

Transformational Tools and Technologies (T³) Project T³ Project Overview

Dr. Azlin Biaggi – NASA GRC

Innovative solutions through foundational research and cross-cutting tools

> Discussions with University of Puerto Rico for T³ Strategic Planning Meeting February 2, 2023

2: 54.0945 [mm]

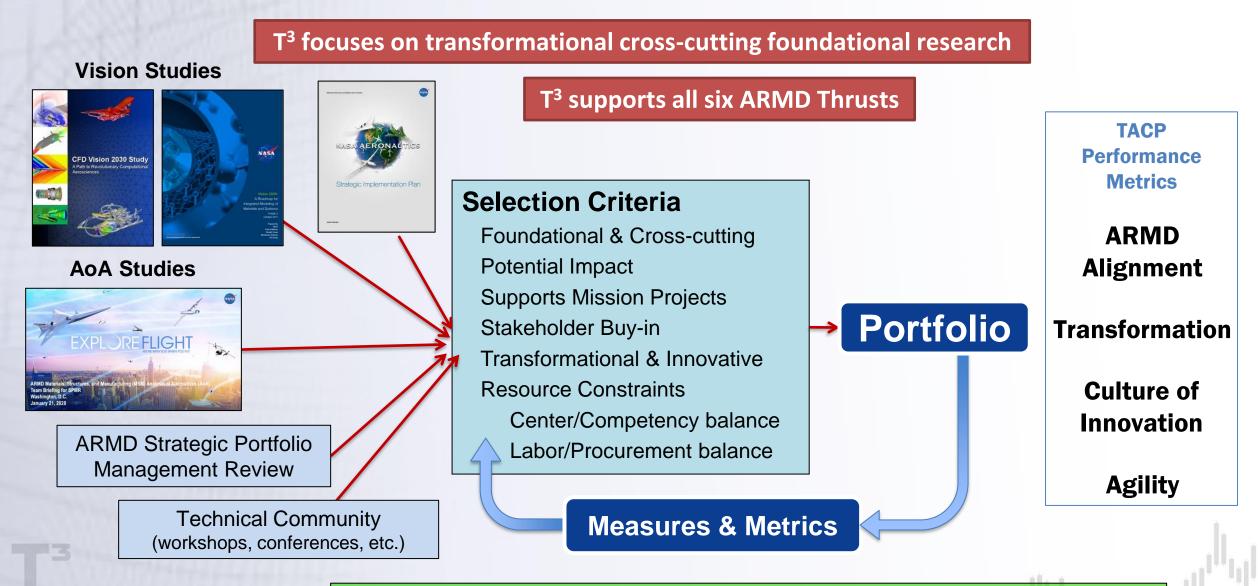
www.nasa.gov

Transformational Tools & Technologies (T³) Project



Explores the unknown through foundational research that inspires innovation in aeronautics, delivering revolutionary advances in essential areas such as autonomy, certification by analysis, advanced materials, and sustainable aviation

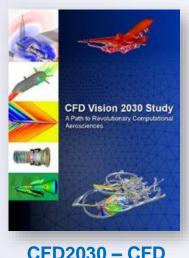
- Conducts exploratory research with breakthrough potential to inspire the world through discovery
- Enables fast, efficient design and analysis of advanced aviation systems from first principles
- Develops innovative tools and technologies to revolutionize air transportation
- Sustains critical aeronautics core competencies for the nation, while delivering multidisciplinary system-level results that benefit humanity and improve life on Earth


Delivering cutting-edge research, leading community vision studies, and providing the community with valuable data and innovations that impact aeronautics research throughout the ARMD portfolio

T³ By The Numbers

Continually Considering New Content & Fostering Innovation

National Aeronautics and Space Administration


Encourage injection of new ideas, techniques, and approaches

Community Visions and Analysis of Alternatives (AoA) Studies informing T³ activities

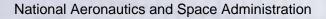
M&S 2040 - A Roadmap for Integrated, Multiscale Modeling & Simulation of Materials & Systems

CFD2030 – CFD Vision 2030 Study

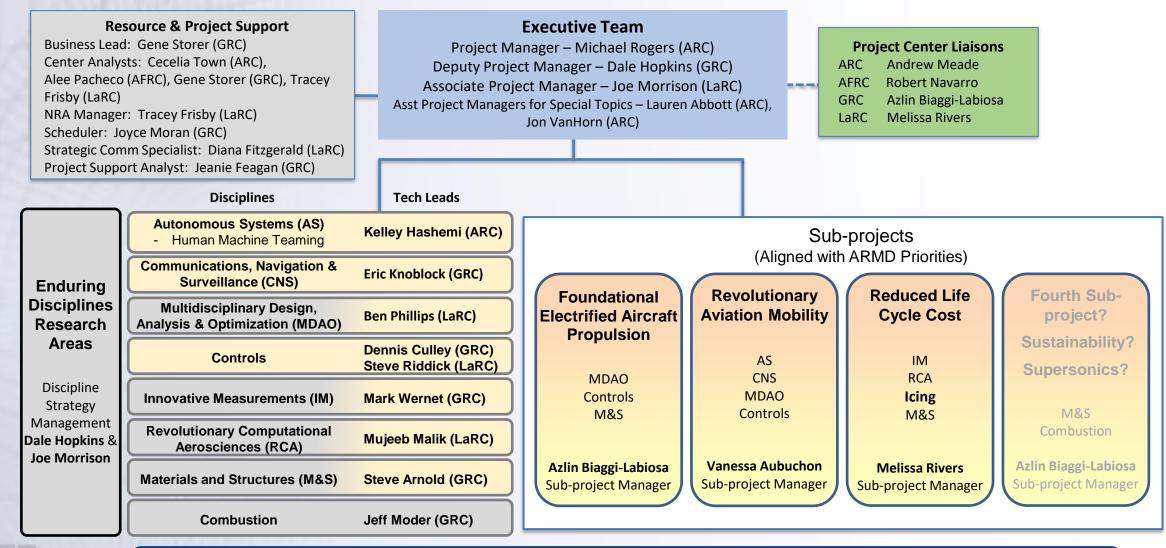
A Guide for Aircraft Certification by Analysis – A 2040 Vision

AoA Study for Subsonic Transport Acoustics, Combustion/Emissions & Icing

Reports generate prioritized list of proposed high-value research appropriate for NASA with input from industry, academia, and OGAs in multiple sectors


Autonomy Verification & Validation Roadmap and Vision 2045

- Jointly funded with AOSP / SWS Project
- PI is Boeing lead for Al/Autonomy V&V technologies
- Technical Advisors from FAA, AFRL, NRL
- Expected completion December 2022



T³ Organizational Structure

T³ conducts foundational research with its discipline-based expertise to enable innovation in aeronautics & executes multidisciplinary projects to apply concepts in a system-level context

National Aeronautics and

Reduced Life Cycle Cost (RLCC) Sub-project Overview

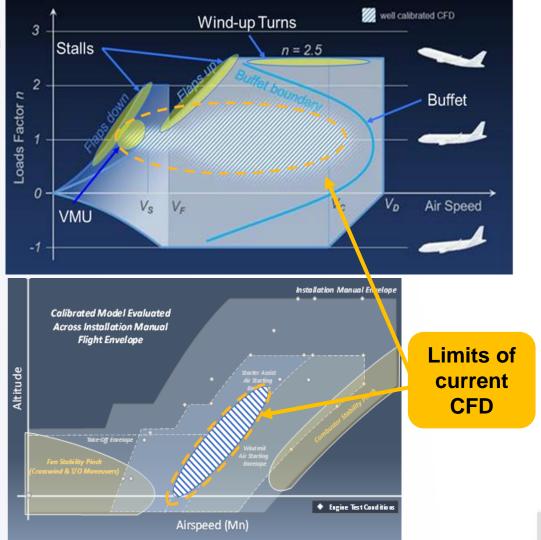
IM, RCA, Icing and M&S disciplines enable the RLCC sub-project

Purpose: Reduce the life cycle cost of aircraft to enable the U.S. aircraft industry to stay competitive worldwide

Aircraft Life Cycle Phases	Research, Development, Test & Evaluation	Production	Operations & Maintenance Disposal	
Challenges	Significant delays if issues are not discovered until flight testing	Time to manufacture and assemble aircraft is costly	Maintenance performed on a specified schedule may not be needed at the prescribed time Exploring Opportunities	
RLCC Project Objectives	Obj 1: Enabling Certification by Analysis (CbA) to reduce surprises during flight tests	Obj 2: Increasing manufacturing rate & reducing weight of materials during production	Obj 3: Decreasing amount of required maintenance during Operations and Maintenance Phase	
Approaches Develop, implement, and validate computationally efficient, physics-based methods and tools to: 1. Enable aircraft CbA for 1 st phase of the life cycle 2. Design and predict the processing and life cycle performance of advanced materials and structures for 2 nd phase of the life cycle				

National Aeronautics and Space Administration

Certification by Analysis: Compliance Through Analytical Means



"Continued advances are required to address full-flight envelope predictions and propulsion system operating conditions, reduce design cost and cycle time, reduce ground and flight-testing, and **enable product certification through analysis (CbA)...**"

Recommendation of CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

- Regulatory Agencies (FAA, EASA) codify the standards and requirements for airworthiness
 - Aircraft and engines must meet these requirements, before they can be put to service
- Current compliance with the codes is through flight test for airframes and ground tests for engines
 - Very time consuming and expensive endeavor
 - CbA is an alternate means of compliance for airplane and engine certification based on analysis

Ability to accurately predict complex turbulent flows involving separation is a key technical challenge

Scale Resolving Simulations: Certification and Qualification by Analysis

REYNOLDS AVERAGED NAVIER STOKES (RANS)

1980s - Present

- <u>PHILOSOPHY</u>: Solve for averaged solution by modelling all fluctuations
- Highly matured over the past few decades
- Extensively used in industry

FLOW SOLUTION: Single snapshot (time averaged) 50mm-70mm spatial resolution


1 steady state RANS simulation: 45k core hours

DELAYED DETACHED EDDY SIMULATIONS (DDES)

1990s - Present

- <u>PHILOSOPHY</u>: Model all fluctuations except for those in separated regions
- Incremental changes requires to existing RANS tools
- High maturity level very popular in industry

FLOW SOLUTION: 1E-4s of Temporal resolution 90mm of spatial resolution

1 RANS Simulation = 1.4s of DDES (NEED about 6s)

LARGE EDDY SIMULATIONS (WMLES)

2020 - Present

- <u>PHILOSOPHY</u>: Resolve more than 95% of fluctuation energy and model the rest
- Ground up changes required over RANS frameworks and algorithms
- Limited to academic problem until 2020

FLOW SOLUTION: 2E-6s of Temporal resolution 5mm of spatial resolution

1 RANS Simulation = 1.2s of WMLES (NEED about 6s)

Design and Execute CFD Validation Experiments

Testing of the CRM-HL models will expand the CFD validation database

Advancing the State of the Art of CFD to predict C_{L,max}

Challenge: To reliably predict the complex flow physics near $C_{L,max}$ and provide high quality experimental data that validates the CFD prediction of critical flow phenomenon.

Action: Conduct CFD validation experiments in different wind tunnels to add to the validation database in order to assess transition, turbulence models, and Reynolds number effect predictions.

Impact: Successfully completed first test of a new High Lift Common Research Model (CRM-HL) ecosystem model in the 14x22 wind tunnel.

- Completed the fabrication of a new 5.2% scale CRM-HL cryogenic model in August 2022.
- Executed a check out test of this new model in the NASA LaRC 14x22 wind tunnel facility in September 2022.
- Provided valuable information on installation and testing procedures for this new model before it is tested in other facilities.

Partners in the CRM-HL Ecosystem Development Plan

National Aeronautics and Space Administration

New 5.2% scale CRM-HL model mounted in the 14x22 wind tunnel

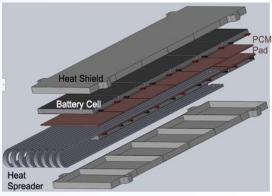
Foundational Electrified Aircraft Propulsion (FEAP) Sub-project Overview

Enables the performance, reliability & durability of electrified propulsion systems by conducting enduring research & developing innovative materials, components, tools & methods that support needs in ARMD mission programs

Objective 1: Enable high voltage and high-power distribution for EAP Systems (M&S)

Objective 2: Develop optimization tools and methods for electric and (MDAO, Controls)

hybrid-electric vehicle design


а

b)

a) Electric Motor stator thermal analysis

b) Stator magnetic flux-density

Objective 3: Develop safe battery technologies to improve performance metrics for EAP (M&S, MDAO)

Preliminary Battery Design Pack Configuration

Power Cable Model For Electric Materials

National Aeronautics and Space Administration

M&S – High voltage power cables to further sustainable aviation

L2 Milestone Demonstration of High Voltage Busbar with **Micro-Multi-Layered Electrical Insulation (MMEI)**

	NASA MMEI Busbar	SOA Busbar
Avg Weight Insulation	363 grams → ~ 15% ↓	427 grams
Avg. Thickness Insulation/side	0.71 mm (28 mils) → ~ 12% ↓	0.81 mm (32 mils)
Standard HiPot and PD Test up to 15kVAC	Completed and passed	Completed and passed
Dielectric Breakdown up to 15kVAC	NO	NO

Impact: Successfully demonstrated manufacturability of MMEI on Busbar completed on a full-scale 1 meter, 3-phase prototype.

Busbar with SOA insulation

NASA Busbar with MME insulation National Aeronautics and Space Administration

New capability investments supported by T³

Automated Materials Experient Lab (AMEL)

- Increases speed of materials experiments by orders of magnitude (100s of experiments in a few days)
- Increases accuracy of experiments

High Voltage Environmental Chamber COVID impact; completion Q1 FY23

- **Capabilities**
- Voltage: 0 V to \pm 10 KV DC or AC p-p
- Current = 10 mA
- Frequency = 1 μ Hz to 20 MHz with 1 μ Hz resolution
- Pressure (altitude): 1.7 psia (50 kft) to 14.7 psia (sea level)

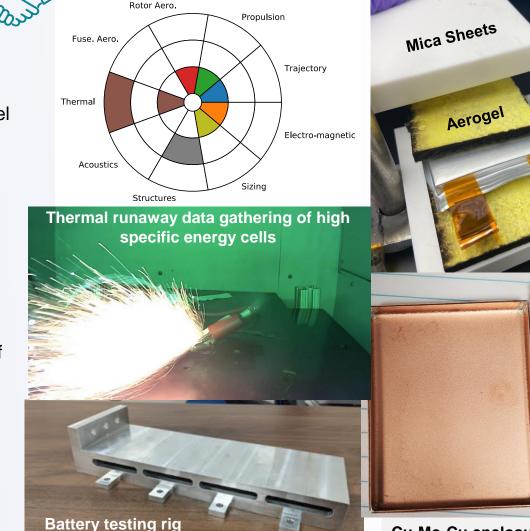
Expected delivery, installation & training August 2023

ARMD and STMD Projects, DOE & SAE AeroTech seeking our expertise on this subject matter

- Shaping future requirements with key contributions to 2 SAE AE High Voltage coordinating and standards committees
- Collaborating with AATT & EPFD
- Consulting with RVLT and NEP (STMD)

Battery System Architecture Design and Testing

Rapid design, fabrication, and experimentation to collect data for safely integrating batteries in electric aircraft


Results

- Amprius silicon nanowire anode cells used at 5.2Ah and 410 Wh/kg
- Required thermal runaway (TR) data to finalize geometry, specify a phase change material (PCM), and validate aerogel
- Aerogel reduced max cell surface temperature compared to no aerogel
- Max temperature on opposite side of aerogel was 38°C
 - Good option for preventing heat spread to adjacent cells

Impact

- Leverages T³ developed tools and methods from enduring disciplines (Mphys, OpenMDAO)
- Rapid design, fabrication, experimentation, and iteration. Multiple design and test cycles complete yearly
- Develop relationships for thermal management weight as a function of battery architecture, size, and composition
- Provide fundamental data needed on battery system architecture for UAM/AAM aircraft

Tests provided unique, previously unavailable data on thermal runaway for these cells

Battery Pack Integration

Test setup for TR

Cu-Mo-Cu enclosure for TMS system testing

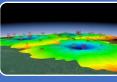
Revolutionary Aviation Mobility Sub-Project

Overview

Supports ARMD mission programs by providing a pipeline of solutions and knowledge for foundational challenges in enabling an AAM market.

Enables increasingly autonomous transportation in the UML-4+ timeframe

Content supports ARMD Strategic Thrusts 1, 4, 5, and 6


GOAL Provid

Provide leading edge tools, technologies, and research findings to enable increasingly autonomous AAM transportation in the UML-4+ timeframe

OBJECTIVES

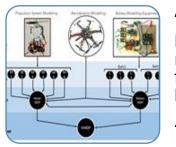
Enable scalable operations for AAM through development of an m:N operational approval roadmap supported by community coordination and critical tool and technique research (TC/FY27] {AS}

Explore and develop airspace management and operations architectures and tools in expectation of increased heterogeneous air traffic {AS, CNS, MDAO}

Develop modeling, performance, and control tools & techniques for advanced urban capable aircraft {Controls, MDAO, AS}

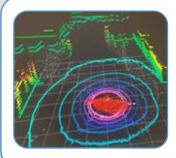
Explore and demonstrate approaches for scaled vehicle production {M&S}

RAM Portfolio Overview


Multidisciplinary approach to tackling the fundamental challenges for ubiquitous AAM

Human Autonomy Teaming

As autonomy increases, need to carefully consider human behavior. It'll require humans and machines to work and think together in new and different ways.


Activities: Research tools & sims with partners, community working group

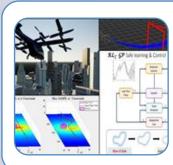
AutoMitigate Assurance Efficacy

Need to understand the limitations and evidence required for auto-mitigation functions to enable the functions in SWS' In-time Aviation Safety Management System.

Activities: Arguments & artifacts for acceptance of auto-mitigate functions, flight validation

Distributed Sensing

Replacing the "pilot's eyeballs" is no easy feat. Distributed sensing provides a more comprehensive knowledge of the environment, increasing safety and capability of the system.


Activities: Common perception framework with distributed info sources; flight demos

Communication, Navigation, & Surveillance

As air traffic density increases, new strains on the system will occur, such as increased comm interference and spectrum demand.

Activities: Autonomous spectrum allocation, selfoptimizing phased array antennas

Intelligent Contingency Management

Need advances in state-of-the-art autonomous vehicle systems. Vehicles will need to deal with predictable and unpredictable scenarios without human intervention.

Activities: Learning-based approaches to handle offnominal conditions, autonomous decision tools

Efficient design & testing of AAM vehicles

AAM eVTOL vehicles are very complex, resulting in increased time and expense to design and test.

Activities: Novel methods for efficient flight and ground testing; perception-influenced design of propeller blades

Multi-Vehicle (m:N) Operations Research

Informing the design of a scalable, profitable AAM future

- **Challenge:** To achieve scalable, profitable AAM operations, multi-vehicle or m:N ops is required, where a small number, m, of ground operators manages a large number, N, of highly autonomous aircraft
- Action: Collect critical human autonomy teaming data that supports safe, efficient command & control of multiple UAS (m:N ops).

Results/Impacts

- Studied trust in human-autonomy teams by collecting and analyzing human factors data from mission project flight tests on CERTAIN range
- Supplied knowledge gained to update ground control station and ops for improved flight-testing capability for mission project goals
- Most recently, worked with MaRERA to achieve multi-vehicle flight capability with 1 remote operator supervising 2 live aircraft with handoffs between operators
- Won ARMD AA Award for Technology and Innovation Group
- Engaged students via internships, dissertation committee service & Center visits

Developing the foundation of human-autonomy teaming for increasingly autonomous systems by leveraging mission project flight tests

POC: Eric Chancey/LaRC

Remote Operations for Autonomous Missions (ROAM) lab with 3 active ground operators

Joint funding for ROAM; provide ops for human factors study in T³

CERTAIN Range

AAM-HDV. CAS-STEReO, MaRERA, future: SWS TC-5, ACERO

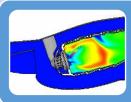
> Collaboration on human-in-theloop studies

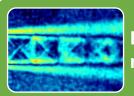
> > (1)

ODI

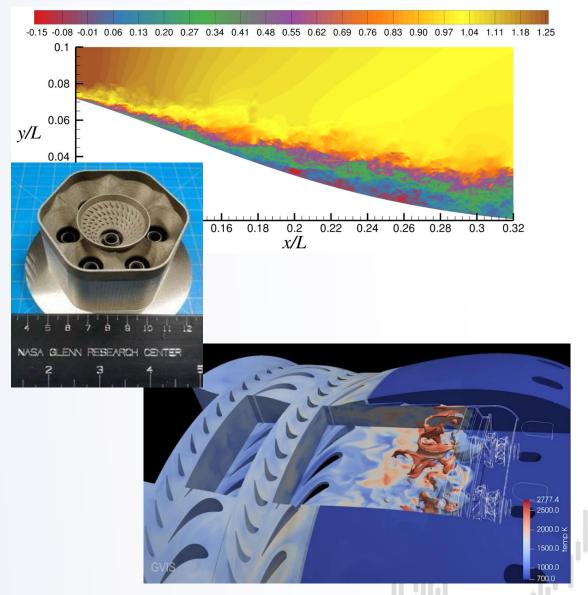
Boeing/Wisk American Robotics

Enduring Disciplines Overview


Revolutionary Computational Aerosciences (algorithms, meshing, transition, AI/ML)


Materials & Structures (EBC/CMC, SMAs, part of High Temp Alloys)

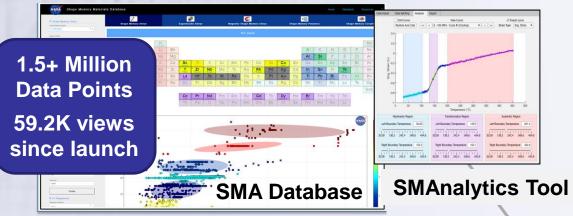
MDAO (Enduring tools, uncertainty)



Combustion (Modeling and Experiments)

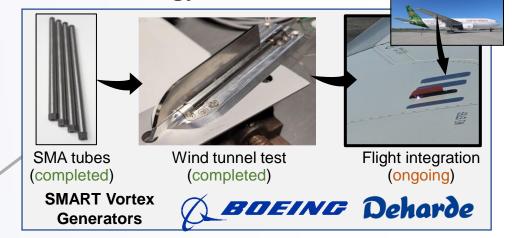
Innovative Measurements (Cutting-edge measurement techniques)

National Aeronautics and Space Administration



World's Largest Shape Memory Alloy (SMA) Database Enables Development of Two New Alloys in One Year

Dissemination of Information


Launched Shape Memory Materials Database & Analysis Tool via a web portal

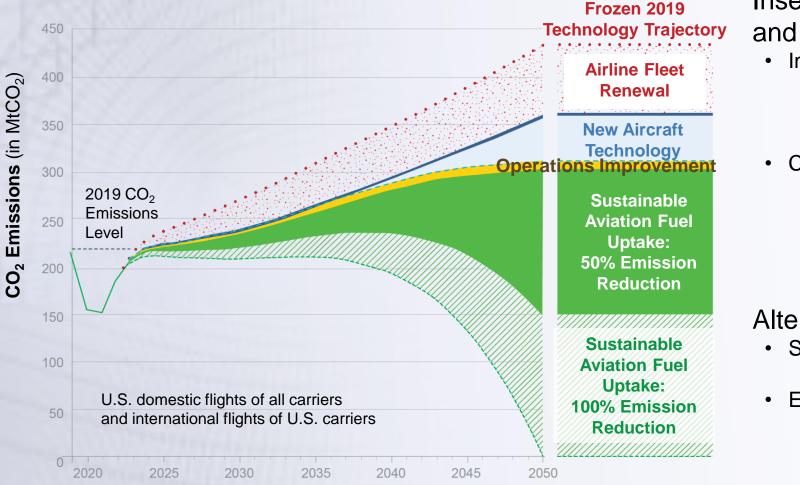
- Completed the database functionality for ALL materials category
 - Impact: Enable faster, efficient, accurate design of SMAs (in line with Vision 2040)
- Tool publicly launched via a web application
 - **Impact:** Promote database growth and data mining via direct scientific community contributions

Technology Demonstration

Developed <u>TWO new experimental alloys</u> for FY22 Boeing ecoDemonstrator flight test with two key advancements

- <u>Alloy properties</u>: Improvements in activation temperatures and hysteresis
 - Impact: Expand applicability beyond "standard day" flight profile
- <u>Production methods</u>: Newly developed tube production methods helped for fast turnaround (using melt suction casting)
 - Impact: Seamless transition to high volume production levels

T³ established a new FY23 Annual Performance Indicator (API) 23-3.2.3.5 for SMART VGs testing and benefits assessment


National Aeronautics and Space Administration

U.S. Aviation Climate Action Plan – T³ Contributions

Global Context for Sustainable Aviation

National Aeronautics and

Insert new technologies into the fleet and accelerate certification

- Improve fuel efficiency
 - Aerodynamic efficiency
 - Engine fuel burn
 - Reduced weight materials & structures
- Certification by Analysis
 - Non-conventional configurations
 - Greater portion of flight envelope
 - lcing
 - Additive Manufacturing

Alternative Power and Propulsion

- Sustainable Aviation Fuels
 - Combustion and Emissions
- Enable more (hybrid) electric aircraft
 - Power cables, batteries
 - Control algorithms

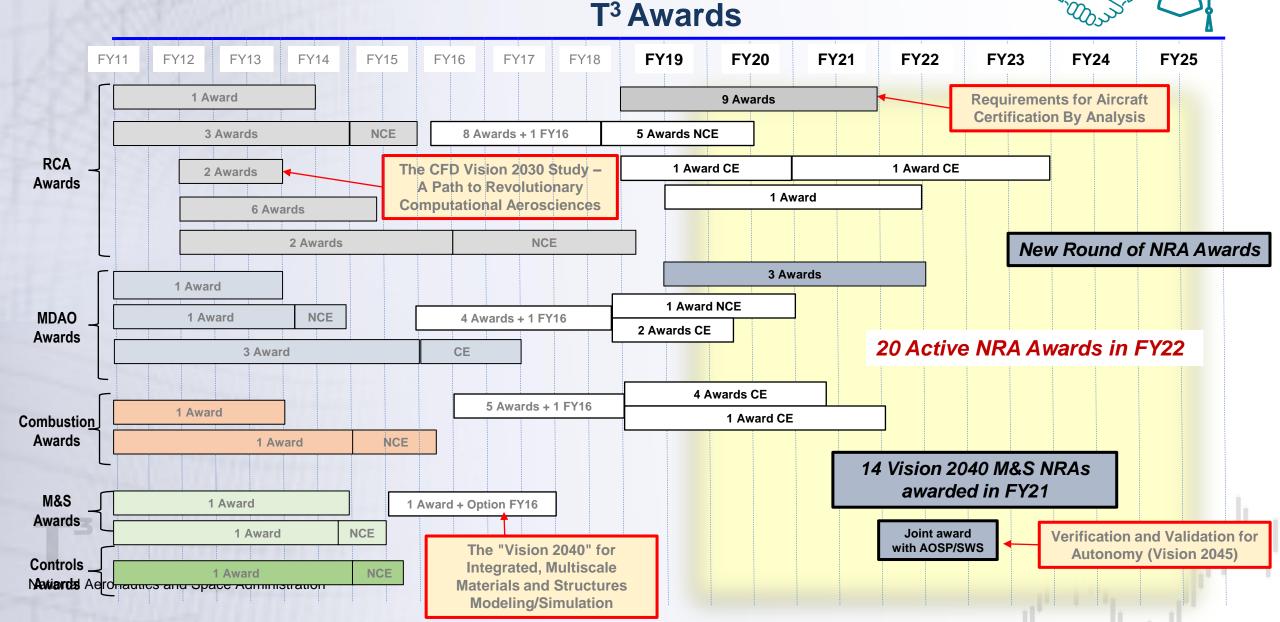
The U.S. is working with the global community to achieve net-zero greenhouse gas emissions by 2050 using a common basket of measures

Potential Future T³ Sustainability Elements

QUANTIFY THE IMPACT – *Improved tools* for system studies, with adequate fidelity in the required modules, focused throughout the lifecycle, to enable accurate assessment of new ideas

- Tools to quantify lifecycle carbon emissions, including new tools specific to the aircraft life cycle
- Climate chemistry, contrail formation, fuel sensitivity of soot generation

DESIGN AND ANALYZE – New tools to support the design, analysis, and optimization of new power architectures and thermodynamic cycles for alternative fuels


- Tools to design, analyze, and optimize power and propulsion architectures for new energy futures (e.g., based on hydrogen, ammonia)
- Tools to design, analyze, and optimize vehicles with tightly integrated power and propulsion

BUILD IT – *New material solutions* to enable electrification and other new power architectures, including survival in harsh environments

- Composite cryotanks for hydrogen, physical understanding/tools to predict hydrogen embrittlement, advanced insulation, multifunctional structures
- Lightweight, additively manufactured, refractory alloys for high temperature applications
- Suitable chemistries and materials for high-power, high-temperature proton-exchange membrane fuel cells, lightweight thermal management systems, lightweight superconductive materials
- Multiphysics modeling tools utilizing Machine Learning and Artificial Intelligence
- Recyclable materials

NRAs: Establishing Visions with the Community

Assessing Promising New Ideas with Universities

Join us for imaginAviation on 28 Feb-2 Mar

3-day virtual event featuring the latest innovations in Aeronautics

- Engage real-time with industry leaders and NASA subject matter experts
- Listen to invigorating talks on how we can transform the future of aviation
- Learn about STEM engagements with K-12 & University students
- Gain technology insights

Registration is now open at https://nari.arc.nasa.gov/imaginAviation/

Looking Ahead to T³ Project Major Accomplishments in FY23...

- Complete "Gen 2" SMART-VG system flight tests on the Boeing ecoDemonstrator 777-200X airplane, along with high-fidelity analyses of fleet drag reduction and fuel savings benefits (new API Milestone for FY23)
- Common Research Model-High Lift (CRM-HL) wind tunnel testing (with simulated ice shapes in NTF)
 - DLR testing the **5.2%-scale CRM-HL model** in the Low-Speed DNW-NWB wind tunnel in Braunschweig (May/June 2023)
 - Testing the **2.7%-scale Full-Span CRM-HL model** in the LaRC National Transonic Facility (NTF) wind tunnel (July Sep 2023)
 - Testing the **5.2%-scale CRM-HL model** in the LaRC NTF wind tunnel (Sep Dec 2023)
- Begin **multi-stakeholder human-in-the-loop (HITL) sims** at ARC investigating operator-controller communication architectures for autonomous multi-vehicle operations informed by ConOps from three partners (Joby, Wisk, Zipline)
- Fielding new NRA solicitation with six sub-topics across RCA, Icing, MDAO, and AS
- Complete V&V for Autonomy Vision 2045 NRA effort with AOSP/SWS (Dec 2022)

Acronym List

Acronym	Definition	Acronym	Definition
AAM	(IASP) Advanced Air Mobility	Clmax	the maximum lift coefficient of the airfoil
ATT	(AAVP) Advanced Air Transport Technology	CM4QC	Computational Materials for Qualification and Certification
AAVP	Advanced Air Vehicles Program	CMC	Ceramic matrix composite
ADaPT	Antenna Deployment and oPtimization Technologies	СМН	Composite Materials Handbook
AePW	Aeroelastic Prediction Workshop	CNS	Communication, Navigation & Surveillance
AERoBONI	D (CAS) AdhEsive fRee BONDing of Complex Composite Structures	CST	(AAVP) Commercial Supersonic Transport
AETC	Aerosciences Evaluation and Test Capabilities	DASC	Digital Avionics Systems Conference
AFRL	Air Force Research Lab	DCB	Double Cantilever Beam
41	Artificial Intelligence	DECWG	Distributed Engine Control Working Group
AI/ML	Artificial Intelligence/Machine Learning	DFT	Density functional theory
AIT	Adaptive Icing Tunnel	DNW-NWB	German-Dutch wind tunnels
۹M	additive manufacturing	DoE PNNL	(DoE) Pacific Northwest National Laboratory
AMEL	Automated Materials Experient Lab	DTU	technical university of Denmark
AMIO	AAM Mission Integration Office	EAP	Electrified Aircraft Propulsion
ANL	Argonne National Laboratory	EBC	Environmental Barrier Coatings
AoA	Analysis of Alternatives	EPFD	(IASP) Electrified Powertrain Flight Demonstration Project
AOSP	Airspace Operations and Safety Program	ESDMD	Exploration System Development Mission Directorate
ARMD	Aeronautics Research Mission Directorate	ESI	early stage innovation
AS	Autonomous Systems	eVTOL	electric vertical takeoff and landing vehicles
ASNP	air service navigation providers	FAA	Federal Aviation Administration
ATAG	Air Transport Action Group	FDC	(IASP) Flight Demonstrations & Capabilities Project
ATM-X	(AOSP) Air Traffic Management eXploration Project	FEAP	Foundational Electrified Aircraft Propulsion
ATTAM	Advanced Turbine Technology for Affordable Missions	HATTB	Human-Autonomy Teaming Task Battery
AUVSI	Association for Unmanned Vehicle Systems International	HDV	High Density Vertiplex (aka the AAM Subproject)
AVSI	Aerospace Vehicle Systems Institute	HECC	High Efficiency Centrifugal Compressor
BNNS	Boron Nitride Nanosheet	HENAAC	Hispanic Engineer National Achievement Awards Corporatio
BOS	Background Oriented Schlieren	HICAM	(AAVP) Hi-Rate Composite Aircraft Manufacturing Project
BVLOS	beyond visual line of sight	HiPER	High Performance Electromagnetic Rig
C2QA	Co-design Center for Quantum Advantage	HiPot	high potential
CAS	(TACP) Convergent Aeronautics Solutions	HITL	Human in the Loop
CASMART		HL-CRM	High-Lift Common Research Model
CbA	certification by analysis	HLPW4	High-Lift Prediction Workshop – 4
CFD	Computational Fluid Dynamics	HPC	High performance computing
CLAS-ACT			

Acronym List (cont.)

Acronym	Definition			
HRLES	Hybrid Reynolds-Averaged Navier-Stokes and Large Eddy Simulation			
HT	high temperature			
HTP	(AAVP) Hypersonic Technology Project			
HV	high voltage			
HyTEC	(AAVP) Hybrid Thermally Efficient Core			
IASP	Integrated Aviation Systems Program			
ICAO	International Civil Aviation Organization			
ICCCRD	Interagency Coordinating Committee on Ceramic Research and Dev.			
ICME	Integrated computational materials engineering			
IFAR	International Forum for Aviation Research			
IHMC	Institute for Human & Machine Cognition			
IM	Innovative Measurements			
IML	inner mold line			
L2	level 2 milestone			
LBFD	(IASP) Low Boom Flight Demonstration			
LOFTID	Low-Earth Orbit Flight Test Inflatable Decelerator			
LSAWT	Low Speed Aeroacoustic Wind Tunnel			
LSHR	low solvus high refractory			
LxC	Likelihood x Consequence			
M&S	Materials & Structures			
m:N	m is a small number of operations. N is a large number of aircraft			
	Multi-Agency Coordinating Committee for Combustion Research			
MaRERA	5,1			
MBSA&E	(AATT) Model-Based Systems Analysis & Engineering			
MCAAD	Modeling and Control of Agile Aircraft Development			
MDAO	Multidisciplinary Design, Analysis & Optimization			
MDM	Material Data Management			
MDMC	Material Data Management Consortium			
MEC	Multidisciplinary Engineering Challenge			
MMEI	Micro-Multi-Layered Electrical Insulation			
MPATH	Measuring Performance for Autonomy Teaming with Humans			
MPEAs	multi-principal element alloy			
MSFC	Marshall Space Flight Center			

NASA Engineering and Safety Center			
National Energy Technology Laboratory			
National Jet Fuels Combustion Program			
NASA Research Announcement			
National Renewable Energy Laboratory			
Naval Research Laboratory			
New Technology Report			
oxide dispersion strengthened			
Old Dominion University			
one-factor-at-a-time			
other government agencies			
hydroxyl radical planar laser-induced fluorescence			
outer mold line			
Office of Naval Research			
optical parametric oscillator			
Pathfinding for Airspace with Autonomous Vehicles			
NASA credit card user			
partial discharge			
Power Electronics for AeroSpace Applications			
Polyimide			
Particle Imaging Velocimetry			
Portable Laser Guided Robotic Metrology			
Pacific Northwest National Laboratory			
Propulsion and Power Systems Alliance			
Pressure Sensitive Paint			
Process-structure-property-performance			
Programmed Test Inputs			
qualification and certification			
Revolutionary Aviation Mobility			
Reynolds Averaged Navier-Stokes			
Research Aircraft for eVtol Enabling techNologies			
Revolutionary Computational Aerosciences			
research development & deployment			

National Aeronautics and Space Administration

Acronym List (cont.)

Acronym	Definition	Acronym	Definition
RFI	radio frequency interference	TIM	Technical Interchange Meeting
RFI	request for information	TomoBOS	tomographic BOS
RLCC	Reduced Life Cycle Cost	ToR	Terms of Reference
ROAM	Remote Operations for Autonomous Missions	TQR	Technical Quality Review
RSM	Response Surface Modeling		
RTRC	Raytheon Technologies Research Center	TSNA	Transformation Strengthened NASA Alloys
RVLT	(AAVP) Revolutionary Vertical Lift Technology	TTBW	(AATT) Transonic Truss-Braced Wing
SAA	Space Act Agreement	TWGs	technical working groups
SABERS	(CAS) Solid-state Architecture Batteries for Enchanced Rechargeability & Safety	UI	(TACP) University Innovation
SAF	sustainable aviation fuel	UIUC	University of Illinois Urbana-Champaign
SBLI	shock/boundary-layer interaction	uPSP	Unsteady Pressure Sensitive Paint
SFD	(IASP) Sustainable Flight Demonstrator	UQ	uncertainty quantification
SFNP	Sustainable Flight National Partnership	uRANS	
SFW	subsonic fixed wing		unsteady RANS
SiC	silicon carbide	USDC	University Student Design Challenge
SLS	Space Launch System	V&V	verification & validation
SMA	Shape Memory Alloys	VEATE	Versatile Electrically Augmented Turbine Engine
SMART-VG	Shape Memory Alloy Reconfigurable Technology-Vortex Generator	VLPNT	vertical lift propeller noise
SMMD	shape memory materials database	WG	working group
SMST	Shape Memory and Superelastic Technologies	WMLES	Wall-modeled Large Eddy Simulation
SPARRCI	(CAS) Sensor-based Prognostics to Avoid Runaway Reactions & Catastrophic Ignition	WPAFB	Wright Patterson Air Force Base
STEREO	(CAS) Scalable Traffic Management for Emergency Response Operations	ZOB	Cleveland Air Route Traffic Control Center
STMD	Space Technology Mission Directorate	206	
SUSAN	Subsonic Single Aft Engine		
SWS	(AOSP) System-Wide Safety		
T^3	Transformational Tools & Technologies		
TACP	Transformative Aeronautics Concepts Program		
TDT	Transonic Dynamics Tunnel		

- TEEM Turbine Electrified Energy Management
- THX turbulent heat flux