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ABSTRACT

We derive the transit timing variations (TTVs) of two planets near a second-order mean motion resonance (MMR)
on nearly circular orbits. We show that the TTVs of each planet are given by sinusoids with a frequency of

- -jn j n22 1( ) , where j 3 is an integer characterizing the resonance and n2 and n1 are the mean motions of the
outer and inner planets, respectively. The amplitude of the TTV depends on the mass of the perturbing planet,
relative to the mass of the star, and on both the eccentricities and longitudes of pericenter of each planet. The TTVs
of the two planets are approximated anti-correlated, with phases of f and f p» + , where the phase f also depends
on the eccentricities and longitudes of pericenter. Therefore, the TTVs caused by proximity to a second-order
MMR do not in general uniquely determine both planet masses, eccentricities, and pericenters. This is completely
analogous to the case of TTVs induced by two planets near a first-order MMR. We explore how other TTV signals,
such as the short-period synodic TTV or a first-order resonant TTV, in combination with the second-order resonant
TTV, can break degeneracies. Finally, we derive approximate formulae for the TTVs of planets near any order
eccentricity-type MMR; this shows that the same basic sinusoidal TTV structure holds for all eccentricity-type
resonances. Our general formula reduces to previously derived results near first-order MMRs.

Key words: celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites:
fundamental parameters

1. INTRODUCTION

Transit timing variations (TTVs; Miralda-Escudé 2002; Agol
et al. 2005; Holman & Murray 2005) have proved useful for
constraining the masses and orbital elements of exoplanets
(e.g., Carter et al. 2012; Huber et al. 2013; Nesvorný et al.
2013). To date, most TTV studies have focused on pairs of
planets near mean motion resonances (MMRs) and in particular
on those near first-order resonances. This is because near
resonances the small perturbations that planets impart on each
other can add coherently over time to produce a large,
detectable TTV signal, and because for low eccentricity
orbits the “near resonance region” is largest for first-order
resonances.

However, TTV models for planet pairs near resonance are
plagued by degeneracies. For a pair of planets on coplanar
orbits, there are 10 free parameters that control the TTVs.
Assuming both planets transit, the periods and initial phases of
the orbits are well-known, leaving six unknown parameters—
the masses, eccentricities, and longitudes of pericenters of the
two planets. Boué et al. (2012) showed analytically that all of
these unknown parameters affect TTV amplitudes and phases
for systems near or in eccentricity-type MMRs and they
concluded that degeneracies between mass and orbital para-
meters could strongly affect inferences based on the TTVs. The
particular case of a pair of planets near (but not in) first-order
resonances was analyzed in detail by Lithwick et al. (2012),
who showed that the TTVs of each planet are approximately
sinusoidal, with a period set by the known mean orbital
periods. Furthermore, the first-order resonant TTVs are often
nearly anti-correlated, in which case there are only three
constraining “observables”: two TTV amplitudes and a single
phase. Therefore, the six unknown parameters cannot all be

determined uniquely, and in particular, a degeneracy between
the masses and eccentricities results (Lithwick et al. 2012).
More recently it has been demonstrated that a small

amplitude “chopping” signal associated with individual
planetary conjunctions—and not with proximity to the MMR
—can determine the masses of the interacting planets uniquely,
with only weak dependence on the eccentricities and longitudes
of pericenter (Nesvorný & Vokrouhlický 2014; Deck &
Agol 2015). If this chopping TTV is measured for a system
near a first-order resonance, the amplitude and phase of the
resonant TTV can be used to constrain the remaining degrees
of freedom (the eccentricities e and the longitudes of pericenter
ϖ). However, as shown by Lithwick et al. (2012), the
individual eccentricities and longitudes of pericenter are not
constrained by the first-order resonant TTV; rather, only a
linear combination of the eccentricity vectors v ve ecos , sin( )
are (the quantity Zfree in the notation of Lithwick et al. 2012).
This raises the question of if and in which circumstances TTVs
can be used to measure individual eccentricities uniquely.
Here we consider the case of two planets orbiting near a

second-order resonance, with » -/P P j j 22 1 ( ) where j 3.
Second-order resonances distinct from first-order commensur-
abilities appear when j is odd. Though less common than first-
order MMRs in the observed sample of transiting planets
(Fabrycky et al. 2014), these configurations are still of interest
and important to understand (Jontof-Hutter et al. 2015; Petigura
et al. 2015). On the other hand, second-order resonances when j
is even are also important because they represent the dominant
correction at O e2( ) to the first-order resonant TTV formula
derived by Lithwick et al. (2012). Because of the different
functional dependence on the eccentricities and longitudes of
pericenter between the first- and second-order terms, second-
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order effects may be important for breaking degeneracies
present in the TTVs of planets near first-order MMR.

We derive an approximate formula for TTVs resulting from
an orbital configuration near a second-order resonance in
Section 2. In Section 3, we interpret the resulting orbital
parameter and mass constraints allowed by these TTVs. In
Section 4 we test the TTV formulae in multiple ways. We first
compare the predicted TTVs using the formulae with those
determined via numerical integration of the full gravitational
equations of motion across a wide range of relevant parameter
space. Then, for the specific systems Kepler-26 and Kepler-46,
we compare the outcome of TTV inversions obtained using the
formulae to those obtained via n-body analysis. In Section 4.2.3
we apply our formula to simulated data and investigate if
measuring the second harmonic of the TTVs for a pair of
planets near a first-order resonance allows unique determina-
tions of both planet eccentricities. For completeness, we extend
our derivation to systems near the j:j−N Nth order MMR in
Section 5. We give our conclusions in Section 6.

2. DERIVATION OF THE APPROXIMATE TTV

We would like to determine approximate expressions for the
TTVs induced for two planets near the j:j−2 second-order
resonance. To begin, we write the Hamiltonian in Jacobi
elements up to the second-order in planet eccentricities. We
include only the second-order resonant terms in this derivation.
In this case, the Hamiltonian is
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In the definitions of the gj xx, functions, we have neglected all
indirect contributions which arise only at higher orders of
eccentricity (Murray & Dermott 1999). Here ai is the
semimajor axis, ei the orbital eccentricity, mi the mass, li the

mean longitude, and vi the longitude of periastron of the -i th
planet (i= 1 or 2), a = a a1 2 and M is the mass of the star.
Throughout this derivation, we will make use of the

following small quantities:
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The assumption that the masses are small is required because
we neglect terms of order  i

2 in both Equation (1) and below,
for example in Equations (9)–(12). The assumption of low
eccentricities allows us to neglect higher-order terms in
Equation (1), as well as terms at zeroth and linear in
eccentricities that are non-resonant. We will further discuss
the assumptions of near resonance, d  1, and of low
eccentricities, e 1i , below. For reference, δ is on the order
of a few percent for many systems of interest.
We will derive the TTVs using an approach developed by

Nesvorný & Morbidelli (2008), Nesvorný (2009), and
Nesvorný & Beaugé (2010) and later used by Deck & Agol
(2015). The method is based on perturbation theory within a
Hamiltonian framework; therefore, we need to first convert the
orbital elements into canonical variables. Written in terms of
the canonical momenta (left) and coordinates (right),
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The coefficients gj xx, are evaluated at semimajor axis

ratio a L L = L Lm m,1 2 1 1
2
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Our goal is to find a new set of canonical variables (denoted
with primes) such that in the new set the Hamiltonian takes the
form
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In the new variables, the motion of the two planets is
“Keplerian.” These Keplerian orbits correspond to the
average of the perturbed orbits (averaged over the periodic
terms in H1). TTVs are deviations from the times predicted
from the mean ephemeris of a planet. In practice we estimate
this by fitting the transit times with a constant period
(Keplerian) model. The deviations are caused by the interaction
with the other planet, and hence the transformation we seek to
turn Equation (1) into (7) is precisely what we need to give us
the TTVs.

To determine this transformation, we use a Type-2
generating function of the form
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Therefore, the first piece of F2 is the identity transformation
and the second piece, f, is a small correction which will be
linear in 1. The function f which produces the new “Keplerian”
Hamiltonian of Equation (8) from the Hamiltonian of
Equation (7) is


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where ¼ ¼,{ } denotes a Poisson Bracket. For more details on
this type of derivation, one can refer to Morbidelli (2002),
Nesvorný & Morbidelli (2008) or Deck & Agol (2015).
Formally, f is a mixed-variable function of both old coordinates
and new momenta. In Equation (11), however, we neglect to
make this distinction. This is because the difference between
the two sets, given implicitly in Equation (10), depends on
derivatives of f, which is itself linear in 1. Therefore, within f
itself, the difference between the two sets is negligible since we
are only working to first order in 1.

Equation (10) shows us how to derive, using the function f of
Equation (11), the difference between the real and averaged
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Here we have made use of the small parameters given in
Equation (4). That is, we have assumed that since the pair is
close to resonance with small eccentricities, we need only
retain terms of the order de and de 2( ) . Terms proportional to

de2 or missing the small denominator δ are assumed to be
considerably smaller and can be neglected. This approximation
holds as long as e 1 and as long as d  1. The dominant
neglected term de2 is negligible compared with the synodic
chopping terms (of zeroth order in e and d1 ) for  de . For
δ of a few percent, as for many of the Kepler systems, this
corresponds to e 0.1.
We now must take changes in the canonical elements and

convert them into TTVs. The transit occurs when the true
anomaly of the planet θ is equal to a value, which, given the
reference frame, aligns the planet in front of the star along our
line of sight. θ is not a canonical variable, but it can be related
to our canonical set via a power series in eccentricity of the
transiting planet:

q l l l lL = +
L

+ + + ¼x y x y O e, , ,
2

sin cos

14

2[ ] ( ) ( )

( )
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where we have already neglected the dL piece with the
knowledge that it will be small. The derivatives of
q l L x y, , ,[ ] with respect to any of the remaining variables
will be proportional to e e e, ,0 1 2without any small denomi-
nators. Hence, we also only keep q l¶ L ¶x y x, , ,[ ] ,
q l¶ L ¶x y y, , ,[ ] , and q l l¶ L ¶x y, , ,[ ] to zeroth order in

e since we have assumed eccentricities are small. We
approximate
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To turn Equation (16) into a timing perturbation, we need to
convert dq into dt. This is achieved by relating θ to λ, since λ is
a linear function of time. We can write

dq d= - + +¼n t O e , 17( ) ( )

where again we can neglect the O(e) correction, since this is a
factor of e without a small denominator d w= nj i. Combining
the results of Equations (13), (16), and (17) we find that the
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TTVs are approximately given by
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When will these formulae break down? Here we give some
qualitative expectations before turning to numerical tests in
Section 4.

Although we are considering the near resonance case, if δ
becomes too small neglected terms proportional to d1 will
become important if the system is too close to resonance.
Additionally, our formulae will not apply when a system is in
resonance. The width of the resonance grows with e and with ò.
For a given ò, then, we expect our formulae to fail if the
eccentricity is too large, either because of being in resonance or
because of neglected higher-order terms.

As a  1, the functions of Laplace coefficients appearing as
coefficients in the disturbing function can diverge, mitigating
the effect of small eccentricities raised to high powers. In
practice, this means that the derived formulae incur larger error
as a  1 due to these neglected higher-order in e terms.

Throughout this derivation, we neglected terms without a
small denominator δ. In the low eccentricity regime, the
dominant contribution comes from the terms independent of
eccentricity. If  de , these zeroth order (in e) chopping terms
will be comparable in magnitude to the second-order TTV. In
practice, this implies that for many systems the second-order
resonant formula should be used with the chopping formula of
Nesvorný & Vokrouhlický (2014) or Deck & Agol (2015). Of
course, if the second-order MMR under consideration is a
O e2( ) correction of a first-order MMR, one must include the
first-order resonant contributions (not presented here) as well.

Note that these TTVs were derived in terms of Jacobi
elements, which, for the outer planet are not the defined relative
to the star but rather to the center of mass of the inner-planet-
star system. However, true transits occur with respect to the
star, not the center of mass of the inner subsystem. The
necessary correction can be determined by treating the motion
of the star as a sum of two Keplerian orbits (e.g., Agol
et al. 2005). However, the indirect contributions resulting from
this correction do not have small denominators, and hence they
are not important at this level of approximation.

3. INTERPRETATION OF THE APPROXIMATE TTV

The TTV expressions given in Equations (18) and (19)
depend on the eccentricities and longitudes of pericenter of
each planet after averaging over the TTV period and the orbital
periods of the planets.4 The only further variation in these
quantities is due to secular evolution. If we assume that the
observational baseline is short compared with the secular
timescale, they will be approximately constant. We now show
that the TTVs approximately depend only on the masses of the
two planets (relative to the mass of the host star) and the
approximately constant quantities
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Next, we choose our reference frame such that the true
longitude θ at transit is zero.5 Then in accordance with our
previous neglect of terms of O(e) without a small denominator
δ, the mean longitude at transit is also zero.
Now, as shown by Figure 1, with an error of only a factor of

1–2 one can approximate a a»g gj j,53 ,45( ) ( ) and
a a» -g g2j j,49 ,45( ) ( ) (shown evaluated at

4 To be clear, the “average” eccentricity referred to here and going forward is
the eccentricity computed from the average canonical variables x and y, which
differs from the average in time of the eccentricity.
5 Note that we are working in Jacobi coordinates and that in reality the transit
occurs when the true longitude in astrocentric coordinates is zero. However,
here we make an approximation to λ at transit at the TTV level, which is
already of order ò. The correction from Jacobi to astrocentric coordinates for λ
at transit, of order ò, therefore produces an  2 correction that we can safely
ignore.
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Then the TTVs are roughly given by
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where we have also approximated a » -- j j 23 2 ( ). If we set
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Therefore, the TTVs of a pair of planets near a second-order
resonance with low eccentricity are approximately given by
sinusoidal motion with a phase f set by the eccentricities and
pericenters in the combinations of d v v= -k e ecos cos1 1 2 2

and d v v= -h e esin sin1 1 2 2. The amplitude is determined
by both the mass of the perturbing planet and a factor
depending again on dk and dh. Finally, the TTVs of the two
planets are anti-correlated. Assuming both planets transit
(a D P P, , ,j 1 2 and the time evolution of qj are known), the
only unknowns are   , ,1 2 , and f. However, from the TTVs
alone, we only obtain two amplitudes and a phase.
This outcome is similar to that of the TTVs of a pair of

planets near first-order resonances, where only the combina-
tions dh and dk appeared in the TTVs (through the real and
imaginary parts of = +v vZ fe e ge ei i

free 1 2
1 2, with f≈−g).

The relation f≈−g is analogous to the approximation we
made here regarding Laplace coefficients and the combinations

»g gj j,45 ,53 and » -g g2j j,49 ,45. Again, in that case the
observables are two amplitudes and a single phase because
the TTVs are approximately anti-correlated.
One way to break degeneracies is to measure other

independent harmonics in the TTVs. For example, one might
measure the “chopping” signal and determine 1 and/or 2 from
that. In reality, there will be a nonzero phase offset, and if it is
measured significantly, the TTVs yield four observables,
assuming the mean ephemerides are known because each
planet transits. However, this is still not enough to determine
both eccentricities and longitudes of pericenter uniquely. It
could be that chopping effects which appear at first-order in the
eccentricities allows individual eccentricities and longitudes to
be measured, though these are small amplitude.
For a pair of planets near a first-order resonance, the TTV

derived above will represent an O(e2) correction to the TTVs.
For example, a pair near the k: -k 1 resonance will exhibit
TTVs with a period equal to p - -kn k n2 12 1∣ ( ) ∣ and also at
the second harmonic, with a period of p - -jn j n2 22 1∣ ( ) ∣
(with =j k2 ). This second harmonic appears with a different
dependence on dh and dk , and if measured could allow for
unique mass measurements as well. However, since both the
first- and second-order harmonics depend approximately on dh
and dk , the higher-order eccentricity corrections to the formula
of Lithwick et al. (2012) may not allow for individual
eccentricity measurements, especially for low signal-to-noise
data. However, if the relative phase offsets of either harmonic
from π can be measured, this second-order harmonic could, in

Figure 1. Validity of the approximation that a a»g gj j,53 ,45( ) ( ) and
that a a» -g g2 .j j,49 ,45( ) ( )
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theory, allow for unique measurements of both eccentricities
and pericenters as well. We test this in Section 4.2.3.

4. NUMERICAL TESTS OF THE FORMULA

4.1. Comparisons with Direct n-body Integration

We have carried out a comparison of the second-order
formula with n-body simulations of TTVs using TTVFast
(Deck et al. 2014). We simulated a system of two planets with

 = = -m m m m 101 2
5 with aligned longitudes of pericenter,

v v=1 2, and anti-aligned longitudes of pericenter,
v v p= +1 2 . The initial phases and v1 were chosen
randomly. The TTVs determined from the n-body simulation
were computed for an inner planet period of 30 days, over a
duration of 1600 days, to mimic a typical transiting planet
system in the Kepler data set. The eccentricity vectors were
held fixed at the value computed from the n-body simulation
averaged over 1600 days. The ephemerides were allowed to
vary, and were varied to optimize the agreement between the
n-body and analytic formula, while α used in computing the
coefficients was given by a = P P1 2

2 3( ) , where P1 and P2 are
the periods fit to give the ephemerides.

We first focused on a range of aD( ) near the 5:3 second-
order resonance. In Figure 2 we show, for anti-aligned
pericenters, the fractional error in the formula given in
Equation (18) and in (19). The error is less than 10% only
for a small range in eccentricity, but importantly the region
where the second-order formula alone applies is qualitatively as
expected. For low eccentricities, the chopping terms are as
large as the second-order resonant terms and they are neglected
in this fit (as discussed at the end of Section 2). For larger
eccentricities, this narrow range of Δ includes resonant orbits,
to which our formulae do not apply.

We also tried fitting the numerically determined TTVs with
the second-order formulae added to the first-order formulae
presented in Agol & Deck (2015). Note that the first-order
formulae include all terms linear in the eccentricity, while the
second-order formulae only include the near-resonant pieces. In
Figure 3 we show the resulting comparison between the
extended formula and the n-body results. The agreement is now
excellent even at low eccentricity, as expected since we have
included the chopping terms. However, there is still a clear
resonant region where our formulae fails.
Figures 4 and 5 show the results of the aligned and anti-

aligned longitudes of periastron, now for a much larger range
of α. The anti-aligned longitudes of periastron tends to
maximize the discrepancy, while the aligned longitudes tend
to minimize it. The fractional precision of the model was
computed from the scatter of the residuals of the fit divided into
the scatter in the n-body TTVs. The mean longitudes and the
longitude of periastron of the inner planet were chosen
randomly and do not affect the appearance of this plot
significantly.
We found that including the second-order term improves the

fit to the n-body simulation significantly near j:j−2 period
ratios (as demonstrated also by Figures 2 and 3), which are
indicated in the plot, allowing the analytic formulae to be used
to much higher eccentricity than in the case of the first-order
formula only (Agol & Deck 2015). It also improves the fit near
the j:j−1 resonances as each of these is close to a 2j:2j−2
resonance, and thus can be affected by the second-order in
eccentricity terms.

4.2. Applications to Real and Simulated Systems

We next explored how parameter estimates of masses,
eccentricities, and longitudes of periastron derived by fitting
both real and simulated data with our formulae compared to

Figure 2. Comparison of TTVFast with the second-order formula near the 5:3
second-order resonance. Error is given by the standard deviation of the
residuals of the analytic fit to the numerical TTVs, divided by the standard
deviation of the TTVs. The top panel shows the result for the inner planet, the
bottom is for the outer planet. The dotted lines indicate the 10% error level.

Figure 3. Comparison of TTVFast with the first-order plus second-order
formula near the 5:3 second-order resonance. Error is given by the standard
deviation of the residuals of the analytic fit to the numerical TTVs, divided by
the standard deviation of the TTVs. The dotted lines indicate 10% error level.
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those found using TTVFast. We used the second-order resonant
terms, in combination with the first-order eccentric formulae of
Agol & Deck (2015), as our analytic model unless otherwise
noted. For one simulated system we also used the first-order
formulae alone for a test. In the following analyses, we
employed an affine invariant Markov chain Monte Carlo
(Goodman &Weare 2010) to estimate parameters. When fitting
real data, we used a student-t likelihood function with 2 degrees
of freedom and did not remove outliers. When fitting simulated
transit times with Gaussian uncertainties added, we used a
Gaussian likelihood function.

4.2.1. Kepler-26 (KOI-250)

The Kepler-26 star hosts four planets with orbital periods of
3.54 (Kepler-26d), 12.28 (Kepler-26b), 17.26 (Kepler-26c),
and 46.8 (Kepler-26e) days. The period ratios of adjacent
planets are 3.47 (d–b), 1.41 (b–c), and 2.71 (c–e). The
innermost planet and outermost planet, therefore, are not near a
low-order MMR with either middle planet. They do not exhibit
TTVs of their own and we assume that they do not affect the
TTVs of the middle two planets either. In that case, the b–c pair
can be treated as an isolated system near the 7:5 resonance. The
TTVs of these two planets show periodic behavior on a
timescale given by the “super period” p -n n2 7 52 1∣ ∣ as
expected, along with a synodic TTV signal (Jontof-Hutter
et al. 2016).
We modeled the b–c pair using an analytic model that

included the 7:5 second-order MMR terms and all terms that
appear at first and zeroth order in eccentricity. We obtain
planet-star mass ratio measurements of  =Å M M M Mb( )( )

Figure 4. Comparison of TTVFast with the first-order plus second-order
formula. Error is given by the standard deviation of the residuals of the analytic
fit to the numerical TTVs, divided by the standard deviation of the TTVs with
the longitudes of periastron aligned (v v=1 2). The top panel shows the result
for the inner planet, the bottom for the outer planet. Dotted lines indicate 10%
error level. Upper right: Hill unstable models were not computed, and show
100% error. Green dashed lines indicate locations of j:j−1 resonances; blue
dashed lines show j:j−2 resonances.

Figure 5. Comparison of TTVFast with the first-order plus second-order
formula. Error is given by the standard deviation of the residuals of the analytic
fit to the numerical TTVs, divided by the standard deviation of the TTVs with
the longitudes of periastron anti-aligned (v v p= +1 2 ). The labels and lines
are the same as in Figure 4.

Figure 6. Joint posterior probability distribution for the masses of Kepler-26b
and Kepler-26c, in Earth masses, assuming a solar mass star. The best-fit values
from the formula fit are denoted with the red point, with 68% (red) and 95%
(black) confidence contours shown as well. The blue point and dashed lines
reflect the best fit and 68% boundaries of the Jontof-Hutter et al. (2016) fit
using a student-t likelihood function.
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9.78 1.36 and  = Å M M M M 11.92 1.38c( )( ) , which
are in close agreement with those obtained in a full dynamical
analysis of the data (Jontof-Hutter et al., under review), as
shown in Figure 6.

Using the formulae, we find two possible linear correlations
between k1 and k2 (where v=k e cosi i i) and between h1 and h2
(where v=h e sini i i). These arise since the second-order TTV
depends approximately on quadratic functions of d = -k k k1 2
and d = -h h h1 2. That is, dk2 and dh2 are singly peaked, and
hence dk and dh can be either positive or negative, leading to
two linear correlations between k1 and k2 (and between h1 and
h2). The slope we find that fits these correlations is near unity,
as expected based on the arguments in Section 3, and the small
deviation is related to the error incurred by approximating

» -g g2j j,49 ,45 and =g gj j,53 ,49. One of these modes is
preferred compared with the other, likely because of (single
mode) constraints on dk and dh resulting from the nearby 4:3
and 3:2 resonances.

4.2.2. Kepler-46 (KOI-872)

The star Kepler-46 hosts two transiting planets with orbital
periods of 6.8 (Kepler-46d) and 33.6 (Kepler-46b) days.
Additionally, Kepler-46b exhibits TTVs due to a non-transiting
companion (Kepler-46c) near the 5:3 resonance (Nesvorný
et al. 2012). We modeled the transit times of Kepler-46b
presented in Nesvorný et al. (2012) using the second-order
terms for the 5:3 resonance in combination with the full first-
order formula of Agol & Deck (2015) and ignoring Kepler-
46 d. We held the mass of Kepler-46b fixed, as its own mass
does not affect its TTVs, but the mass of Kepler-46c and the
eccentricities, arguments of pericenter, periods, and orbital
phases of each planet were allowed to vary. We only searched
for a solution near the 5:3 resonance with Kepler-46b,
however.

In Figure 7 we show the results of our formula fit to the
transit times of Kepler-46b in comparison with numerical
results determined by Nesvorný et al. (2012). We find close
agreement in these parameters, as well as in the upper limit of
∼0.02 found for the eccentricity of Kepler-46b (not shown).
Given the best-fit period ratio of 1.70, the expected super
period for the 5:3 MMR is nearly 18 orbits of Kepler-46b. The
data extend a baseline of 15 transits, with periodicity of ∼5–6
orbits of Kepler-46b and no clear large amplitude signal at a
period of 18 orbits. The constraints in this system, therefore,
likely come entirely from a strong “chopping” TTV, enhanced
by contributions from the distant 3:2 MMR and 2:1 MMR
(with contributions at periodicities of several orbital periods, as
noted by Nesvorný et al. 2012). The constraints on the
eccentricities likely come from the magnitude of the 3:2 and
2:1 MMR contributions as well as the lack of a large signal due
to the 5:3 resonance.

4.2.3. Fits to Simulated Data for a System Near a First-order MMR
and Prospects for Measuring Individual Eccentricities

Our test case consisted of two 5 Earth-mass planets orbiting
a solar mass star, with initial osculating periods of 10.0 and
20.2 days, eccentricities of 0.035 and 0.05, and longitudes of
pericenter misaligned by 135°. For these parameters, the
system is near the 2:1 resonance, but with important
contributions from the 4:2 resonance due to the moderate
eccentricities and values of dk and dh. We remark that this

system is somewhat similar to KOI-142, which has two planets
near a 2:1 resonance with eccentricities of ∼0.05, and which
also exhibits TTVs that deviate from a pure sinusoid (Nesvorný
et al. 2013).
We simulated transit times using TTVFast and added

Gaussian noise with a standard deviation of two minutes. In
Figure 8 we show the modeled TTVs. The various colored
points show a sample fit found modeling this data with the
second-order resonant terms and the first-order resonant terms.
We also show the contribution of this fit coming from the first-
order resonant terms alone, as well as from the second-order
resonant terms alone (note that the second-order formulae
contains the O(e) contribution of the second-order resonant
terms; we do not double count this).
In Figures 9 and 10 we show the resulting joint confidence

levels for the two planet masses and eccentricities for both the
formula model and for an n-body model. The agreement is very
good; we note, however, that modes associated with higher
eccentricity were also found using the formula fit, depending
on the particular noise realization. However, this multi-
modality disappeared as the noise amplitude decreased. Note
also that we used direct n-body integration to simulate the

Figure 7. Posterior probability distribution for the perturber (Kepler-46c) mass
and eccentricity determined using the formula (black). The blue solid line
indicates the best fit of Nesvorný et al. (2012) and the dashed lines reflect the
±34% confidence contours.
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transit times we fit. Hence the input value for the eccentricity is
an osculating value. The eccentricities measured via the
formula correspond to eccentricities computed from the
averaged (canonical) x and y variables, or free eccentricities,
while those of the n-body model are initial osculating elements.
The difference between the two is on the order of the
magnitude of the forced eccentricity due to the nearby
resonance, and may explain why there is a small offset
between the numerical and n-body fits.

For these parameters and signal-to-noise, the eccentricities
(and longitudes of pericenter, not shown) are both measured
independently. As discussed in Section 3, the first-order
resonant terms as presented in Lithwick et al. (2012) alone

suffer from an absolute degeneracy, in that the TTV amplitude
and phase depends only on quantities approximately equal to
d v v= -h e ecos cos1 1 2 2 and d v v= -k e esin sin1 1 2 2 (the
real and imaginary parts of Zfree in the notation of Lithwick
et al. 2012). Though both the first- and second-order TTV
harmonics depend approximately only on dh and dk , in reality,
they both depend on slightly different functions of the
eccentricity and pericenter.6 Hence at high signal-to-noise the
two harmonics may be used to measure eccentricities and
pericenters individually, as in Figure 10. Similarly, we
hypothesize that the moderate eccentricities of the KOI-142
system produce a detectable second harmonic in the TTVs of
KOI-142b, which, in combination with the short period
chopping and the transit duration variations, help lead to a
unique solution for the non-transiting perturber (Nesvorný
et al. 2013).
Note that a model neglecting the second harmonic fails to

determine the eccentricities correctly: it returns a decent fit, but
at significantly higher eccentricities. Including the second-order
terms in the model leads to the correct answer, but as
mentioned there can be multi-modality. It is possible that
including the 6:3 resonant harmonic in the fit (an O e3( )
correction, see below) would alleviate this.
To explore how the second-order harmonic can lead to an

eccentricity measurement, as in Figure 10, we decreased the
eccentricities to 0.014 and 0.01 in order to reduce the amplitude
of the second-order harmonic. All other parameters remained
the same. In this case, a 2 minute amplitude for the noise is
2–4x larger than the amplitude of the second-order harmonic
for the two planets. Figure 11 shows the transit times we
modeled in addition to a sample fit, again delineating between
the entire second-order model and the contributions coming
from the first-order resonant piece and the second-order piece.
Figures 12 and 13 show the result of a fit to these times using

n-body, using the second- and first-order eccentricity terms,

Figure 8. Simulated transit timing variations for the higher eccentricity case
(black), a representative solution from the model including the second-order
and first-order terms (from Agol & Deck 2015; orange), the contribution to this
model from the first-order resonant terms alone (turquoise triangles), and the
contribution from the second-order resonant harmonic (in red). Not shown is
the individual contribution coming from “chopping” terms without any small
resonant denominators.

Figure 9. Joint posterior 68% (dotted) and 95% (solid) confidence contours for
the planet masses, in units of Earth mass. The results shown are from a full
dynamical analysis (blue) and from an analysis using the second-order terms in
combination with the first-order formulae derived in Agol & Deck (2015;
black).

Figure 10. Joint posterior 68% (dotted) and 95% (solid) confidence contours
for the planet eccentricities. The results shown are from a full dynamical
analysis (blue) and from an analysis using the second-order terms in
combination with the first-order formulae derived in Agol & Deck (2015;
black).

6 This is true especially for the 2:1 MMR, which contains indirect terms in the
coefficients of the first-order resonant terms, as noted by Hadden &
Lithwick (2015).
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and now also with only the first-order eccentricity formula.
Apparently the second-order terms are still a useful constraint
on the eccentricities and longitudes of pericenters, even given
their low amplitude. This may be because the amplitude of the
second-order term is constrained to be below the noise. For
these particular data, the planet masses are measured equally
well by all models, as shown Figure 14.

5. HIGHER-ORDER RESONANCES

We now extend our above derivation to any order
eccentricity-type resonance. This generalizes the work of Boué
et al. (2012), who studied the particular case of a planet on an
initially circular orbit and a planet on a fixed eccentric orbit. In
this case, for the j:j−N resonance, the Hamiltonian, including

only the resonant terms, takes the form

 

å a q f

=- - -

´ -
=
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H
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a

Gm m
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g e e

2 2
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2
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q l l
f v v

= - -
= + -

j j N

k N k

,

, 32
j N

k

; 2 1

1 2

( )
( ) ( )

and agj k N, ; ( ) is a function of Laplace coefficients. For example,
for the 2nd order j:j−2 resonance, =k 0, 1, 2, and in that
case = =g g g g,j j j j,0;2 ,53 ,1;2 ,49 and =g gj j,2;2 ,45. We rewrite the

Figure 11. Simulated transit timing variations for the lower eccentricity case
(black), a representative solution from the model including the second-order
and first-order terms (from Agol & Deck 2015; orange), the contribution to this
model from the first-order resonant terms alone (turquoise triangles), and the
contribution from the second-order resonant harmonic (red).

Figure 12. Joint posterior 68% (dotted) and 95% (solid) confidence contours
for the planet eccentricity vector components I. The results shown are from a
full dynamical analysis (blue) and from an analysis using the second-order
terms in combination with the first-order formulae derived in Agol & Deck
(2015; black), and one using only the first-order solution (red).

Figure 13. Joint posterior 68% (dotted) and 95% (solid) confidence contours
for the planet eccentricity vector components II. The results shown are from a
full dynamical analysis (blue) and from an analysis using the second-order
terms in combination with the first-order formulae derived in Agol & Deck
(2015; black), and one using only the first-order solution (red).

Figure 14. Joint posterior 68% (dotted) and 95% (solid) confidence contours
for the planet masses, in units of Earth masses. See Figure 12 for details.
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interaction Hamiltonian as
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where i not in a subscript position is -1 .
We can simplify this:

 å
a

q q

=- L
L L

´ -
=

-

- -R I

H n
g

z z z zcos sin 34

k

N
j k N

k N k

k N k
j N

k N k
j N

1 1 2 2
0

, ;

1
2

2
2

1 2 ; 1 2 ;

( )

[ ( ) ( ) ] ( )

( )

where

= + =z x iy P e2 35i i i i
ipi ( )

and we have remembered that the canonical angle is not ϖ but
v= -p . This is the exact form of Equation (7), with
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If we set N=2, we find agreement with the expressions for A1̃

and A2˜ given in Equation (7). We now proceed exactly as
above, to find
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with w = - -jn j N nj N; 2 1( ) . The deviation in the true
longitude is given by (16). We now sketch the derivation for
the inner planet:
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The derivative of the real (imaginary) part of a function is the
real (imaginary) part of the derivative of the function, i.e.,

= -R Iix x( ) ( ) and =I Rix x( ) ( ) for a complex number x, so
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with analogous expressions for the outer planet (with the pre-
factor  -k N k , f v f v-  -k k1 2, the exponent of e1
becomes k, and that of e2 becomes - -N k 1.). Written in
terms of eccentricities and pericenters, A1̃ and A2˜ are
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where f v v= + -k N kk 1 2( ) .
The final expressions for the deviations in transit times are

(after some simplification)
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or, casting in the same symbols as we did for the second-order
resonances (Equation (18)),
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with f v v= + -k N kk 1 2( ) .
Therefore, close enough to any eccentricity-type resonance

—with the caveat that the system is not in the resonance and
that the higher-order eccentricity terms neglected are small—
the TTVs of a pair of planets are periodic with a timescale of
p - -jn j N n2 2 1∣ ( ) ∣. The amplitudes depend linearly on the
mass of the perturbing planet, relative to the mass of the star,
and on the eccentricities and pericenters, as well as on the mean
longitude of the transiting planet at transit. The phases also
depend on these quantities, though they are independent of the
masses. However, the amplitude and phase of these TTVs do
not uniquely constrain the masses, eccentricities, and pericen-
ters, since this amounts to six parameters and only four
observables.

We hypothesize that the TTVs will, in the limit of compact
orbits (higher j for a given N), be anti-correlated, only depend
on approximately dk and dh, and that the Nth order resonant
TTV will include powers up to e N∣ ∣ , with d d=e k h,( ).
Physically, this dependence makes sense since anti-aligned
orbits allow for closer approaches and stronger interactions
between the planets. Mathematically this maximizes e∣ ∣ to
produce larger TTVs.

In the above derivation, we neglected terms of order
d-e eN 1( ) (where again δ is a normalized distance to

resonance, defined in Equation (4), and we assume it is small).
More importantly, neglected chopping effects, without any
small denominators, appear at every order in e. If one combines
the Nth order resonant TTV with the e1 chopping TTV
formulae (Agol & Deck 2015), one still will find errors at low
eccentricity. This arises because e must be larger for higher-
order resonances to be important, and in this case neglected
chopping terms at much lower powers of e may also be
important. Hence the Nth order TTV formulae above may be of
limited use even if combined with other known formulae.

As an exercise, we can use these formulae to confirm those
of Lithwick et al. (2012). In that case, N=1, and




v v
v v

= + =
=- - =

=

=

=

=

R

I

A ge fe Z

A ge fe Z

B f

B

B g

B

cos cos

sin sin

0

0 45

1 2 2 1 1 free

2 2 2 1 1 free

1
1

2
1

1
2

2
2

( )
( )

( )

setting = +v vZ fe e ge ei i
free 1 2

1 2, = =f gj k N, 1; and = =g gj k N, 0;

and approximating λ(transit)=0. The TTVs then are
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In the Lithwick et al. (2012) paper, the TTVs are written in

the form
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Equations (46) and (47) take that form if
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which are equivalent to (A.28) and (A.29) of Lithwick
et al. (2012).

6. CONCLUSION

We have derived an expression for the TTVs of a pair of
planets near the j:j−2 second-order MMR in the regime of
low eccentricities. In this case, the TTV of each planet is
sinusoidal with a frequency of - -jn j n22 1( ) , an amplitude
linearly dependent on the mass of the perturbing planet, relative
to the mass of the star, and with both amplitude and phase
dependent on a function of the eccentricities and longitudes of
pericenter. In this case, there are six parameters but only four
observables, yielding (in principle) mass measurements but not
unique eccentricity and pericenter measurements. We show that
the same is true for higher-order eccentricity-type resonances.
This second result, however, may not be of (much) practical
use since few pairs are found very near high-order MMRs
where the formulae apply. However, it does illustrate that
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TTVs of systems near an Nth order resonance will appear with
a period given by the super period p - -jn j N n2 2 1∣ ( ) ∣ and
therefore that higher-order eccentricity corrections to the TTVs
of planets near first-order resonances appear at harmonics of
the fundamental (super) period = - -j P j P1 12 1∣ ( ) ∣.

At a further level of approximation, which will be relevant
for low signal-to-noise data, we have shown that the TTVs of
two planets near a second-order resonance are anti-correlated.
In this case, there is an explicit degeneracy between masses
and the combinations v v-e ecos cos1 1 2 2 and v -e sin1 1

ve sin2 2. This result is entirely analogous to that found for
first-order resonances. We hypothesize that this basic result
extends to higher-order eccentricity-type resonances.

To alleviate the degeneracies between parameters that result
for near-resonant systems, one must measure a different
component of the TTV. This could be the chopping signal,
associated with each planet conjunction, which primarily
depends on the masses of the planets. The higher-order
correction associated with the 2k:2k−2 second-order resonance
derived here can help constrain eccentricities of planets near the
k: -k 1 first-order resonance, though high signal-to-noise data
is likely required to lead to precise individual eccentricity
measurements. When modeling TTVs, we find it helpful to
consider the number of significantly measured observables in a
TTV (in terms of amplitudes, phases, etc. of different
harmonics) in comparison with the number of free parameters,
in light of intrinsic degeneracies which TTV formulae help to
illuminate.
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