to 18.78, measuring the position at every 10 time step), and we changed the frame from the original simulation frame to the X-line rest frame. Suppose the 183 X-line speed is V_X , we have $E_{z,rest} = E_{z,sim} + (V_X \times B)_z/c$, where $E_{z,rest}$ and $E_{z,sim}$ are 184 the electric field E_z in the X-line rest frame and in the simulation frame, respectively. In 185 each panel, white arrows represent the vectors of the electron fluid velocity, except for the 186 ¹⁸⁷ ion fluid velocity plot (panel (d)), where the white arrows are the vectors of the ion fluid ¹⁸⁸ velocity. The X-line is shown by the magenta X, and magenta lines are magnetic field lines. In these panels, the X-line is located at $(x, y) = (x_X, y_X) = (47.5d_i, 25.85d_i)$. The 189 ¹⁹⁰ current density J_z (panel (a)) shows a diagonally negative (black) structure from the top 191 left quadrant $(x < x_X \text{ and } y_X < y)$ to the bottom right quadrant $(x_X < x \text{ and } y < y_X)$ around the X-line, and this negative J_z is separated by the positive current sheet (green 192 and red) around the X-line, which shows also a diagonal structure passing from the top 193 194 right quadrant $(x_X < x \text{ and } y_X < y)$ to the bottom left quadrant $(x < x_X \text{ and } y < y_X)$ ¹⁹⁵ around the X-line. Because of this positive current sheet, two magnetic islands are seen in the top left and the bottom right regions. Regarding the magnetic field direction, if we use 196 ¹⁹⁷ the L-N coordinates (see panel (d)), where L is the direction of the reconnecting magnetic ¹⁹⁸ field, $B_L < 0$ in the upper region (above the positive current sheet), and $B_L > 0$ in the lower ¹⁹⁹ region (below the positive current sheet).

Panel (c) for V_e shows an electron jet that passes through the X-line almost vertically from top to bottom. The maximum of the in-plane electron outflow speed $(V_{ex}^2 + V_{ey}^2)^{1/2}$ in the X-line rest frame is $V_{out} = 10.7v_{A0}$ at $(x, y) = (47.5d_i, 25.8d_i)$, slightly below the X-line. Let us apply the reconnection model by Ref. [20] for asymmetric reconnection to discuss the outflow speed. The magnetic field strengths at the two sides across the current sheet in the N direction (see panel (f)) are $B_1 = 1.6B_0$ and $B_2 = 0.99B_0$, and the electron densities at the two sides are $n_1 = 3.3n_0$ and $n_2 = 2.9n_0$. Here, to compute B_1 and B_2 , we first visually determined the current sheet normal direction N as in panel (d), and then investigate the 203 L component of the magnetic field, which is perpendicular to the N direction, along the N ²⁰⁹ direction passing through the X-line to find the two maxima positions of $|B_L|$, as shown in ²¹⁰ panel (f). We assume that these two maxima of $|B_L|$ represent B_1 and B_2 , and also measured $_{211}$ the densities n_1 and n_2 at the two positions. Using the asymmetric reconnection model, the 212 outflow speed is predicted to be $V_{theory} = [B_1 B_2 (B_1 + B_2)/(n_1 B_2 + n_2 B_1)]^{1/2} (1/4\pi m_e)^{1/2} =$ $213 10.2v_{A0}$, which is consistent with the observed electron outflow $10.7v_{A0}$. Note that this ²¹⁴ theoretical speed V_{theory} is close to the local electron Alfvén speed. For example, at the ²¹⁵ position with B_1 and n_1 , the local electron Alfvén speed is $12.4v_{A0}$, while at the position ²¹⁶ with B_2 and n_2 , the local electron Alfvén speed is $8.3v_{A0}$. Therefore, the electron outflow ²¹⁷ speed is close to those local electron Alfvén speeds. In contrast, the ion fluid velocity (panel (d)) shows no ion jet, and this reconnection is only due to electrons. As shown in panel (c), 218 ²¹⁹ this electron-only reconnection has a one-sided jet. We will discuss later the applicability of ²²⁰ the asymmetric reconnection theory to reconnection in a shock, considering both one-sided ²²¹ and two-sided jets (see Subsection III D). Also, more details about the flow patters in this ²²² reconnection region as well as the size of the electron diffusion region (EDR) are shown in ²²³ Fig. S1 in the supplementary material.

The electric field E_z in the X-line rest frame (panel (b)) shows a positive value around the X-line, which is due to the electron flow pointing in the negative y direction. Note that the convection electric field $E_z = -(V_{ex}B_y - V_{ey}B_x)/c \sim V_{ey}B_x/c$ with $V_{ey} < 0$ and $B_x < 0$ the convection electric field $E_z = -(V_{ex}B_y - V_{ey}B_x)/c \sim V_{ey}B_x/c$ with $V_{ey} < 0$ and $B_x < 0$ the convection electric field $E_z = -(V_{ex}B_y - V_{ey}B_x)/c \sim V_{ey}B_x/c$ with $V_{ey} < 0$ and $B_x < 0$ the reconnection electric field E_r ($|E_z|$ at the X-line) is $E_r = 0.075B_0$. The reconnection rate $R = E_r/(B_d V_{theory}/c)$, where $B_d = 2B_1B_2/(B_1 + B_2)$, is 0.34, and Rthe outflow speed V_{out} instead of V_{theory} is 0.32.

Note that there are strong electron inflows from three directions (see panel (c) in Fig. 231 2 as well as panel (a) in Fig. S1 in the supplementary material): there are two inflows in 232 the N direction, and the other is from the positive L side (flow along the positive current 233 sheet). Two of these inflows (the one from the positive y direction toward the X-line, and 234 the one in the L direction toward the X-line) show large speeds around $8v_{A0}$, and each 235 of these inflows also generates a large convection electric field E_z . The inflow from the 236 positive y side generates a positive E_z due to $V_{ey}B_x/c$ with $V_{ey} < 0$ and $B_x < 0$, but 237 the other inflow from the positive L side generates a negative convection electric field (not 238 shown) $E_z \sim -V_{eL}B_N/c$ with $V_{eL} < 0$ and $B_N < 0$. This unusual L-directional inflow is 239 not seen in the standard laminar reconnection, but this is generated in the shock-turbulent 240 reconnection. However, due to the demagnetization of the electron in the diffusion region ²⁴¹ (see Fig. S1 in the supplementary material), the effect of the non-ideal electric field surpasses ²⁴² the convection electric field, and the reconnection region shows a positive E_z near the X-²⁴³ line. This reconnection is driven by these strong inflows, similar to reconnection driven by ²⁴⁴ a Kelvin-Helmholtz instability [19].

Panel (e) shows that there exists a large-amplitude B_z , out of plane with respect to 246 the reconnection plane *N-L*. At the X-line, $B_z = -3B_0 = -2.5B_d$, and this reconnection 247 involves a strong guide field.

Fig. 3 shows another example of a reconnecting current sheet. The current density J_z (panel (a)) shows an almost vertical negative current sheet at the X-line, $(x, y) = (x_X, y_X) =$ (48.5 d_i , 37.375 d_i). Magnetic fields point upward $(B_y > 0)$ in the region left to the X-line ($x < x_X$), while they point downward $(B_y < 0)$ in the region right to the X-line ($x_X < x$). The electron velocity V_e (panel (c)) shows an almost vertical downward jet ($V_{ex} < 0$ and $V_{ey} < 0$) in the left bottom quadrant ($x < x_X$ and $y < y_X$) from the X-line, and the maximum speed is 5.0 v_{A0} at (x, y) = (48.3 d_i , 36.95 d_i). Details about the flow patterns and 255 the size of the EDR are shown in Fig. S2 in the supplementary material.

Even though the negative current sheet across the X-line forms almost along the y di-256 ²⁵⁷ rection, the B_x component (instead of B_y component) is the reconnecting magnetic field. 258 We decided the direction of the reconnection (which side is the inflow and which side is the outflow) based on the time evolution of the vector potential A_z . According to the evolution 259 $_{260}$ of A_z (not shown), we found that the magnetic island in the positive y side becomes smaller as time elapses, and this means that the direction of the B_L component (reconnecting mag-261 netic field) is in the x direction. Panel (d) shows the N and L directions around the X-line, 263 and $B_L < 0$ above the X-line, while $B_L > 0$ below the X-line. The ion velocity V_i does not ²⁶⁴ show an ion jet, and this is electron-only reconnection. Using the asymmetric reconnection ²⁶⁵ model $(B_1 = 0.44B_0, B_2 = 0.36B_0, n_1 = 3.5n_0 \text{ and } n_2 = 3.3n_0, \text{ see panel (f)})$, the outflow speed is predicted to be $V_{theory} = 3.1 v_{A0}$, which is close to the observed electron outflow $_{267} V_{out} = 5.0 v_{A0}.$

The electric field E_z (panel (b)) is positive around the X-line, and the reconnection electric field is $E_r = 0.005B_0$. This means that the sign of the reconnection electric field is opposite to the sign of the current density J_z , which resembles reconnection with a current error sheet with the opposite sign to the reconnection electric field in Ref. [21]. In our case, this condition results in a negative energy exchange rate (i.e. $J \cdot (E + V_e \times B/c) < 0$) 273 at the X-line; however, there exist positive regions of the energy exchange rate near the 274 X-line (see panel (e) in Fig. S2 in the supplementary material), slightly offset from the 275 X-line (near the negative E_z region in the vicinity of the X-line, as well as part of the 276 outflow region near the outflow maximum), and the overall energy exchange rate in the 277 reconnection region is positive. Using the asymmetric reconnection model, the reconnection 278 rate is $R = E_r/(B_d V_{theory}/c) = 0.24$, and if we use V_{out} , R = 0.14. Panel (e) shows that the 279 guide field strength at the X-line is $B_z = -0.69B_0 = -1.7B_d$.

In these electron-only reconnection sites, most of the electron outflow speeds are of the 280 ²⁸¹ order of electron Alfvén speed, and also close to the theoretical speed defined in the asym-²⁸² metric reconnection theory, i.e. V_{theory} . The reconnection electric fields E_r in these sites 283 are of the order of $0.1B_d V_{theory}/c$, i.e., the reconnection rate $(R = E_r/(B_d V_{theory}/c))$ is of ²⁸⁴ the order of 0.1. Compared with the reconnection rate of standard reconnection in the ²⁸⁵ Earth's magnetopause/magnetotail [22–25], where both ions and electrons are responsible for reconnection, the reconnection rate is the same order, around 0.1; however, the recon-286 nection rate of 0.1 in electron-only reconnection indicates that the reconnection electric 287 field is unusually larger than the reconnection electric field in the standard reconnection 288 in the magnetopause/magnetotail. This is because the outflow velocity V_{out} , which is close 289 to V_{theory} , in electron-only reconnection is of the order of the electron Alfvén speed v_{Ae} . 290 Therefore, the reconnection electric field in electron-only reconnection is of the order of 291 $0.1B_d v_{Ae}/c = 0.1(m_i/m_e)^{1/2} B_d v_A/c$, which is $(m_i/m_e)^{1/2}$ larger than the reconnection elec-292 tric field in the standard laminar reconnection in the Earth's magnetopause/magnetotail, 293 $_{294} 0.1 B_d v_A/c$. Our argument is consistent with Ref. [12], in which the reconnection electric ²⁹⁵ field is compared between electron-only reconnection and the standard reconnection. More ²⁹⁶ discussions about the reconnection rates in both types of reconnection will be given in Sec. 297 III D.

To investigate the strength of the reconnection electric field E_r , we performed a statistical analysis for electron-only reconnection, even though the sample size is small. The following properties are investigated: (1) the reconnection electric field E_r ($|E_z|$ at the X-line), (2) the reconnection rate (we consider two rates: $R_t = E_r/(B_d V_{theory}/c)$ and $R_o = E_r/(B_d V_{out}/c)$), and (3) the outflow speed V_{out} . In the observed 18 electron-only reconnection X-lines, three X-lines show E_z with its sign opposite from what we expect by the evolution of the magnetic field lines (in other words, the evolution of the vector potential A_z). For example, the X- ³⁰⁵ line at $(x, y) = (51.425d_i, 40.3d_i)$ shows a negative E_z , but based on the time evolution ³⁰⁶ of the magnetic field lines, the reconnection electric field should have a positive E_z . This ³⁰⁷ discrepancy in the observed E_z may be due to the temporal variation of the reconnection ³⁰⁸ electric field affected by the surrounding region, which is beyond the scope of this paper. ³⁰⁹ We discard those three X-lines that show E_z inconsistent with what we expect, and we use ³¹⁰ the rest 15 X-lines for the statistical analysis.

Fig. 4 shows histograms for the reconnection electric field E_r , the reconnection rates 311 $_{312}$ $(R_t = E_r/(B_d V_{theory}/c)$ and $R_o = E_r/(B_d V_{out}/c))$, and the electron outflow speed V_{out} . Fig. $_{313}$ 4(a) shows a histogram for E_r normalized by the magnetic field B_0 in the shock upstream $_{314}$ region. In the 15 X-lines we analyzed, seven X-lines have E_r less than 0.02, and the rest of ³¹⁵ the X-lines range from 0.02 to 0.08. The mean is $0.031B_0$ (= $0.36B_0 \sin \theta V_{sw}/c$, where $V_{sw} =$ $_{316}$ 11.4 v_{A0} represents the solar wind speed), the minimum is $0.0038B_0$ (= $0.044B_0 \sin \theta V_{sw}/c$), ₃₁₇ and the maximum is $0.075B_0$ (= $0.88B_0 \sin \theta V_{sw}/c$). Fig. 4(b) shows two histograms: one is 318 for the reconnection rate $R_t = E_r/(V_{theory}B_d/c)$ (black), and the other is for the reconnection ³¹⁹ rate $R_o = E_r/(V_{out}B_d/c)$ (red). In these 15 X-lines, 12 X-lines show R_t less than 0.4, and the $_{320}$ rest three X-lines show the reconnection rate R_t larger than 0.6. The two X-lines indicated $_{321}$ by the black arrow are the ones with $R_t > 1.0$ ($R_t = 1.4$ and 2.6). Including these three ³²² large reconnection rates, the mean is 0.43, but if we exclude these three as outliers, the mean $_{323}$ of the 12 reconnection rates R_t is 0.16. In the total 15 reconnection rates, the minimum is 0.019, and the maximum is 2.6. For the reconnection rate R_o (red), where V_{out} is used, only 324 one reconnection rate R_o shows larger than 1, and 14 reconnection rates are less than 0.6. 325 The mean is 0.25, the minimum is 0.029, and the maximum is 1.0. Note that in the standard 326 ³²⁷ laminar reconnection, a theoretical study [26] shows that the upper limit of the reconnection 328 rate should be smaller than around 0.5 in non-relativistic cases. However, reconnection in 329 the present study is driven reconnection due to strong flows in the shock turbulence, and in that case, reconnection rates can be much larger than 0.5. 330

Fig. 4(c) and (d) show histograms for the outflow speed, V_{out} . Panel (c) shows histograms for V_{out} (red) and V_{theory} (black), normalized by the Alfvén speed in the upstream region (note that the electron Alfvén speed in the upstream is $v_{Ae0} = (m_i/m_e)^{1/2}v_{A0} = 14.1v_{A0}$ in the simulation with $m_i/m_e = 200$). For the observed outflow speeds V_{out} (red), the speeds are distributed between $4.0v_{A0}$ to $18.0v_{A0}$, and the mean is $10.1v_{A0}$, which is 0.72 of the electron Alfvén speed $v_{Ae0} = 14.1v_{A0}$ in the upstream region. The minimum is $5.0v_{A0}$, ³³⁷ and the maximum is 17.4 v_{A0} . However, the minimum value 5.0 v_{A0} does not mean that the ³³⁸ outflow speed at that reconnection site reaches much less than the local electron Alfvén ³³⁹ speed, because the local electron Alfvén speed is close to V_{theory} . The black histogram is ³⁴⁰ for V_{theory} , and the values are spread between $2v_{A0}$ to $22v_{A0}$. Panel (d) shows a histogram ³⁴¹ for V_{out} normalized by the theoretical prediction speed, V_{theory} . Most of the X-lines show ³⁴² V_{out}/V_{theory} around 1.0 (between 0.5 to 2.0). The minimum value of the outflow speed ³⁴³ in panel (c), $V_{out} = 5.0v_{A0}$, corresponds to $V_{out}/V_{theory} = 1.6$; therefore, that outflow speed ³⁴⁴ actually exceeds the predicted speed. The minimum of V_{out}/V_{theory} is 0.52, and the maximum ³⁴⁵ is 3.4. Three X-lines show larger than 2.25 ($V_{out}/V_{theory} = 2.4$, 2.5, and 3.4). Therefore, all ³⁴⁶ the electron outflows show larger than 0.5 of the predicted speed.

Fig. 5 shows scatter plots for the outflow speed V_{out} , the reconnection electric field E_r , and 347 ³⁴⁸ the reconnection rates R_t and R_o . Panel (a) shows a plot for V_{out} as a function of V_{theory} . ³⁴⁹ The outflow speeds V_{out} range from $5.0v_{A0}$ to $17.4v_{A0}$, and there is a positive correlation V_{out} and the theoretical prediction V_{theory} . We investigated the correlation based ₃₅₁ on Spearman's rank correlation, since the sample size 15 is small, and the distributions of V_{out} and V_{theory} are not Gaussian (see the histograms in Fig. 4 (c)). The Spearman's ³⁵³ rank correlation coefficient is 0.75, and the p-value (using the *t*-distribution for the degrees of freedom n-2, where n is the sample size) is 0.0013, which is less than 0.05 (5% significant 354 $_{355}$ level). We conclude that there is a strong positive correlation between V_{out} and V_{theory} , and the reconnection outflow V_{out} is well explained by the asymmetric reconnection theory with 356 $_{357}$ using the electron mass m_e . Note that we confirmed that these reconnection regions show $_{358}$ converging inflows in the N direction toward the X-line (see examples in the supplementary ³⁵⁹ material), which are necessary for reconnection (see also Eqs. (A2) and (A3) in Appendix ₃₆₀ as well as Eq. (3) in Sec. III D). As we will explain later in Sec. III D, the outflow speed V_{out} becomes close to V_{theory} , even under a strong background flow, as long as there exist $_{362}$ converging inflows toward the X-line. Therefore, the correlation between V_{out} and V_{theory} ³⁶³ indicates that the outflows result from reconnection driven by the background flows.

Panel (b) shows the reconnection electric field E_r as functions of the theoretical speed V_{theory} (black) and the observed outflow speed V_{out} (red). Seeing the black scatter plot, it is hard to see a correlation between E_r and V_{theory} . In contrast, if we use the observed outflow speed V_{out} (red scatter plot), we can see a weak correlation between E_r and V_{out} . Since the distribution of E_r is also not a Gaussian (Fig. 4(a)), we performed the Spearman's ³⁶⁹ rank correlation analysis. The rank correlation coefficient is 0.33 for the red data points. ³⁷⁰ However, the p-value is 0.23. This large p-value is mainly due to the small sample size, and we cannot conclude, with this p-value, whether there is a weak correlation. Nevertheless, 371 we can at least say that there may be a tendency that the larger the outflow speed, the 372 larger the reconnection electric field. To prove this, we need to increase the sample size. In 373 the following analysis for other variables, if we find that the rank correlation coefficient is 374 large but the p-value > 0.05, we will interpret that there is a 'tendency' of the correlation 375 between the two variables. In contrast, if we find that the correlation coefficient is large and 376 the p-value < 0.05, we will 'conclude' that there is a correlation. 377

The electron-only reconnection in the transition region of the quasi-parallel shock has a 378 strong guide field, as shown in Figs. 2(e) and 3(e) and also as we will see later, and the 379 outflow velocity is tilted with respect to the current sheet near the X-line. Also, most of the 380 electron-only reconnection sites have asymmetric field quantities across the current sheet 381 around each X-line, and there is a significant asymmetry in the inflow and outflow velocity 382 patterns. As a result, the outflow velocity parallel to the magnetic field may become signifi-383 cantly large. The parallel outflow component does not contribute to the convection electric 384 field in the reconnection region. In Fig. 5(b), the outflow speed V_{out} may contain a signif-385 icant contribution from the parallel outflow speed, and it is still not clear whether a large 386 outflow speed makes the reconnection electric field large. Therefore, we investigate another 387 correlation between the reconnection electric field E_r and the convection electric field due to 388 the outflow. If we assume a steady state reconnection model, where the reconnection electric 389 390 field is uniform around the X-line, the outflow velocity V_{out} will generate the convection ³⁹¹ electric field $E_z = -(V_{out} \times B)_z/c$, which is equal to the reconnection electric field E_z at the X-line. Even though the electron-only reconnection in the shock is not steady state 392 reconnection, we expect that there is a correlation between E_r and the convection electric 393 field by the outflow. The scatter plot with black data points in Fig. 5(c) shows for E_r as a 394 function of the convection electric field by the outflow. To make this plot, we excluded the 395 data at two X-lines where the sign of the convection electric field and the sign of E_z at the 396 X-line are opposite; therefore, we used 13 data points. Although there is a large spread of 397 the data points, we see a weak correlation between E_r and the convection electric field. The 398 ³⁹⁹ Spearman's rank correlation coefficient is 0.31. However, again, due to the small sample 400 size, the p-value is 0.30, and we cannot disprove that there is no correlation. From panels ⁴⁰¹ (b) and (c) and the rank correlation coefficients (0.33 for E_r and V_{out} , and 0.31 for E_r and ⁴⁰² the convection electric field), we confirm tendencies that the reconnection electric field E_r is ⁴⁰³ weakly correlated with the outflow V_{out} and the convection electric field, but further study ⁴⁰⁴ with a larger sample size is necessary. In contrast, the scatter plot with red data points in ⁴⁰⁵ Fig. 5(c) shows a relation between E_r and the convection electric field due to the inflow ⁴⁰⁶ velocity. For the inflow velocity, we measured the electron fluid velocity V_{in} at one of the ⁴⁰⁷ inflow edges of the EDR (the same points where we measure the maxima of B_L along the ⁴⁰⁸ N axis to obtain B_d), and we computed the z component of the convection electric field ⁴⁰⁹ $-(V_{in} \times B)_z/c$. We used only 13 data points from reconnection regions where the signs of ⁴¹⁰ the convection electric field and the reconnection electric field are the same. We see a posi-⁴¹¹ tive correlation between the convection electric field due to the inflow and the reconnection ⁴¹² electric field E_r . The positive correlation is seen because the inflow convection generates ⁴¹³ a roughly uniform electric field in the EDR including the reconnection electric field, even ⁴¹⁴ under the turbulent condition (see a quantitative discussion in Sec. III D). The Spearman's ⁴¹⁵ rank correlation coefficient is 0.70, and the p-value is 0.007.

Panel (d) shows a plot for the reconnection rates R_t and R_o . The data points for both 417 rates (black and red) show an increase of the reconnection rate as the normalization quantity 418 (horizontal axis) becomes small. If the reconnection rate were a constant value, we would 419 see a flat distribution of the data points along constant values of R_t and R_o . This plot 420 shows that the reconnection rates are not constant. The reconnection rates become larger 421 in smaller $V_{theory}B_d/c$ and $V_{out}B_d/c$, because the outflow speed (V_{theory} and V_{out}) becomes 422 small, but the reconnection electric field E_r is only weakly correlated with V_{theory} and V_{out} . 423 Also, the increase is due to small B_d when the size of the reconnection region is small (such 424 as a small sub- d_i scale magnetic island), which makes both B_d and $V_{out} \sim V_{theory}$ small.

Fig. 6 shows scatter plots for the reconnection electric field E_r and the reconnection rate A_{26} R_t as functions of the guide field strength B_g ($|B_z|$ at the X-line). In both panels (a)-(b), the A_{27} black data use the guide field B_g normalized by the upstream magnetic field B_0 , while the red A_{28} data use B_g normalized by the local value of B_d . In those electron-only reconnection sites, A_{29} there are generally strong guide fields less than $10B_0$, and if we use a local B_d , the highest A_{30} guide field is $B_g = 27B_d$, which is due to small B_d in a small reconnection region (small A_{31} sub- d_i scale island). Panel (a) shows that there is no correlation between the reconnection A_{32} electric field E_r and the guide field B_g in the black data points. In the red data points, ⁴³³ a weak negative correlation is seen between E_r and B_g/B_d , but the highest three B_g/B_d ⁴³⁴ points can be considered outliers, as we explain bellow. Using the rest 12 red data points ⁴³⁵ (removing the highest three points), the Spearman's rank correlation coefficient is almost ⁴³⁶ zero.

In panel (b), it is also hard to conclude about a correlation between the reconnection rate 437 ⁴³⁸ R_t and the guide field. The highest three reconnection rates ($R_t = 0.6, 1.4$ and 2.5) show 439 strong guide field $B_g/B_d > 10$, and this is because of the small B_d in a small reconnection 440 region. Therefore the extremely large reconnection rate R_t for these three X-lines can be considered outliers (these three outliers correspond to the three highest R_t in the histogram 441 Fig. 4(b)), and the other reconnection rates are concentrated in the region less than $R_t < 0.5$. 442 ⁴⁴³ After removing those three outliers of extremely large R_t , there might be a weak negative correlation between the reconnection rate and the guide field strength. The Spearman's rank 444 ⁴⁴⁵ correlation coefficients are -0.31 (p-value=0.33) for the black data points and almost zero 446 for the red data points, respectively. R_t shows higher values around 0.35 in $B_g/B_0 < 3$ and 447 $B_g/B_d < 3$, but R_t becomes around 0.1 in the ranges $5 < B_g/B_0 < 10$ and $5 < B_g/B_d < 10$. ⁴⁴⁸ Tendencies of a weak negative correction are seen in these data points, but the sample size ⁴⁴⁹ is too small to make a conclusion.

450 C. Regular reconnection

In the shock transition region, we identified seven regular reconnection sites, indicated 452 by the yellow Xs in Fig. 1(b). We investigated details of the reconnection electric field 453 and ion and electron outflow speeds around these seven X-lines. One example of regular 454 reconnection (the X-line at $(x, y) = (49.925d_i, 41.825d_i)$, near the largest magnetic island 455 around $x = 50d_i$ and $y = 42d_i$) has already been documented in Ref. [13].

Fig. 7 shows field quantities in a regular reconnection site, in the same format as Figs. 2 457 and 3, except for panel (b), where the white arrows show the ion flow vectors. Around the 458 X-line at $(x, y) = (x_X, y_X) = (49.8d_i, 21.2d_i)$, there is a current sheet with negative J_z along 459 the vertical direction (panel (a)). Across this current sheet, the reconnecting component of 460 the magnetic field reverses its sign. In other words, using the L (direction of the reconnecting 461 magnetic field) and N (normal component) directions drawn in panel (d), we have $B_L > 0$ in 462 $x < x_X$ and $B_L < 0$ in $x_X < x$. The reconnection electric field is negative ($E_z = -0.095B_0$), ⁴⁶³ and the region surrounding the X-line has negative E_z (panel (b)).

Panels (c) and (d) show the electron and the ion fluid velocities in the X-line rest frame. 464 The electron flow (panel (c)) shows a bipolar outflow pattern across the X-line in the y465 466 direction; there is a strong upward outflow $V_{ey} > 0$ in $y_X < y$, while a negative outflow 467 $V_{ey} < 0$ in $y < y_X$. In the $y_X < y$ side, the maximum electron outflow speed reaches 468 13.0 v_A . However, this outflow speed is much smaller than the predicted electron outflow $V_{e-theory} = 34.9v_{A0}$ using the magnetic fields and densities at the two sides $(B_1 = 1.46B_0, M_1)$ $_{470} B_2 = 4.15 B_0, n_1 = 0.96 n_0, \text{ and } n_2 = 1.08 n_0, \text{ shown in panel (f)}, \text{ with the electron mass}$ ⁴⁷¹ m_e . Slightly away from the outflow regions, in the region where $x_X < x$ (around $x = 50.5d_i$) $_{472}$ and $y_X < y$, there is a strong downward ($V_{ey} < 0$) flow, while in the region where $x < x_X$ 473 (around $x = 49.0d_i$) and $y < y_X$, there is a strong upward $(V_{ey} > 0)$ flow. This upward 474 flow is mainly due to another reconnection site at $(x, y) = (48.8d_i, 20.85d_i)$, and the outflow 475 from that neighboring reconnection site plays a role as a part of the inflow in this regular 476 reconnection site. If we look into the vicinity of the X-line at (x_X, y_X) , there is an electron 477 inflow toward the X-line from left to right (from the $x < x_X$ side to the $x_X < x$ side). The 478 ion flow (panel (d)) shows a strong upward $(V_{iy} > 0)$ flow in both $y < y_X$ and $y_X < y$. In 479 the region $y < y_X$, there are two flows (near $x = 49d_i$ and near $x = 50d_i$) with $V_{iy} > 0$, 480 and the flow near $x = 49d_i$ includes the outflow from the neighboring reconnection site. 481 In the regular reconnection site at (x_X, y_X) , the flow around $x = 50d_i$ plays a role as the $_{482}$ ion inflow. This inflow passes through the X-line in the positive y direction, and the flow 483 direction changes to a direction with $V_{ix} > 0$ and $V_{iy} > 0$ in $y_X < y$. The ion outflow has 484 a peak of $7.4v_{A0}$ at $(x, y) = (50.025d_i, 21.925d_i)$, and another peak of $7.2v_{A0}$ at $(x, y) = (50.025d_i, 21.925d_i)$ $_{485}$ (50.6 d_i , 22.75 d_i). Surprisingly, these outflow values are much greater than the predicted 486 ion outflow $V_{i-theory} = 2.5v_{A0}$ using B_1 , B_2 , n_1 , and n_2 with the mass $m_i = 200m_e$. The ⁴⁸⁷ origin of this unusually fast ion outflow speed is likely the background ion flows due to ion 488 reflection in the shock transition region (see also Ref. [14] for the ion distribution functions ⁴⁸⁹ that contain reflected ions). Turbulent ion flows in the background already have fast flow ⁴⁹⁰ speeds, and reconnection in this region further accelerates ions from the X-line to the region $_{491} y_X < y$. More details of flow structures in this regular reconnection region are given in Figs. ⁴⁹² S3 and S4 in the supplementary material. Also, Fig. S5 in the supplementary material ⁴⁹³ shows a Hall electric field in the in-plane electric field, which points toward the magnetic ⁴⁹⁴ neutral line, due to the decoupling of electron and ion motion.

Note that this regular reconnection site has a few different features from the standard 495 $_{496}$ laminar reconnection. One is that the ion outflow is generated in the positive L and negative ⁴⁹⁷ N side from the X-line, but this outflow region near $x = 50d_i$ and $y > 22d_i$ is usually the ⁴⁹⁸ inflow region in the standard laminar reconnection, where the inflow points toward the X-⁴⁹⁹ line. This unusual outflow region in this regular reconnection site is produced mainly because 500 of the small size of the magnetic island structure. Another difference is that the ion motion ⁵⁰¹ is decoupled from the electron motion in most of the reconnection site around the X-line. 502 As a result, the electric field E_z (panel (b)) in the ion exhaust region ($x_X < x$ and $y_X < y$) is not consistent with the convection electric field $-V_i \times B/c$, and the negative sign of E_z 503 ⁵⁰⁴ in the ion exhaust region is opposite from the positive sign of the convection electric field $_{505}$ $(-V_{ix}B_y > 0$ because $V_{ix} > 0$ and $B_y < 0$ in the ion exhaust region). In this ion exhaust region, there is a strong downward ($V_{ey} < 0$ and $V_{ex} < 0$) electron flow (see panel (c) in the ⁵⁰⁷ region around $x = 50.5d_i$ and $y_X < y$ whose speed is comparable to the ion exhaust speed. Therefore, this decoupling between the electron and the ion motions causes the Hall current, 508 and the generalized Ohm's law tells that E_z is balanced with the convection effect due to 509 the electron motion in the ion exhaust region $(-V_{ex}B_y < 0 \text{ because } V_{ex} < 0 \text{ and } B_y < 0)$. 510 This regular reconnection in the shock is very different from the regular reconnection in the 511 Earth's magnetopause/magnetotail, where the convection electric field due to the electron 512 flow and the ion flow show the same sign, and the ion and the electron motions are almost 513 coupled in the ion exhaust region. The reason why there is a strong decoupling between the 514 electron and the ion flows is mainly because the size of the island structure in the shock is 515 si small (of the order of d_i), and both ions and electrons with fast flow speeds (of the order of $_{517}$ 10 v_{A0}) cannot be completely magnetized.

Fig. 8 shows histograms for the reconnection electric field, the reconnection rates, and the ion and electron outflow speeds in regular reconnection sites. Panel (a) shows the histogram for E_r normalized by the upstream magnetic field B_0 . The reconnection electric fields range from 0 to $0.1B_0$: The mean is $0.039B_0$ (= $0.45B_0 \sin \theta V_{sw}/c$), the minimum is $0.010B_0$ (= $0.12B_0 \sin \theta V_{sw}/c$), and the maximum is $0.095B_0$ (= $1.1B_0 \sin \theta V_{sw}/c$). Comparing with Fig. 3(a) for electron-only reconnection, E_r in regular reconnection in the shock transition electron-only reconnection and regular reconnection show similar magnitudes of E_r . Panels (b) and (c) show histograms for reconnection rates, where we chose four normalizations: ⁵²⁷ (1) $B_d V_{e-out}/c$ (panel (b), red), where V_{e-out} is the observed electron outflow speed, (2) ⁵²⁸ $B_d V_{e-theory}/c$ (panel (b), black), (3) $B_d V_{i-out}/c$ (panel (c), red), where V_{i-out} is the observed ⁵²⁹ ion outflow speed, and (4) $B_d V_{i-theory}/c$ (panel (c), black).

Panel (b) shows the reconnection rates $R_{et} = E_r/(V_{e-theory}B_d/c)$ (black) and $R_{eo} =$ 530 $E_r/(V_{e-out}B_d/c)$ (red), based on the electron outflow speeds. Both the black and the red 531 ⁵³² histograms show similar distributions. The mean values are 0.13 (black) and 0.14 (red), the ⁵³³ minimum values are 0.018 (black) and 0.028 (red), and the maximum values are 0.35 (black) ⁵³⁴ and 0.29 (red), respectively. Panel (c) shows the histograms for the reconnection rates 535 $R_{it} = E_r/(V_{i-theory}B_d/c)$ (black) and $R_{io} = E_r/(V_{i-out}B_d/c)$ (red) based on the ion outflow ⁵³⁶ speeds. In this plot, the horizontal axis in the bottom (red) is for R_{io} , and the horizontal ⁵³⁷ axis in the top (black) is for R_{it} . For $R_{io} = E_r/(V_{i-out}B_d/c)$, the mean is 0.28, the minimum is 0.058, and the maximum is 0.59. If we multiply a factor of 0.5 with the values of R_{io} in the ⁵³⁹ horizontal axis in panel (c), the distribution of R_{io} looks similar to the distribution of R_{eo} (red ₅₄₀ curve in panel (b)). The similarity is because the ion outflow speed reaches a similar value ⁵⁴¹ to half the electron outflow speed, as we will see later, which is very different from the ion ⁵⁴² outflow speed in regular reconnection in the Earth's magnetopause/magnetotail, where the ⁵⁴³ ion outflow speed reaches the Alfvén speed. If we use the theoretical value of the ion outflow set speed, $V_{i-theory}$, the reconnection rate R_{it} does not show a value that correctly represents the ⁵⁴⁵ reconnection rate, because $V_{i-theory}$ is much smaller than the actually observed ion outflow 546 speed, V_{i-out} . The black histogram shows the reconnection rate $R_{it} = E_r/(V_{i-theory}B_d/c)$, 547 based on $V_{i-theory}$. The reconnection rates R_{it} are distributed between 0 to 5.0, which are $_{548}$ almost an order of magnitude larger than the reconnection rates R_{io} based on the observed ⁵⁴⁹ ion outflow speeds.

Panel (d) shows the histograms for the electron outflow speed V_{e-out} (red) and the ion outflow speed V_{i-out} (black). The horizontal axis shown in the bottom (red) is for V_{e-out} , while the horizontal axis shown in the top (black) is for V_{i-out} . The electron outflow speeds range from $10v_{A0}$ to $20v_{A0}$. The mean is $14.1v_{A0}$, the minimum is $11.7v_{A0}$, and the maximum $19.6v_{A0}$. The ion outflow speeds range from $4v_{A0}$ to $10v_{A0}$. The mean is $7.2v_{A0}$, the minimum 554 $19.6v_{A0}$, and the maximum is $9.6v_{A0}$. The distribution of V_{i-out} (black) after multiplying 556 a factor of 2.0 with V_{i-out} is similar to the distribution of V_{e-out} (red). These large ion 557 outflows, of the order of $10v_{A0}$, are much larger than the ion outflow speed (~ local Alfvén 558 speed) in regular reconnection in the Earth's magnetopause/magnetotail. Fig. 9 shows scatter plots for electron outflow speeds, ion outflow speeds, reconnection see electric fields, and reconnection rates. Since the sample size for regular reconnection in this study is too small, we do not perform the correlation analysis, but let us visually check if there is a tendency of a correlation. Panel (a) shows the electron outflow speed V_{e-out} as a function of $V_{e-theory}$. In contrast with the electron outflow in electron-only reconnection analyzed in Fig. 5 (a), the electron outflow V_{e-out} in regular reconnection does not show a positive correlation with $V_{e-theory}$. Instead, the electron outflows in those seven regular for reconnection sites show similar values between $10v_{A0}$ and $20v_{A0}$, even in a range of large prediction values around $V_{e-theory} = 30v_{A0}$. Although it is hard to conclude something from this small sample size of data, the electron outflow speed seems not greatly affected by the predicted speed.

Panel (b) shows a plot for the ion outflow speed V_{i-out} as functions of the predicted ion ⁵⁷¹ speed $V_{i-theory}$ (black) and the observed electron outflow speed V_{e-out} (red). The observed ⁵⁷² ion outflow speeds V_{i-out} are much larger than the predicted ion outflow speeds $V_{i-theory}$. ⁵⁷³ The values of V_{i-out} are between $4.5v_{A0}$ to $9.6v_{A0}$, while the values of $V_{i-theory}$ are between ⁵⁷⁴ $0.65v_{A0}$ and $2.5v_{A0}$. The observed ion outflows V_{i-out} are almost half the observed electron ⁵⁷⁵ outflow speeds V_{e-out} , between $11.7v_{A0}$ to $19.6v_{A0}$. The scatter plot for the red data shows ⁵⁷⁶ that there is a tendency that the ion outflow speed increases with the electron outflow speed. ⁵⁷⁷ This fact that V_{i-out} is proportional to V_{e-out} may indicate that the electron outflow speed ⁵⁷⁸ is determined by the ion outflow speed, which is of the order of the speed of ions reflected ⁵⁷⁹ by the shock, as explained below.

Regular reconnection sites in the shock transition region are produced after the non-580 ⁵⁸¹ resonant ion-ion beam instability [14], and the ion jets in regular reconnection sites reach similar flow speeds as the ions reflected by the shock potential during the instability. Since 582 the speeds of the reflected ions are the same order as the flow speed in the upstream region, 583 which is $9v_{A0}$ in this shock simulation with $M_A = 11.4$ (see also Figs. 10 and 11 in Ref. 584 [14], where the reflected ions' speeds reach the order of $10v_{A0}$), the ion jet speeds in those 585 regular reconnection sites reach the same order, around $10v_{A0}$. Some of regular reconnection 586 sites, such as the site near the largest magnetic island $x = 50d_i$ and $y = 42d_i$, clearly show 587 ⁵⁸⁸ that the peak ion outflow velocity is boosted from the inflow speed with an amount around 589 v_{A0} . In other words, before reconnection, there is already the ion flow with its speed around $_{590}$ 10 v_{A0} due to the reflected ions, and reconnection generates the ion exhaust with its speed ⁵⁹¹ boosted up with an additional speed around v_{A0} . That is why the ion outflow speed in ⁵⁹² regular reconnection in the shock is of the order of the upstream flow speed (around $10v_{A0}$ ⁵⁹³ in this study), which is much larger than the ion outflow of the regular reconnection in the ⁵⁹⁴ Earth's magnetopause/magnetotail. Note that such a boost speed $\sim v_{A0}$ is not regarded ⁵⁹⁵ as the outflow speed, but we should use the observed outflow speed (V_{i-out}) as the outflow ⁵⁹⁶ speed. The exact physical reason why the electron outflow speed in the regular reconnection ⁵⁹⁷ in the shock (panel (a)) does not correlate with the predicted electron speed $V_{e-theory}$ but ⁵⁹⁸ correlated with the ion outflow speed (panel (b)) still remains to be investigated, but this ⁵⁹⁹ may be because the electron outflow is induced by the ion outflow to reduce the charge ⁶⁰⁰ separation produced by the strong ion flows in those reconnection sites.

Panel (c) shows the reconnection electric field E_r as functions of V_{i-out} (black) and V_{e-out} 601 (red), as well as the convection electric field E_z (blue) due to the electron outflow. These data 602 ⁶⁰³ show that E_r is correlated with neither V_{i-out} nor V_{e-out} . However, E_r shows a correlation ⁶⁰⁴ with the convection electric field. We note that the convection electric field shown here 605 is not the one at the point of the maximum electron outflow, but we chose the midpoint ⁶⁰⁶ between the X-line and the point of the maximum electron outflow, and then computed ⁶⁰⁷ the convection $E_z = -(V_{e-out-h} \times B)_z/c$ at the midpoint (where $V_{e-out-h}$ represents the ⁶⁰⁸ electron flow velocity at the midpoint). This is because the signs of the convection electric ₆₀₉ fields by the electron maximum outflows are opposite from those of the reconnection electric ⁶¹⁰ fields in four sites out of seven regular reconnection sites (Fig. 7(b) is an example). However, 611 the reconnection electric field E_r should be related with the convection E_z at a certain point ₆₁₂ of the outflow region, between the X-line to the maximum position of the outflow. For ₆₁₃ example, in Fig. 7(b), E_z near the X-line is negative because of the negative convection ₆₁₄ electric field due to the electron flow, even though the convection E_z at the position of the $_{615}$ maximum electron outflow becomes positive. The convection E_z due to the ion flow is also ⁶¹⁶ negative near the X-line, but due to the motion separation between the electron and ion, the ₆₁₇ convection E_z by the electron should be taken into account. For this reason, we investigate the convection electric field at the midpoint between the X-line and the position of the 618 ⁶¹⁹ maximum electron outflow. In panel (c), the blue data points show E_r as a function of the $_{620}$ convection electric field E_z by the electron at the midpoint. Here, we only used 6 points, ₆₂₁ because in one region, the sign of the convection E_z is opposite to E_z at the X-line. The blue ₆₂₂ data points clearly show an increase trend of E_r as the convection E_z increases. This result indicates that the reconnection electric field is explained by the convection E_z due to the error flow, and the reconnection electric field E_r in regular reconnection in the shock is the same order as that in electron-only reconnection, because in both types of reconnection, the electron outflow speed is the same order. The magenta data points show the relation between E_r and the convection E_z due to the electron inflow velocity, $E_z = -(\mathbf{V}_{e-in} \times \mathbf{B})_z/c$, and we also see an increase trend of E_r as the convection E_z increases.

Panel (d) is for the reconnection rates $R_{io} = E_r/(V_{i-out}B_d/c)$ and $R_{eo} = E_r/(V_{e-out}B_d/c)$ as functions of $V_{i-out}B_d/c$ (black) and $V_{e-out}B_d/c$ (red), respectively. Similar to the result in electron-only reconnection (panel (d) in Fig. 5), both reconnection rates R_{io} and R_{eo} are not constant, but they increases when $V_{i-out}B_d/c$ and $V_{e-out}B_d/c$ become small.

Fig. 10 shows scatter plots for the reconnection electric field and reconnection rates as 633 functions of two normalized guide fields, B_g/B_0 and B_g/B_d . Panel (a) shows a plot for ₆₃₅ E_r as functions of B_g/B_0 (black) and B_g/B_d (red). Both data show that there seems to 636 be no correlation between the reconnection electric field E_r and the guide field B_q . Panel $_{637}$ (b) shows reconnection electric fields R_{io} and R_{eo} as functions of B_g/B_0 (black) and B_g/B_d (red). Data of both types of outflows $(V_{e-out} \text{ and } V_{i-out})$ are represented by different symbols 638 (cross: the electron outflow V_{e-out} , and diamond: the ion outflow V_{i-out}). Again, there seems 639 640 no correlation between the reconnection rates and the guide field strength. If we look into ⁶⁴¹ more details of the dependences of E_r , R_{io} and R_{eo} , we see that E_r , R_{io} , and R_{eo} in the ₆₄₂ regions $1 \leq B_g/B_0 \leq 2.5$ and $1 \leq B_g/B_d \leq 2.5$ show larger values than those in higher ⁶⁴³ guide fields. Therefore, there may be weak negative correlations between E_r , R_{io} , and R_{eo} ₆₄₄ and the guide field strengths. However, it is hard to conclude the dependence using such a 645 small sample size of data.

⁶⁴⁶ D. Discussions for the outflow speed and the reconnection electric field in shocks

Let us discuss first the outflow speed in electron-only reconnection in a shock. We have confirmed that the electron outflow speed V_{out} is well correlated with V_{theory} , which is close to the local electron Alfvén speed, using the asymmetric reconnection theory in Ref. [20]. In the theory, it is assumed that there are two-sided outflow jets across the X line in the L direction (the direction of the reconnecting magnetic field). However, in the shock we investigated, there are many electron-only reconnection sites that show one-sided electron ⁶⁵³ jets; therefore, it is not obvious why the same theory with two-sided outflows can be applied ⁶⁵⁴ to those one-sided electron outflows. In the following, we will argue that the theory can be ⁶⁵⁵ applied to both the two-sided outflow case and the one-sided outflow case.

To derive the outflow speed, the asymmetric reconnection theory uses the mass conservation law, the energy conservation law, and the uniform reconnection electric field. The mass and energy conservations for the two-sided outflow case are written as follows (the same as Eqs. (10) and (11) in Ref. [20], replacing the ion mass with the electron mass):

$$l(m_e n_1 v_{in1} + m_e n_2 v_{in2}) = 2\delta m_e n_{out} V_{out},$$
(1)

660

$$l\left(\frac{B_{1}^{2}}{8\pi}v_{in1} + \frac{B_{2}^{2}}{8\pi}v_{in2}\right) = 2\delta\left(\frac{1}{2}m_{e}n_{out}V_{out}^{2}\right)V_{out},$$
(2)

⁶⁶¹ where l is the half length of the diffusion region (the distance from the X-line at L = 0 to ⁶⁶² the end point of the diffusion region in the L direction, see the diagram in Fig. 11(a)), v_{in1} ⁶⁶³ and v_{in2} are the inflow speed in region 1 and that in region 2, respectively. Region 1 has ⁶⁶⁴ $|B_L| = B_1$ and $n_e = n_1$, while region 2 has $|B_L| = B_2$ and $n_e = n_2$. In the outflow region, ⁶⁶⁵ the density becomes $n_e = n_{out}$. Note that the theory in Ref. [20] assumes quasi-steady ⁶⁶⁶ reconnection and neglects the time derivative in the theory. We can justify applying the ⁶⁶⁷ theory to electron-only reconnection even in a turbulent case, because the time scale of the ⁶⁶⁸ electron-only reconnection observed in the simulation is tens of Ω_e^{-1} (see Fig. 2 in Ref. [13], ⁶⁶⁹ which shows electron-only reconnection lasted longer than $0.25\Omega_i^{-1} = 50\Omega_e^{-1}$ for the mass ⁶⁷⁰ ratio 200), while the electron transit time in the reconnection region can be estimated as ⁶⁷¹ $l/V_{out} \sim d_i/v_{Ae} \sim 10\Omega_e^{-1}$, which is shorter than the reconnection time scale. Therefore, ⁶⁷² during this short transit time, the field structure does not change a lot, and a quasi-steady ⁶⁷³ state can be assumed in electron-only reconnection. We also assume that the reconnection ⁶⁷⁴ electric field is uniform, and we have

$$v_{in1}B_1 = v_{in2}B_2. (3)$$

 $_{675}$ Using these three equations, we have the outflow speed V_{out} as

$$V_{out} = \left(\frac{B_1 B_2}{4\pi m_e} \frac{B_1 + B_2}{n_1 B_2 + n_2 B_1}\right)^{1/2} = V_{theory},\tag{4}$$

⁶⁷⁶ where we use the notation V_{theory} , and this is the hybrid version of local electron Alfvén ⁶⁷⁷ speed in asymmetric reconnection.

Looking into the derivation of this outflow speed V_{out} , we found that although the inflows 678 pass through the positive N side and the negative N side of the diffusion region with its 679 660 length 2l, we consider only half the region, such as the region 0 < L, and the mass and energy fluxes that pass the X-line at L = 0 from the other side (L < 0) is zero. This is 681 because we are considering the two-sided outflows that are symmetric across the X-line in 682 the L direction, and as long as the system is symmetric, we do not have to consider the other 683 L side of the diffusion region. This means that in such a situation where there is no mass 684 and energy fluxes in the L direction across the X-line, we can discuss a one-sided outflow. 685 Comparison between the two-sided outflow case and the one-sided outflow case is shown in 686 Fig. 11(a)(b). Even when there are L-directional fluxes that pass through the X-line, if we 687 can neglect those fluxes, we have the same outflow speed as Eq. (4). 688

However, in the simulation, we identified regions where there are strong *L*-directional fluxes across the X-line. For example, in Fig. 2(c), we see that there is a strong electron inflow passing through the X-line from the positive *L* side along the positive J_z region. This *L*-directional flow is due to the background flow in the shock turbulence. In this case, we cannot directly apply the theory to this region. Instead, let us include such *L*-directional fluxes as follows (see also the diagram in Fig. 11(c)):

695

$$l(m_e n_1 v_{in1} + m_e n_2 v_{in2}) + 2\delta m_e n_{in-L} v_{in-L} = 2\delta m_e n_{out} V_{out},$$
(5)

$$l\left(\frac{B_1^2}{8\pi}v_{in1} + \frac{B_2^2}{8\pi}v_{in2}\right) + 2\delta\left(\frac{1}{2}m_e n_{in-L}v_{in-L}^2\right)v_{in-L} = 2\delta\left(\frac{1}{2}m_e n_{out}V_{out}^2\right)V_{out},\qquad(6)$$

where in the left-hand sides of the equations above, we included the mass flux and energy flux (see the second term in each equation) with its density $n_{in,L}$ and speed v_{in-L} . Here we assume that the density n_{in-L} in the inflow side is different from the density in the outflow bigs side n_{out} , because there is asymmetry in the L direction across the X-line. Note that in this formulation, flows are in the X-line rest frame, and V_{out} represents the total flow velocity in the outflow direction, which is the sum of the background flow and the flow produced by reconnection in the X-line rest frame. From these equations, we obtain V_{out} as follows

$$V_{out} = \left(\frac{B_1 B_2}{4\pi m_e} \frac{B_1 + B_2}{n_1 B_2 + n_2 B_1}\right)^{1/2} \left[\frac{1 - (n_{in-L}/n_{out})(v_{in-L}/V_{out})}{1 - (n_{in-L}/n_{out})(v_{in-L}/V_{out})^3}\right]^{1/2},\tag{7}$$

⁷⁰³ where we assume that $n_{in-L} \leq n_{out}$ and $v_{in-L} \leq V_{out}$ to make the outflow speed a real ⁷⁰⁴ number. Since the right-hand side contains the ratio v_{in-L}/V_{out} , this is not an explicit ⁷⁰⁵ expression of V_{out} . To obtain the explicit expression of V_{out} , we need another equation that ⁷⁰⁶ has a relation between n_{in-L} and n_{out} ; however, we can discuss the characteristics of the ⁷⁰⁷ outflow speed, in particular, the dependence on the ratio of v_{in-L}/V_{out} using Eq. (7). When ⁷⁰⁸ the inflow speed is negligibly small, $v_{in-L} \ll V_{out}$, which corresponds to the case where we ⁷⁰⁹ neglect the *L*-directional fluxes in the two equations, we obtain $V_{out} \sim V_{theory}$. Also, in a ⁷¹⁰ case where v_{in-L} is large enough and close to V_{out} (i.e. $v_{in-L} \rightarrow V_{out}$), as in Fig. 2(c), the ⁷¹¹ outflow speed becomes $V_{out} \sim V_{theory}$. The outflow V_{out} becomes slightly smaller than V_{theory} ⁷¹² when v_{in-L} is neither small nor large, i.e. $0 \ll v_{in-L} < V_{out}$. For example, when we assume ⁷¹³ that $v_{in-L} = 0.5V_{out}$ and $n_{in-L} = n_{out}$, the outflow speed $V_{out} \sim 0.75V_{theory}$. The outflow ⁷¹⁴ speed V_{out} is of the order of V_{theory} . In Appendix A, V_{out} is discussed more precisely as a ⁷¹⁵ function of v_{in-L} and n_{in-L}/n_{out} , and it is shown that V_{out} is of the order of V_{theory} .

Next, let us discuss the magnitude of the reconnection electric field in shocks, by compar-716 ⁷¹⁷ ing with that in the standard laminar reconnection in the Earth's magnetopause/magnetotail. ⁷¹⁸ In the shock, we observed that the reconnection electric field E_r is of the order of $0.1B_d V_{out}/c$ ⁷¹⁹ in electron-only reconnection, where V_{out} is close to V_{theory} , which is close to the local elec-720 tron Alfvén speed. At a first glance, this is similar to the reconnection electric field $T_{21} E_r \sim 0.1 B_{de} v_{Ae}/c$ in the standard laminar reconnection in the magnetopause/magnetotail, ⁷²² where B_{de} is the magnetic field at the edge of the EDR, and v_{Ae} is based on B_{de} . However, ⁷²³ there is a significant difference between E_r in a shock and E_r in the standard laminar ⁷²⁴ reconnection. In electron-only reconnection, since the reconnection region is small and ⁷²⁵ the current sheet thickness is sub- d_i scale (several electron skin depth d_e), the upstream ⁷²⁶ magnetic field B_{up} rapidly decreases to the X-line within such a small scale of several d_e . ₇₂₇ In other words, the current density in this region becomes significantly large due to large $_{728} \partial B_L / \partial N \propto B_{up} / d_e$. Therefore, the EDR occupies almost the entire reconnection region, and ⁷²⁹ B_d (reconnecting magnetic field, $B_d = 2B_1B_2/(B_1 + B_2)$) is close to the upstream magnetic ⁷³⁰ field B_{up} . See the diagram in Fig. 11(d).

In contrast, in the standard laminar reconnection, since the reconnection involves both r32 ions and electrons, there is a scale separation between the ion and election motions, and the r33 EDR, which has a thickness of several d_e , is embedded in the ion diffusion region (IDR), r34 which has a thickness of several d_i . See the diagram in Fig. 11(e). The current density is of r35 the order of B_{up}/d_i , which is smaller than the current density in electron-only reconnection. r36 In the standard laminar case, reconnection can be discussed based on the IDR, and the rer37 connecting magnetic field near the edge of the IDR is close to B_{up} . We have a reconnection ⁷³⁸ electric field $E_r \sim 0.1 B_{up} v_A/c$, where v_A is the Alfvén speed based on B_{up} . The EDR is ⁷³⁹ located in the vicinity of the X-line, where the electron outflow is generated and reaches v_{Ae} ⁷⁴⁰ based on the magnetic field B_{de} at the edge of the EDR. The reconnection electric field is uni-⁷⁴¹ form inside the EDR and the IDR. Therefore, the relation $E_r \sim 0.1 B_{de} v_{Ae}/c \sim 0.1 B_{up} v_A/c$ ⁷⁴² holds, and the reconnection electric field in the standard laminar reconnection is eventually ⁷⁴³ $E_r \sim 0.1 B_{up} v_A/c$. Comparing the reconnection electric field $E_r \sim 0.1 B_{up} v_{Ae}$ in electron-only ⁷⁴⁴ reconnection with the reconnection electric field $E_r \sim 0.1 B_{up} v_A/c$ in the standard laminar ⁷⁴⁵ reconnection, we found that E_r in electron-only reconnection is $(m_i/m_e)^{1/2}$ times larger. ⁷⁴⁶ This is because the difference in the magnetic field B_d in electron-only reconnection and B_{de} ⁷⁴⁷ in the standard reconnection, $B_{de} \ll B_d$. The fact that a large reconnection electric field is ⁷⁴⁸ generated in electron-only reconnection study in Ref. ⁷⁴⁹ [12], and our result is consistent with that study.

In regular reconnection in the shock, we observed that reconnection proceeds with fast 750 $_{751}$ outflow speeds in both electrons and ions, of the order of $10v_{A0}$. The simulation shows $V_{i-out} \sim 0.5 V_{e-out}$. However, ions are mostly unmagnetized in the entire reconnection 753 region, and reconnection regions almost resemble electron-only reconnection sites, in which electron outflows generate reconnection electric fields. In regular reconnection sites in the 754 ⁷⁵⁵ shock, the diffusion region is almost like the EDR, and there seems to be no IDR boundaries ⁷⁵⁶ beyond which ions are magnetized, since the current sheet thickness (~ $0.5d_i$) is too small, 757 even though ions are involved and accelerated to form an outflow jet. The plots of $E'_{z-e} =$ $_{758} [\boldsymbol{E} + \boldsymbol{V}_e \times \boldsymbol{B}/c]_z$ and $E'_{z-i} = [\boldsymbol{E} + \boldsymbol{V}_i \times \boldsymbol{B}/c]_z$ are shown in Figs. S3 and S4 in the ⁷⁵⁹ supplementary material, and regions with nonzero values of $|E'_{z-e}|$ and $|E'_{z-i}|$ are where electrons and ions are unmagnetized, respectively. Regions with nonzero $|E'_{z-e}|$ roughly 760 ⁷⁶¹ correspond to the current sheet, indicating that the EDR is covering the reconnection region. ⁷⁶² In contrast, regions with nonzero $|E'_{z-i}|$ spread beyond the reconnection region. These ions in ₇₆₃ the jet are not magnetized, and the generalized Ohm's law tells that the electron convection $_{764}$ term $-V_e \times B/c$ generates the convection electric field. Therefore, reconnection is likely controlled by electron outflows, instead of the ion outflows, and reconnection behaves like 765 electron-only reconnection. We confirmed that the reconnection electric field E_r in regular 766 reconnection in the shock is the same order as E_r in electron-only reconnection. Therefore, ⁷⁶⁸ the reconnection electric field in regular reconnection is also $E_r \sim 0.1 B_d V_{e-out}$, and this is ⁷⁶⁹ larger than the standard laminar reconnection, since V_{e-out} is of the order of $10v_{A0}$.

770 IV. MMS OBSERVATION OF ELECTRON JETS IN ELECTRON-ONLY RECON-771 NECTION

Fig. 12 shows an observation of electron-only reconnection in the Earth's magnetosheath 772 downstream of a quasi-parallel shock, measured by the MMS 1 spacecraft on December 9th in 773 2016, which shares similarities with the simulation events. More electron-only reconnection 774 events in the magnetosheath are shown and analyzed in Ref. [7]. In this event, MMS 775 spacecraft were located at approximately $[11, 3, 0.3]R_E$ in GSE coordinates, where R_E is the 776 Earth radius. Magnetic fields are measured by the Flux Gate Magnetrometer [27], electric 777 fields are measured by the Electric Field Double Probes [28–30], and the plasma data are 778 ⁷⁷⁹ from the Fast Plasma Investigation [31]. During this interval, MMS passed through a current reso sheet, indicated by the magnetic field reversal in B_L (panel (b)), which changes from negative ⁷⁸¹ to positive values across the current layer, marked by the two vertical dashed lines. We define $_{782}$ the LMN coordinate system based on a hybrid minimum variance analysis [32] on the 783 magnetic field over the time interval 2016-12-09/09:03:29.0706 to 2016-12-09/09:03:29.2464, 784 as $\hat{N} = \hat{b}_1 \times \hat{b}_2$, $\hat{M} = \hat{x}_{max} \times \hat{N}$, and $\hat{L} = \hat{M} \times \hat{N}$, where \hat{b}_1 and \hat{b}_2 are the magnetic field 785 direction on either side of the interval and \hat{x}_{max} is the maximum variance direction of the ⁷⁸⁶ magnetic field. Inside the interval of the current layer, B_L shows a local minimum value -5 $_{787}$ nT, and after MMS exited the current layer, it gradually increases to 10 nT. The B_M field ⁷⁸⁸ is around -40 nT before MMS passed through the current sheet, and it increases to -20 nT 789 after the current layer. The normal magnetic field B_N is always small, and it reduces from ⁷⁹⁰ 3 nT to almost zero (a small negative value) during the current sheet crossing. The electron ⁷⁹¹ density (panel (a)) is around 14 cm⁻³ before MMS entered the current sheet, and it slightly $_{792}$ increases in the current layer. The density is around 15 to 16 cm⁻³ after the current layer, $_{793}$ and it further increases to 22 cm⁻³ near the end of the shown interval.

During this current sheet crossing, MMS 1 detected a bipolar V_{eL} (panel (c)), which shows ros both positive (around 580 km/s) and negative (around -170 km/s) peaks. The velocity V_{eM} (panel (d)) has a negative peak near the B_L reversal point (vertical dotted line), and the ros speed reaches 1000 km/s. The velocity V_{eN} (panel (e)) also shows a positive peak 200 ros km/s, but V_{eN} is near zero at the V_{eL} maximum. Therefore, the maximum in-plane speed ros $(V_{eL}^2 + V_{eN}^2)^{1/2}$ is around 580 km/s. Based on the B_L field ~ -5 nT and the density ~ 16 soo cm⁻³ when B_L takes the local minimum value inside the current layer, the Alfvén speed is $_{801}$ 27 km/s, and the maximum V_{eL} (~ 580 km/s) corresponds to 22 times the Alfvén speed. so Since there is a background flow around 140 km/s in the L direction (see the value of V_{iL} in blue), the difference between the peak speed and the background is 440 km/s, which is 16 803 times the Alfvén speed. These flow speeds are smaller than the electron Alfvén speed (43) 804 times the Alfvén speed), but they almost reach half the electron Alfvén speed. In contrast, 805 ion fluid velocities show almost uniform velocities, and no jets are recognized. Based on 806 these data (the bipolar outflows in V_{eL} co-located with the B_L reversal, the V_{eM} peak near 807 the B_L reversal, and no ion outflows), we conclude that electron-only reconnection occurs 808 in this current sheet. 809

Panels (f) and (g) show electric fields in the frame moving with the average ion fluid 810 ⁸¹¹ velocity, i.e. $E_{sc} + U_{i0} \times B$, where E_{sc} is the electric field in the spacecraft frame and U_{i0} is $_{s12}$ the ion fluid velocity averaged over $10d_i$ surrounding the event. This reference frame assumes the reconnecting current sheet (including the X-line) is being advected in the background 813 plasma flow. This assumption appears to be broadly consistent with the current sheet veloc-814 ities obtained for a survey of magnetosheath reconnection events in Ref. [7] when compared with the N-component of the velocity which could be obtained from multispacecraft timing 816 analysis. Panel (f) shows that there is a bipolar E_N structure in the current sheet, and E_M 817 enhances at the B_L reversal point (dotted line), which is considered to be the vicinity of 818 the X-line, up to around 4 mV/m. This E_M is considered to be close to the reconnection 819 electric field. Panel (g) shows that the parallel electric field E_{\parallel} has a negative value close to 820 ⁸²¹ the value of $-E_M$ at the B_L reversal point, owing to the large guide field in the event. This $_{222}$ large $|E_{\parallel}|$ during the crossing of the current sheet is consistent with another observation of s23 guide-field reconnection in the magnetosheath [33]. The value of $|E_M|$ at the B_L reversal ⁸²⁴ point, 4 mV/m, is larger than the uncertainty of measurements (orange curve).

The right panels (h)-(n) show a simulation result of electron-only reconnection, the same quantities as in the MMS observation (panels (a)-(g)). This electron-only reconnection site has been analyzed in our previous paper [13], which shows two-sided electron jets around the X-line at $(x, y) = (48.175d_i, 27.05d_i)$. The in-plane electron fluid velocity $V_e = (V_{ex}^2 + V_{ey}^2)^{1/2}$ in the simulation frame is shown in panel (o), where the coordinates L and N are indicated by the red arrows around the X-line. We determined the L and N directions based on the orientations of the current sheet and the magnetic field lines near the X-line. Panel phone shows a region around the X-line, in the same scale as in panel (o): the color shows ⁸³³ the current density J_z , and the magenta lines are the contours of the vector potential A_z , $_{334}$ representing field lines. Based on the field line orientation, we visually determined the L $_{sss}$ and N directions, and the M direction is the same as the z direction. The quantities shown ⁸³⁶ in panels (h)-(n) are the values along the black straight line in panel (o), which mimics a ⁸³⁷ spacecraft trajectory, and the horizontal axis in each plot in panels (h)-(n) represents the y coordinate along the black line (note that y increases from right to left in panels (h)-(n)). We tried several line trajectories in the simulation, and this straight line in panel (o) 839 is one of the trajectories that show consistency in the quantities between the simulation 840 and the observation. The two vertical dashed lines in (h)-(n) indicate the region with the 841 bipolar electron outflows in V_{eL} , and the dotted line represents the position of the X-line. 842 ⁸⁴³ Since we focus only near the reconnection region in the simulation, the interval between ⁸⁴⁴ the two dashed lines in (h)-(n) is more expanded than the corresponding interval in (a)-(g) ⁸⁴⁵ in the observation. Note that panels (h)-(l) show the quantities in the simulation frame (where the X-line is moving) to compare with the observation data (panels (a)-(e)) in the 846 ⁸⁴⁷ spacecraft frame, and panels (m) and (n) show the electric fields in the ion rest frame (using ⁸⁴⁸ $E + V_{iX} \times B/c$, where $V_{iX} = [-2.6, 0.64, 3.2] v_{A0}$ is the ion fluid velocity at the X-line), ⁸⁴⁹ to compare with the observation data (panels (f) and (g)) in the ion rest frame. These electric fields in panels (m) and (n) are close to the electric fields in the X-line rest frame (not shown). Also, the reconnection electric field E_M at the X-line is frame independent.

The magnetic field B_L (panel (i)) reverses at the X-line, and the electron velocity V_{eL} (panel (j)) shows anti-correlation with B_L . Along the black line in (o), panel (j) shows that the positive V_{eL} outflow speed becomes ~ $10v_A$ at $y = 27.2d_i$, while the negative V_{eL} peak v_{eL} peak v_{eL} at $y = 26.9d_i$. The velocity V_{eM} (panel (k)) becomes $-4v_{A0}$ in the region of the positive V_{eL} side, including the X-line, but it becomes near zero in the negative V_{eL} side. This shift of the negative V_{eM} toward the positive V_{eL} region indicates that the current sheet ($J_z > 0$) is slightly offset toward the negative B_L region (see also the 2D plot of J_z in panel (p)), which is not observed in the MMS V_{eM} plot, and this is possibly caused by turbulent flows around the X-line. The velocity V_{eN} (panel (l)) shows a negative value in the region of positive V_{eL} , and the peak outflow speed ($V_{eL}^2 + V_{eN}^2$)^{1/2} becomes much larger in the negative B_L side than the other side. Note that we can confirm in panel (o), where the vector arrows show the direction of the flow, that the vector arrows near the positive V_{eN} peak ($y \sim 26.9d_i$) and the negative V_{eN} peak ($y \sim 27.2d_i$) are in the outflow direction, ⁸⁶⁵ not in the inflow direction. Therefore, we consider that $(V_{eL}^2 + V_{eN}^2)^{1/2}$ represents the outflow ⁸⁶⁶ speed in those peak positions. Ion flows do not show jet structures, and they are almost ⁸⁶⁷ constant.

The electric field E_N (panel (m)) shows a bipolar structure in the current sheet, and the correlation between E_N (panel (m)) and V_{eL} (panel (j)) is consistent with the observation (panels (f) and (c)). In contrast, the sign of E_L at the positive E_N peak near $y = 27.2d_i$ is positive, which is opposite from the negative sign of E_L at the positive E_N in the observation (panel (f)). The electric field $E_L(> 0)$ in this region in the simulation is consistent with the sign of $-\mathbf{V}_e \times \mathbf{B}$, and mainly due to the negative V_{eN} and the negative B_M . If the flow V_{eN} were positive as in the observation, E_L would be negative in this region.

The E_M field (panel (m)) shows a positive value, around $0.06B_0$, at the X-line, and this value is close to $0.1B_dV_{out}/c$, where $B_d = 1.8B_0$ and $V_{out} = 18v_A$ (note that B_d and V_{out} are values used in the analysis in Sec. IIIB, not the values along the black line in panel (o)). In panel (n), the parallel electric field E_{\parallel} shows a negative value at the X-line (dotted vertical line), consistent with the negative value of $-E_M$, because of the negative B_M and the positive E_M at the X-line.

If we compare these panels (h)-(n) obtained in the simulation with the MMS observation 881 $_{882}$ data (a)-(g), we see similarities between them. The B_L reverses from negative to positive (from $-3B_0$ to $2B_0$ in the simulation, while from -5nT to 10 nT in the observation). The magnitude of B_M is large in the current sheet $(B_M \sim -5B_0)$ in the simulation, while $B_M \sim$ $_{885}$ -40 nT in the observation). The velocity V_{eL} reverses near the B_L reversal (from $10v_{A0}$ $_{ss6}$ to $-5v_{A0}$ in the simulation, while from 580 km/s to -150 km/s in the observation), and V_{eM} shows a negative peak in the current sheet $(V_{eM} = -4v_{A0})$ in the simulation, and *** $V_{eM} = -1000$ km/s in the observation). Note that $10v_{A0}$ in the simulation corresponds to $v_{Ae} = 14.4 v_{A0}$ based on the mass ratio $m_i/m_e = 200$, and both the simulation $(10v_{A0} \sim 0.7v_{Ae})$ and the observation $(580 \text{ km/s} \sim 0.5v_{Ae})$ show the 890 same order. In addition, the electric field E_N shows a bipolar structure (changing from $0.8B_0$ 891 to $-0.4B_0$ in the simulation, while from 14 mV/m to -13 mV/m in the observation). The 892 ⁸⁹³ reconnection electric field E_M is a positive value (0.06 B_0 in the simulation, while 4 mV/m in ⁸⁹⁴ the observation), much weaker than the peak value of E_N . In addition, the parallel electric field E_{\parallel} is consistent with a negative value of $-E_M$ in both simulation and observation. ⁸⁹⁶ Therefore, it is possible that the MMS trajectory is similar to the black straight line that ⁸⁹⁷ crosses the X-line.

However, there are also differences between the observation and the simulation. In the 898 $_{899}$ observation, the density increases across the current sheet from 13 cm^{-3} to 17 cm^{-3} , while the simulation shows a decrease from $6n_0$ to $4n_0$ across the V_{eL} reversal, even though the density ⁹⁰¹ outside the V_{eL} reversal region increases from $4n_0$ at $y = 28.05d_i$ to $6n_0$ at $y = 26.05d_i$. The ⁹⁰² velocity V_{eN} is negative at the positive V_{eL} peak at $y = 27.2d_i$ in the simulation, while V_{eN} ⁹⁰³ is positive when V_{eL} shows a positive peak in the observation. This difference is because the ⁹⁰⁴ outflow jet in the simulation points in the upper right direction in panel (o), and the negative V_{eN} flow may be driven by the surrounding background flow. Also, as we explained, the ⁹⁰⁶ positive electric field E_L in the outflow jet in the simulation is mainly due to the negative $_{907} V_{eN}$. Also, in the simulation, the magnitude of the reconnection electric field is comparable ⁹⁰⁸ to the fluctuation amplitude of E_M and E_{\parallel} in the region surrounding the X-line (panel (n)), ⁹⁰⁹ while the observation (panel (g)) shows that the enhancement of the reconnection electric ⁹¹⁰ field is more pronounced than the simulation. This may be because $|B_M|$ (guide field) in ⁹¹¹ the simulation is much smaller than in the observation, and the magnetic field direction in the simulation significantly fluctuates. This weaker guide field introduces larger-amplitude 912 ⁹¹³ fluctuations in E_{\parallel} due to all the three components of the electric field, while the magnetic $_{914}$ field in the observation always points almost in the negative M direction and the contribution ⁹¹⁵ of E_M , which has smaller fluctuations than E_L and E_N , dominates in E_{\parallel} .

In the simulation, the observed maximum outflow speed $(V_{eL}^2 + V_{eN}^2)^{1/2}$ along the black ⁹¹⁷ straight line is $12.3v_{A0}$ at $y = 27.2d_i$, which is smaller than the actual maximum outflow ⁹¹⁸ speed in the simulation frame $15.4v_{A0}$ at $(x, y) = (48.525d_i, 27.35d_i)$. In addition, the ⁹¹⁹ maximum outflow speed in the X-line rest frame is $18v_{A0}$ (not shown). Therefore, this ⁹²⁰ maximum outflow speed $12.3v_{A0}$ on the black straight line is much smaller than the actual ⁹²¹ outflow speed V_{out} discussed in Section IIIB. As this example shows, the spacecraft data ⁹²² of the maximum outflow speed (panel (c)), 580 km/s ~ 22 times the Alfvén speed (or 440 ⁹²³ km/s ~ 16 times the Alfvén speed, which is the difference between the outflow 580 km/s and ⁹²⁴ the background flow 140 km/s), may be much smaller than the actual outflow speed in this ⁹²⁵ reconnection region, and it is possible that the actual outflow speed is close to the electron ⁹²⁶ Alfvén speed. Actually, other spacecraft in this event (in particular, MMS 3 and MMS 4, ⁹²⁷ data not shown) observed faster outflow speeds by subtracting the background flow.

The observed outflow speed by MMS $1 \sim 16-22$ times the Alfvén speed indicates that

⁹²⁹ electron-only reconnection can generate a strong electron outflow of the order of the electron ⁹³⁰ Alfvén speed, and a large reconnection electric field of the order of $RV_{out}B_d$ (in SI unit) is ⁹³¹ expected, where R is the reconnection rate. In this event, MMS observed an enhancement of ⁹³² electric field E_M up to around 4 mV/m near the B_L reversal point, which is much larger than ⁹³³ an estimate using a standard reconnection picture, $E_M \sim 0.1B_d v_A \sim 0.014$ mV/m ($B_d = 5$ ⁹³⁴ nT and $v_A = 27$ km/s). If we use an estimate of the reconnection rate in electron-only ⁹³⁵ reconnection, $RB_d V_{out}$, we have $E_M \sim RB_d V_{out} \sim 0.7$ mV/m, using $R \sim 0.3$ and $V_{out} = 440$ ⁹³⁶ km/s in the ion rest frame. The observed E_M , 4 mV/m, is much larger than this estimate, ⁹³⁷ indicating that either R is much larger than 0.3, or the actual maximum outflow speed V_{out} ⁹³⁸ as well as the actual magnetic field at the edge of the EDR B_d is much larger than 440 ⁹³⁹ km/s and 5 nT, respectively. For example, if R = 0.5 and $V_{out} \sim v_{Ae} \sim 1200$ km/s, E_M is ⁹⁴⁰ estimated to be 3 mV/m. The observation clearly shows that the reconnection electric field ⁹⁴¹ is consistent with the prediction in this study.

942 V. CONCLUSIONS

In this paper, we have investigated magnetic reconnection in the shock transition region ⁹⁴⁴ in a quasi-parallel shock, under parameters of the Earth's bow shock, by means of 2-D PIC ⁹⁴⁵ simulation. The shock normal angle is 25 degrees, and the Alfvén Mach number is 11.4. We ⁹⁴⁶ have analyzed the reconnection electric field, the reconnection rate, and the electron and ⁹⁴⁷ ion outflow speeds in each reconnection site. From 43 X-lines in the shock transition region ⁹⁴⁸ observed in the simulation at $\Omega_i t = 18.75$, we have chosen 32 X-lines that are stable for the ⁹⁴⁹ analysis time interval for 100 time steps, and we have identified 18 electron-only reconnection ⁹⁵⁰ sites and 7 regular reconnection sites. In each reconnection site, we have measured the X-line ⁹⁵¹ velocity, and we have discussed quantities in the X-line stationary frame.

⁹⁵² We have performed a statistical analysis for electron-only reconnection, to understand ⁹⁵³ the relations between the reconnection electric field, the reconnection rate, and the electron ⁹⁵⁴ outflow speed. The electron outflow speed and the theoretical prediction of the speed show ⁹⁵⁵ a positive correlation, and electron-only reconnection can be understood using asymmetric ⁹⁵⁶ reconnection theory by Ref. [20] by replacing the ion mass with the electron mass. We also ⁹⁵⁷ have found a tendency that the reconnection electric field increases with the electron outflow ⁹⁵⁸ speed, as well as the convection electric field due to the electron outflow. The reconnection ⁹⁵⁹ rate is not a constant value such as 0.1, but it becomes larger when the product $V_{out}B_d/c$ ⁹⁶⁰ becomes smaller. Also, the reconnection rate decreases with the increase of the guide field ⁹⁶¹ B_g , when B_g is larger than a few B_d (reconnecting magnetic field).

Regular reconnection in shock turbulence shows similar tendencies to those in electrononly reconnection. Both the electron outflow speed and the ion outflow speed become the order of $10v_{A0}$, which is the same order as the upstream ion speed in the shock with $M_A = 11.4$. Although the electron outflow speed is not correlated with the theoretical speed, we have found a tendency that the electron outflow speed is proportional to the ion outflow speed. The reconnection electric field as well as the reconnection rate becomes the same order as those in electron-only reconnection, and the reconnection electric field increases as the increase of the convection electric field due to the electron outflow. The reconnection rate show slight decreases when the guide field becomes m_{77} larger than $3B_d$.

The magnitude of the reconnection electric field, both in electron-only reconnection and 972 ⁹⁷³ in regular reconnection, is unusually large, of the order of $0.1B_d V_{out}/c$. In electron-only reconnection, the reconnection electric field becomes $(m_i/m_e)^{1/2}$ times larger than that in 974 reconnection in the Earth's magnetopause/magnetotail. This is understood as a result of 975 the fast speed of electron outflow, of the order of local electron Alfvén speed, and the large 976 convection electric field by the fast electron outflow. Surprisingly, the reconnection electric 977 field in regular reconnection in the shock transition region also becomes the same order as 978 ⁹⁷⁹ that in electron-only reconnection, and this is related with the large ion outflow and electron outflow, which also become much larger than Alfvén speed. 980

Reconnection in the shock is driven by instabilities: the non-resonant ion-ion instability and the secondary instability due to beams [14]. The non-resonant ion-ion beam instability and the secondary instability due to beams [14]. The non-resonant ion-ion beam instability are proportional to the shock speed, $M_A v_{A0}$. The growth rate of the instability [34] is $\gamma/\Omega_i \sim$ $v_b/v_{A0} = M_A$, which is a constant and does not depend on the upstream magnetic field B_0 and the mass ratio. Also the growth rate is positive when the propagation angle is contrast, the secondary instability is consistent with whistler waves excited by electron beams [14], and the growth rate is a function of B_0 and the mass ratio, whose leading order is $\gamma/\Omega_i \sim (n_b/n_0)(m_i/m_e)$ [35]. Therefore, the growth rate normalized by Ω_i becomes larger as ⁹⁹¹ the mass ratio becomes lager. In a real shock $(m_i/m_e = 1840)$, the growth of the secondary ⁹⁹² instability could be larger than that in the simulation in this study with $m_i/m_e = 200$. ⁹⁹³ However, the above discussions are based on simplified linear analyses, and PIC simulations ⁹⁹⁴ remain to be conducted to see the dependence of the instabilities and reconnection on B_0 , ⁹⁹⁵ the shock angle, and the mass ratio.

An event of electron-only reconnection in the Earth's magnetosheath downstream of a 996 ⁹⁹⁷ quasi-parallel shock, observed by MMS spacecraft, exhibits consistency with PIC simulation predictions. In the observed event, bipolar electron jets have been detected with a peak 998 ⁹⁹⁹ speed almost half the electron Alfvén speed. The outflow velocity reverses at around the ¹⁰⁰⁰ magnetic field reversal point, indicating that the jets are generated near the reconnection ¹⁰⁰¹ X-line. The event also shows the reconnection electric field that is much larger than the prediction based on the standard laminar reconnection, and closer to the prediction discussed 1002 1003 in this paper, $E_M \sim RB_d v_{Ae}$. Further observational studies of electric fields in more events will help to better constrain the properties of reconnection electric fields and reconnection 1004 1005 rates in both electron-only reconnection and regular reconnection in the Earth's bow shock and the magnetosheath. 1006

1007

¹⁰⁰⁸ Supplementary Material

See the supplementary material for flow patterns, flow profiles, the size of the EDR, and the in-plane electric fields in a few reconnection sites.

1011 ACKNOWLEDGMENTS

The work was supported by NASA grant 80NSSC20K1312, DOE grant DESC0016278, the NASA MMS project, and the Royal Society University Research Fellowship URF\R1\201286. PIC simulations were performed on Pleiades at the NASA Advanced Supercomputing, and the simulation data are available upon request from the authors.

1016

1017 Data Availability

¹⁰¹⁸ The data that support the findings of this study are available from the corresponding ¹⁰¹⁹ author upon reasonable request.

1020 Appendix A: Outflow speed with the *L*-directional fluxes

To argue V_{out} more precisely in a case where there are the *L*-directional mass and energy 1022 fluxes, let us obtain V_{out} as a function of v_{in-L} and n_{in-L}/n_{out} from Eq. (7). In that case, 1023 V_{out} is a solution of the following cubic equation:

$$V_{out}^3 - V_{theory}^2 V_{out} = \frac{n_{in-L}}{n_{out}} v_{in-L} (v_{in-L}^2 - V_{theory}^2).$$
(A1)

1024 Let us investigate a solution of V_{out} as a function of v_{in-L} using a fixed value of n_{in-L}/n_{out} . ¹⁰²⁵ The left-hand side is a cubic function of V_{out} , and let us denote it $f(V_{out})$. This func-1026 tion becomes zero at $V_{out} = 0$ and $V_{out} = V_{theory}$; i.e., f(0) = 0 and $f(V_{theory}) = 0$. In $V_{out} < V_{out} < V_{theory}, f(V_{out})$ takes its minimum value $-(2/3)(1/3)^{1/2}V_{theory}^3$ when $V_{out} =$ $_{1028}$ $(1/3)^{1/2}V_{theory}$. Let us obtain the solution of V_{out} from $f(V_{out}) = a$, where a represents ¹⁰²⁹ a value in the right-hand side of Eq. (A1), considering a crossing point of the curve 1030 $y = f(V_{out})$ and y = a. When v_{in-L} is zero, a = 0 and there are two solutions: one 1031 is $V_{out} = 0$, and the other is $V_{out} = V_{theory}$. In the following, we only consider the so-1032 lution close to V_{theory} . We change v_{in-L} from zero to V_{theory} . As v_{in-L} increases, a be-1033 comes a negative value, and the solution of V_{out} becomes slightly smaller than V_{theory} . 1034 When $n_{in-L}/n_{out} < 1$, the range of a is $-(2/3)(1/3)^{1/2}V_{theory}^3 < a < 0$, and in this case, 1035 the solution of V_{out} is larger than $(1/3)^{1/2}V_{theory}$. When $n_{in-L}/n_{out} = 1$, the minimum 1036 value of a becomes $-(2/3)(1/3)^{1/2}V_{theory}$, and in that case, V_{out} takes its minimum value $_{1037}$ $(1/3)^{1/2}V_{theory} \sim 0.58V_{theory}$. Therefore, the electron outflow speed V_{out} is not less than 1038 $0.58V_{theory}$ under any values of n_{in-L}/n_{out} between zero to unity, and V_{out} is always of the 1039 order of V_{theory} .

Note that according to Eq. (A1), $V_{out} = V_{theory}$ when $v_{in-L} = V_{theory}$. When the ratio $1041 n_{in-L}/n_{out} < 1$, this is understandable, because the sum of the three inflow fluxes related 1042 with v_{in1} , v_{in2} , and v_{in-L} are merged together to make a large outflow flux. However, when $1043 n_{in-L} = n_{out}$, the condition that $V_{out} = V_{theory}$ and $v_{in-L} = V_{theory}$ means that there is no 1044 inflows of v_{in1} and v_{in2} , and this simply means that the L-directional inflow $v_{in-L} = V_{theory}$ 1045 is passing through the X-line and the same speed of outflow V_{out} is realized in the outflow 1046 side. This is not reconnection. To realize reconnection, we require either $n_{in-L} < n_{out}$ or $1047 V_{in-L} < V_{out}$. To see this point, let us see the inflow speed v_{in1} in Eqs. (3), (5), and (6). ¹⁰⁴⁸ From these equations, we have the following relations:

$$\left(\frac{lv_{in1}}{2B_2\delta}\right)(n_1B_2 + n_2B_1) = n_{out}V_{out} - n_{in-L}v_{in-L},\tag{A2}$$

1049

$$\left(\frac{lv_{in1}}{2B_2\delta}\right)\frac{(B_1+B_2)B_1B_2}{4\pi m_e} = n_{out}V_{out}^3 - n_{in-L}v_{in-L}^3.$$
(A3)

¹⁰⁵⁰ Looking into these equations, we find that v_{in1} becomes zero when $n_{in-L} = n_{out}$ and $V_{out} =$ ¹⁰⁵¹ v_{in-L} . This is because the flux is coming in from the inflow direction with v_{in-L} and the ¹⁰⁵² same amount of flux is going out to the outflow direction with V_{out} . To make the inflow v_{in1} ¹⁰⁵³ nonzero, we need to have either $n_{in-L} < n_{out}$ or $v_{in-L} < V_{out}$, and reconnection can occur ¹⁰⁵⁴ only when one of the conditions is satisfied.

- [1] T. D. Phan, J. P. Eastwood, M. A. Shay, J. F. Drake, B. U. O. Sonnerup, M. Fujimoto, P. A. 1055
- Cassak, M. Øieroset, J. L. Burch, R. B. Torbert, A. C. Rager, J. C. Dorelli, D. J. Gershman, 1056
- C. Pollock, P. S. Pyakurel, C. C. Haggerty, Y. Khotyaintsev, B. Lavraud, Y. Saito, M. Oka, 1057
- R. E. Ergun, A. Retino, O. Le Contel, M. R. Argall, B. L. Giles, T. E. Moore, F. D. Wilder, 1058
- R. J. Strangeway, C. T. Russell, P. A. Lindqvist and W. Magnes (2018), Electron magnetic 1059
- reconnection without ion coupling in Earth's turbulent magnetosheath, Nature, 557, 202. 1060
- [2] S. Wang, L.-J. Chen, N. Bessho, M. Hesse, L. B. Wilson III, B. Giles, T. E. Moore, C. T. Rus-1061
- sell, R. B. Torbert, and J. L. Burch (2019), Observational evidence of magnetic reconnection 1062 in the terrestrial bow shock transition region, Geophys. Res. Lett., 46, 562 1063
- [3] I. Gingell, S. J. Schwartz, J. P. Eastwood, J. L Burch, R. E. Ergun, S. Fuselier, D. J. Gershman, 1064
- B. L. Giles, Y. V. Khotyaintsev, B. Lavraud, P.-A. Lindqvist, W. R. Paterson, T. D. Phan, C. 1065
- T. Russell, J. E. Stawarz, R. J. Strangeway, R. B. Torbert, F. Wilder (2019), Observations of 1066 magnetic reconnection in the transition region of quasi-parallel shocks, Geophys. Rev. Lett., 1067 46, 1177 1068
- [4] Z. Z. Chen, H. S. Fu, Z. Wang, C. M. Liu, and Y. Xu (2019), Evidence of Magnetic Nulls in 1069 the Reconnection at Bow Shock, Geophys. Res. Lett., 46, 10209. 1070
- [5] I. Gingell, S. J. Schwartz, J. P. Eastwood, J. E. Stawarz, J. L. Burch, R. E. Ergun, S. A. 1071
- Fuselier, D. J. Gershman, B. L. Giles, Y. V. Khotyaintsev, B. Lavraud, P.-A. Lindqvist, W. 1072

1073

- R. Paterson, T. D. Phan, C. T. Russell, R. J. Strangeway, R. B. Torbert, and F. Wilder (2020), Statistics of Reconnecting Current Sheets in the Transition Region of Earth's Bow 1074 Shock, J. Geophys. Res., 125, e2019JA027119 1075
- [6] I. Gingell, S. J. Schwartz, H. Kucharek, C. J. Farrugia, and K. J. Trattner (2021), Observing 1076 the prevalence of thin current sheets downstream of Earth's bow shock, *Phys. Plasmas*, 28, 1077 102902 1078
- [7] J. E. Stawarz, J. P. Eastwood, T. D. Phan, I. L. Gingell, P. S. Pyakurel, M. A. Shay, S. L. 1079 Robertson, C. T. Russell, and O. Le Contel, Turbulence-Driven Magnetic Reconnection and 1080 the Magnetic Correlation Length: Observations from Magnetospheric Multiscale in Earth's 1081 Magnetosheath (2022), Phys. Plasmas, 29, 012302 1082
- [8] S. Wang, L.-J. Chen, N. Bessho, M. Hesse, L. B. Wilson, III, R. Denton, J. Ng, B. Giles, R. 1083

- Torbert, and J. Burch (2020), Ion-scale Current Structures in Short Large-amplitude Magnetic
 Structures, Astrophys. J., 898, 121
- ¹⁰⁸⁶ [9] T. Z. Liu, S. Lu, D. L. Turner, I. Gingell, V. Angelopoulos, H. Zhang, A. Artemyev, and J.
- L. Burch (2020), Magnetospheric Multiscale (MMS) Observations of Magnetic Reconnection
- in Foreshock Transients, J. Geophys. Res., 125, e2020JA027822
- 1089 [10] S. Lu, R. Wang, Q. Lu, V. Angelopoulos, R. Nakamura, A. V. Artemyev, P. L. Pritchett, T.
- ¹⁰⁹⁰ Z. Liu, X.-J. Zhang, W. Baumjohann, W. Gonzalez, A. C. Rager, R. B. Torbert, B. L. Giles,
- D. J. Gershman, C. T. Russell, R. J. Strangeway, Y. Qi, R. E. Ergun, P.-A. Lindqvist, J. L.
- ¹⁰⁹² Burch and S. Wang (2020), Magnetotail reconnection onset caused by electron kinetics with ¹⁰⁹³ a strong external driver, *Nature Communications*, 11, 5049
- 1094 [11] J. E. Stawarz, J. P. Eastwood, T. D. Phan, I. L. Gingell, M. A. Shay, J. L. Burch, R. E. Ergun,
- B. L. Giles, D. J. Gershman, O. Le Contel, P.-A. Lindqvist, C. T. Russell, R. J. Strangeway,
- R. B. Torbert, M. R. Argall, D. Fischer, W. Magnes, and L. Franc (2019), Properties of the
- Turbulence Associated with Electron-only Magnetic Reconnection in Earth's Magnetosheath,
 Astrophys. J. Lett., 877, L37
- 1099 [12] P. S. Pyakurel, M. A. Shay, T. D. Phan, W. H. Matthaeus, J. F. Drake, J. M. TenBarge, C.
- 1100 C. Haggerty, K. G. Klein, P. A. Cassak, T. N. Parashar, M. Swisdak, and A. Chasapis (2019),
- Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence, Physics of Plasmas, 26, 082307.
- 1103 [13] N. Bessho, L.-J. Chen, S. Wang, M. Hesse, and L. B. Wilson III (2019), Magnetic reconnection
- in a quasi-parallel shock: two-dimensional local particle-in-cell simulation, *Geophys. Res. Lett.*,
 46, 9352
- ¹¹⁰⁶ [14] N. Bessho, L.-J. Chen, S. Wang, M. Hesse, L. B. Wilson III, and J. Ng (2020), Magnetic reconnection and kinetic waves generated in the Earth's quasi-parallel bow shock, *Phys. Plasmas*, 27, 092901
- 1109 [15] C. Vega, V. Roytershteyn, G. L. Delzanno, and S. Boldyrev (2020), Electron-only Reconnection in Kinetic-Alfvén Turbulence, Astrophys. J. Lett., 893, L10
- ¹¹¹¹ [16] P. S. Pyakurel, M. A. Shay, J. F. Drake, T, D. Phan, P. A. Cassak, and J. L. Verniero (2021),
 ¹¹¹² Faster form of electron magnetic reconnection with a finite length X-Line, Phys. Rev. Lett.,
 ¹¹¹³ 127, 155101
- 1114 [17] G. Arró, F. Califano, and G. Lapenta (2020), Statistical properties of turbulent fluctuations

- associated with electron-only magnetic reconnection, Astron. and Astrophys. 642, A45
- ¹¹¹⁶ [18] F. Califano, S. S. Cerri, M. Faganello, D. Laveder, M. Sisti, and M. W.
 ¹¹¹⁷ Kunz (2020), Electron-Only Reconnection in Plasma Turbulence, *Front. Phys.*,
 ¹¹¹⁸ https://doi.org/10.3389/fphy.2020.00317
- 1119 [19] T. K. M. Nakamura, S. Eriksson, H. Hasegawa, S. Zenitani, W. Y. Li, K. J. Genestreti, R.
- ¹¹²⁰ Nakamura, and W. Daughton (2017), Scaling of asymmetric magnetic reconnection: General
- theory and collisional simulations, J. Geophys. Res., 122, 11505
- 1122 [20] P. A. Cassak and M. A. Shay (2007), Mass and Energy Transfer Across the Earth's Magnetopause Caused by Vortex-Induced Reconnection, *Phys. Plasmas*, 14, 102114
- 1124 [21] Y.-H. Liu, M. Hesse, F. Guo, H. Li, and T. K. M. Nakamura, Strongly localized magnetic
 reconnection by the super-Alfvénic shear flow, *Phys. Plasmas*, 25, 080701
- 1126 [22] J. Birn, J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, Z.
- W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett (2001), Geophys. Res. Lett., 106, 3715
- ¹¹²⁸ [23] P. A. Cassak, Y.-H. Liu, and M. A. Shay (2018), A review of the 0.1 reconnection rate problem,
 ¹¹²⁹ J. Plasma Phys., 83, 715830501
- 1130 [24] R. B. Torbert, J. L. Burch, T. D. Phan, M. Hesse, M. R. Argall, J. Shuster, R. E. Ergun,
- L. Alm, R. Nakamura, K. J. Genestreti, D. J. Gershman, W. R. Paterson, D. L. Turner, I.
- 1132 Cohen, B. L. Giles, C. J. Pollock, S. Wang, L.-J. Chen, J. E. Stawarz, J. P. Eastwood, K. J.
- 1133 Hwang, C. Farrugia, I. Dors, H. Vaith, C. Mouikis, A. Ardakani, B. H. Mauk, S. A. Fuselier,
- 1134 C. T. Russell, R. J. Strangeway, T. E. Moore, J. F. Drake, M. A. Shay, Yuri V. Khotyaintsev,
- P.-A. Lindqvist, W. Baumjohann, F. D. Wilder, N. Ahmadi, J. C. Dorelli, L. A. Avanov, M.
- Oka, D. N. Baker, J. F. Fennell, J. B. Blake, A. N. Jaynes, O. Le Contel, S. M. Petrinec, B.
 Lavraud, Y. Saito (2018), *Science*, 362, 2391
- 1138 [25] J. L. Burch, J. M. Webster, M. Hesse, K. J. Genestreti, R. E. Denton, T. D. Phan, H.
- Hasegawa, P. A. Cassak, R. B. Torbert, B. L. Giles, D. J. Gershman, R. E. Ergun, C. T.
- Russell, R. J. Strangeway, O. Le Contel, K. R. Pritchard, A. T. Marshall, K.-J. Hwang,
- K. Dokgo, S. A. Fuselier, L.-J. Chen, S. Wang, M. Swisdak, J. F. Drake, M. R. Argall, K. J.
- 1142 Trattner, M. Yamada, and G. Paschmann (2020), Electron Inflow Velocities and Reconnection
- Rates at Earth's Magnetopause and Magnetosheath, *Geophys. Rev. Lett.*, 47, e2020GL089082
- 1144 [26] Y.-H. Liu, M. Hesse, F. Guo, W. Daughton, H. Li, P. A. Cassak and M. A. Shay (2017), Why
- does Steady-State Magnetic Reconnection have a Maximum Local Rate of Order 0.1?, *Phys.*

1146 Rev. Lett., 118, 085101

- 1147 [27] C. T. Russell, B. J. Anderson, W. Baumjohann, K. R. Bromund, D. Dearborn, D. Fischer, G.
- Le, H. K. Leinweber, D. Leneman, W. Magnes, J. D. Means, M. B. Moldwin, R. Nakamura,
- D. Pierce, F. Plaschke, K. M. Rowe, J. A. Slavin, R. J. Strangeway, R. Torbert, C. Hagen, I.
- Jernej, A. Valavanoglou, and I. Richter (2014), The Magnetospheric Multiscale magnetome-
- ters, Space Science Reviews, 199, 189
- 1152 [28] R. E. Ergun, S. Tucker, J. Westfall, K. A. Goodrich, D. M. Malaspina, D. Summers, J. Wallace,
- M. Karlsson, J. Mack, N. Brennan, B. Pyke, P. Withnell, R. Torbert, J. Macri, D. Rau, I.
- ¹¹⁵⁴ Dors, J. Needell, P.-A. Lindqvist, G. Olsson, and C. M. Cully (2014), The axial double probe ¹¹⁵⁵ and fields signal processing for the MMS mission, Space Science Reviews, 199, 167
- 1156 [29] P.-A. Lindqvist, G. Olsson, R. B. Torbert, B. King, M. Granoff, D. Rau, G. Needell, S. Turco,
- I. Dors, P. Beckman, J. Macri, C. Frost, J. Salwen, A. Eriksson, L. Åhlén, Y. V. Khotyaintsev,
 J. Porter, K. Lappalainen, R. E. Ergun, W. Wermeer, and S. Tucker (2014), The spin-plane
 double probe electric field instrument for MMS. Space Science Reviews, 199, 137
- double probe electric field instrument for filling. Space Science Reviews, 155, 167
- ¹¹⁶⁰ [30] R. B. Torbert, C. T. Russell, W. Magnes, R. E. Ergun, P.-A. Lindqvist, O. LeContel, H.
 ¹¹⁶¹ Vaith, J. Macri, S. Myers, D. Rau, J. Needell, B. King, M. Granoff, M. Chutter, I. Dors,
- G. Olsson, Y. V. Khotyaintsev, A. Eriksson, C. A. Kletzing, S. Bounds, B. Anderson, W.
- Baumjohann, M. Steller, K. Bromund, L. Guan, R. Nakamura, R. J. Strangeway, H. K.
- Leinweber, S. Tucker, J. Westfall, D. Fischer, F. Plaschke, J. Porter, and K. Lappalainen
- (2014), The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data
 products, Space Science Reviews, 199, 105.
- ¹¹⁶⁷ [31] C. Pollock, T. Moore, A. Jacques, J. Burch, U. Gliese, Y. Saito, T. Omoto, L. Avanov,
 ¹¹⁶⁸ A. Barrie, V. Coffey, J. Dorelli, D. Gershman, B. Giles, T. Rosnack, C. Salo, S. Yokota,
 ¹¹⁶⁹ M. Adrian, C. Aoustin, C. Auletti, S. Aung, V. Bigio, N. Cao, M. Chandler, D. Chornay,
- K. Christian, G. Clark, G. Collinson, T. Corris, A. de Los Santos, R. Devlin, T. Diaz, T.
- 1171 Dickerson, C. Dickson, A. Diekmann, F. Diggs, C. Duncan, A. Figueroa-Vinas, C. Firman,
- M. Freeman, N. Galassi, K. Garcia, G. Goodhart, D. Guererro, J. Hageman, J. Hanley, E.
- Hemminger, M. Holland, M. Hutchins, T. James, W. Jones, S. Kreisler, J. Kujawski, V. Lavu,
- J. Lobell, E. LeCompte, A. Lukemire, E. MacDonald, A. Mariano, T. Mukai, K., Narayanan,
- 1175 Q. Nguyan, M. Onizuka, W. Paterson, S. Persyn, B. Piepgrass, F. Cheney, A. Rager, T.
- Raghuram, A. Ramil, L. Reichenthal, H. Rodriguez, J. Rouzaud, A. Rucker, Y. Saito, M.

- 1177 Samara, J. A. Sauvaud, D. Schuster, M. Shappirio, K. Shelton, D. Sher, D. Smith, K. Smith,
- 1178 S. Smith, D. Steinfeld, R. Szymkiewicz, K. Tanimoto, J. Taylor, C. Tucker, K. Tull, A. Uhl, J.
- ¹¹⁷⁹ Vloet, P. Walpole, S. Weidner, D. White, G. Winkert, P. S. Yeh, and M. Zeuch (2016), Fast
- ¹¹⁸⁰ Plasma Investigation for Magnetospheric Multiscale, Space Science Reviews, 199, 331–406
- ¹¹⁸¹ [32] J. T. Gosling and T. D. Phan (2013), Magnetic reconnection in the solar wind at current
 ¹¹⁸² sheets associated with extremely small field shear angles, Astrophys. J. Lett. 763, L39
- 1183 [33] F. D. Wilder, R. E. Ergun, S. Eriksson, T. D. Phan, J. L. Burch, N. Ahmadi, K. A. Goodrich,
- D. L. Newman, K. J. Trattner, R. B. Torbert, B. L. Giles, R. J. Strangeway, W. Magnes,
- P.-A. Lindqvist, and Yu-V. Khotyaintsev (2017), Multipoint Measurements of the Electron
 Jet of Symmetric Magnetic Reconnection with a Moderate Guide Field, Phys. Rev. Lett., 118,
 265101
- ¹¹⁸⁸ [34] S. P. Gary (1991), Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review, Space Sci. Rev. 56, 373
- ¹¹⁹⁰ [35] H. K. Wong and C. W. Smith (1994), Electron beam excitation of upstream waves in the ¹¹⁹¹ whistler mode frequency range, J. Geophys. Res., 99, 13373

FIG. 1. (a) Current density J_z in the shock transition region. Gray curves are magnetic field lines projected on the *x-y* plane. (b) Positions of electron-only reconnection (magenta Xs), regular reconnection (yellow Xs), and no active reconnection (white Xs).

FIG. 2. Field quantities in an electron-only reconnection site, in the X-line rest frame. The X-line is at $(x, y) = (47.5d_i, 25.85d_i)$, indicated by the magenta X in each plot. (a) Current density J_z , (b) electric field E_z , (c) the in-plane electron fluid velocity $V_e = (V_{ex}^2 + V_{ey}^2)^{1/2}$ multiplied by sign (V_{ey}) , (d) the in-plane ion fluid velocity V_i multiplied by sign (V_{iy}) , (e) magnetic field B_z , and (f) 1-D cuts of B_L and the electron density n_e along the N direction. L is the direction of the reconnecting magnetic field B_L , and L-N coordinates are shown in panel (d). The cuts are along the N axis. In all the plots, magenta curves are magnetic field lines. White arrows in panels (a)(b)(c)(e) are the electron fluid velocity vectors in the X-line rest frame, while those in panel (d) are the ion fluid velocity vectors. The two vertical dashed lines in panel (f) indicate the positions where we measured B_1 , B_2 , n_1 , and n_2 for the asymmetric reconnection theory.

FIG. 3. Field quantities in another electron-only reconnection site in the X-line rest frame, at the X-line $(x, y) = (48.5d_i, 37.375d_i)$, in the same format as in Fig. 2

FIG. 4. Histograms for electron-only reconnection. (a) Reconnection electric field E_r , (b) reconnection rates $R_t = E_r/(V_{theory}B_d/c)$ (black) and $R_o = E_r/(V_{out}B_d/c)$ (red), (c) theoretical outflow speed V_{theory} (black) and observed outflow speed V_{out} (red), and (d) the ratio V_{out}/V_{theory} .

FIG. 5. Scatter plots for electron-only reconnection. (a) V_{out} vs. V_{theory} , (b) E_r vs. V_{theory} (black), and E_r vs. V_{out} (red), (c) E_r vs. convection E_z due to V_{out} (black) and V_{in} (red), and (d) reconnection rate R_t vs. $V_{theory}B_d/c$ (black) and R_o vs. $V_{out}B_d/c$ (red).

FIG. 6. Scatter plots for electron-only reconnection. (a) E_r vs. guide field B_g/B_0 (black) and E_r vs. B_g/B_d (red), and (b) reconnection rate R_t vs. B_g/B_0 (black) and R_t vs. B_g/B_d (red).

FIG. 7. Field quantities in a regular reconnection site whose X-line is at $(x_X, y_X) = (49.8d_i, 21.2d_i)$, in the X-line rest frame,

in the same format as in Fig. 2, except for panel (b) where white arrows show the ion fluid velocity vectors in the X-line rest frame.

FIG. 8. Histograms for regular reconnection. (a) Reconnection electric field E_r , (b) reconnection rates $R_{et} = E_r/(V_{e-theory}B_d/c)$ (black) and $R_{eo} = E_r/(V_{e-out}B_d/c)$ (red), (c) reconnection rates $R_{it} = E_r/(V_{i-theory}B_d/c)$ (black) and $R_{io} = E_r/(V_{i-out}B_d/c)$ (red), and (d) ion outflow speed V_{i-out} (black) and electron outflow speed V_{e-out} .

FIG. 9. Scatter plots for regular reconnection. (a) V_{e-out} vs. $V_{e-theory}$, (b) V_{i-out} vs. $V_{i-theory}$ (black) and V_{i-out} vs. V_{e-out} (red), (c) E_r vs. V_{i-out} (black), E_r vs. V_{e-out} (red), and E_r vs. convection E_z by electron outflow (blue) and electron inflow (magenta), and (d) reconnection rates R_{io} vs. $V_{i-out}B_d/c$ (black) and R_{eo} vs. $V_{e-out}B_d/c$ (red).

FIG. 10. Scatter plots for regular reconnection. (a) E_r vs. guide field B_g/B_0 (black) and E_r vs. B_g/B_d , and (b) reconnection rates R_{io} and R_{eo} vs. B_g/B_0 (black) and R_{io} and R_{eo} vs. B_g/B_d (red).

FIG. 11. Schematic diagrams: (a) two-sided jets, (b) one-sided jet, (c), one-sided jet with the L fluxes, (d) EDR in electron-only reconnection, and (e) EDR in standard reconnection. In each plot, the X-line is denoted by the X mark. In (d) and (e), B_{up} is the magnetic field in the upstream regions.

FIG. 12. (a)-(g) MMS observation data for electron-only reconnection: (a) electron density, (b) magnetic fields, (c)-(e) fluid velocities, (f) electric fields, and (g) parallel electric field and $-E_M$. The vertical dashed lines show the region a current sheet, and the dotted line indicates the B_L reversal. (h)-(n) Simulation data, the same quantities as in (a)-(g). (o) 2-D plot of the in-plane electron fluid speed in the simulation frame. The black line is where the quantities in (h)-(n) are plotted. White arrows show the vectors of the electron fluid velocity, (p) 2-D plot of the current density J_z .

(b) X: Electron-only X: No reconnection X: Regular

x/d_i

(c) One-sided jet with the L fluxes

V_{in2}

(d) EDR in electron-only reconnection

(e) EDR in standard reconnection

Seconds 2016 Dec 09 0903:

