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Abstract 18 

Satellite observations of the time-variable gravity field revolutionized the monitoring of 19 

large-scale water storage changes beginning with the 2002 launch of the Gravity Recovery 20 

and Climate Experiment (GRACE) mission.  Most hydrologists were skeptical of the satellite 21 

gravimetry approach at first, but validation studies assuaged their concerns and high-22 

profile, GRACE-based groundwater depletion studies caused an explosion of interest.  The 23 

importance of GRACE observations for hydrologic and cryospheric science became so great 24 

that GRACE Follow On (GRACE-FO) jumped NASA’s Earth Science mission queue and 25 

launched in 2018. A third Mass Change mission is currently under development.  Here we 26 

review key milestones in satellite gravimetry’s progression from the fringes of hydrology to 27 

being a staple of large-scale water cycle and water resources studies and the sole source of 28 

observations of what is now an ‘Essential Climate Variable’, terrestrial water storage.   29 

 30 

Water intersects practically every sub-discipline of Earth science as well as being essential to all 31 

life on Earth.  The heterogeneities of the water cycle largely determine the distribution of 32 

ecological systems and human populations around the world and have important implications for 33 

agriculture, natural hazards, and meteorology.  Therefore, it may be surprising that there was no 34 

viable method for measuring large scale, seasonal to interannual fluctuations of water across the 35 

continents prior to the twenty-first century.  Direct and indirect observations of precipitation, 36 

arguably the most important water cycle observable, have been collected since the middle of the 37 

second millennium, if not earlier1.  By the late 1800s, attempts were being made to estimate the 38 

balance of precipitation, evapotranspiration, and runoff from the continents.  However, despite the 39 

physics of infiltration, soil drainage, groundwater flow, and baseflow having been characterized a 40 



century or more earlier2, implying significant subsurface water storage dynamics, scientists failed 41 

to acknowledge the importance of changes in water stored on and in the land as a major component 42 

of continental water balance until a 1992 study constructed a global, monthly climatology of soil 43 

water content3. 44 

Twentieth century hydrologists largely ignored terrestrial water storage (TWS) as a variable for a 45 

few reasons.  First, at a time when improving general circulation and weather forecast models was 46 

a primary goal of numerical modelers, accurate simulation of TWS was not considered important 47 

so long as the simulated moisture state of the surface served effectively as a lower boundary 48 

condition for the atmosphere.  For decades, the land surface was simplified numerically to behave 49 

as a ‘bucket’ of water beneath the atmosphere4.  Second, save for the terrestrial water budget 50 

equation (see Global Water Budget Analysis, below), hydrologists rarely considered the concept 51 

of TWS; they instead were concerned with its components.  Related to that, measuring large scale 52 

changes in TWS using conventional methods has always been a challenge because it comprises 53 

multiple components, each with its own considerations.  In particular, snow water equivalent (the 54 

product of snow depth and snow density) is highly variable in space, and snow tends to be deepest 55 

in the least accessible locations: polar regions and on the tops of mountains5.  Soil moisture is 56 

highly variable both spatially and temporally, and measuring wetness below the surface soil layer 57 

requires digging a hole or inserting a long probe using a hydraulic press6.  In situ soil moisture 58 

monitoring networks are highly concentrated in the northern midlatitudes, providing very little 59 

coverage outside of 30°N to 60°N7.  Lake and river channel water storage is relatively easy to 60 

estimate, but only if measurements are recorded and shared.  Outside of the wet tropics, surface 61 

water is typically a small component of TWS change8.  Vegetation water storage changes are 62 

typically much smaller than soil moisture changes9.  Finally, the standard method for monitoring 63 



groundwater storage variations is to drill down into an aquifer, install a piezometer, and record 64 

water level or piezometric head variations.  Owing to cost, logistics, and political impediments 65 

(most nations do not share what groundwater measurements they have10), it would be impossible 66 

to establish globally representative, automated networks with sufficient density to monitor any of 67 

these variables satisfactorily.  Even the USGS’s near-real time groundwater monitoring network 68 

has major gaps in the western U.S. (Figure 1).  The International Groundwater Resources 69 

Assessment Centre (IGRAC), which aspires to serve as a clearinghouse for global groundwater 70 

data, houses records from fewer than 35 countries representing far less than half the world’s land 71 

surface (Figure 1).  While numerous additional groundwater observational records exist, most are 72 

either restricted from distribution or not digitized and centralized.  Given these challenges and 73 

despite its true significance as an indicator of water resources availability and hydroclimatic 74 

change, TWS quantification and understanding would have remained in limbo absent the 75 

introduction of a game-changing observational advancement. 76 

 77 

Satellite Gravimetry 78 

Geodesists have long recognized that both static features and temporal variations in Earth’s gravity 79 

field, which reflect heterogeneities in the distribution of solid, liquid, and atmospheric mass, 80 

perturb the paths of Earth-orbiting satellites in predictable ways11–14.  In the 1960s they conceived 81 

the idea of measuring these orbit perturbations precisely in order to infer time varying mass 82 

variations in the land, ocean, and atmosphere15.  Satellite laser ranging (i.e., precise tracking of the 83 

distances from ground stations to an orbiting satellite) enabled the first global mapping of Earth’s 84 

gravity field and continues to provide time varying gravity information which is superior to that 85 

of GRACE/FO at the largest scales14,16.  A compendium of studies17 laid the scientific foundation 86 



for launching a dedicated, time-variable gravimetry mission, demonstrating the potential value for 87 

hydrology and other disciplines and describing possible satellite instruments and configurations 88 

for such a mission.  The preferred architecture comprised identical twin satellites in a polar, low 89 

Earth orbit, one following the other with 100-220 km separation.  Orbital perturbations caused by 90 

gravitational variations would be quantified using micron-level tracking of the intersatellite 91 

distance (range) by microwave interferometers aboard both satellites.  Non-gravitational 92 

accelerations, such as those caused by atmospheric drag, would be measured by highly precise 93 

accelerometers.  Soon thereafter, GRACE, which was jointly supported by the German space 94 

agency, was selected by NASA to be one of its first Earth System Science Pathfinder projects.   95 

A seminal pre-launch study18 introduced a technique for translating gravimetry measurements 96 

from GRACE into changes in terrestrial water storage (TWS) and provided the equations necessary 97 

to extract region-specific TWS anomaly time series from global gravity field solutions expressed 98 

using spherical harmonics (a series of functions that describe anomalies on a sphere, in which 99 

higher degrees and orders represent progressively smaller constituents of the anomalies).  100 

Subsequent studies19,20 explored this potential in depth, comparing anticipated uncertainty in the 101 

TWS retrievals with model- and in situ observation-based estimates of TWS changes at various 102 

spatial scales.  They concluded that the approach would be viable depending on the size of the 103 

region and the amplitude of the TWS variations.  It was also demonstrated that changes in 104 

groundwater storage could be isolated from the TWS data, given modeled or observed estimates 105 

of soil moisture and other TWS components as needed21.  106 

 107 

GRACE Mission – The Early Years 108 



GRACE22 launched on 17 March 2002 to the delight of the geodesy, cryosphere, and ocean science 109 

communities.  Cryospheric scientists used GRACE to generate startling new estimates of the rates 110 

of ice losses from Greenland, Antarctica, and the Alaskan glaciers23–26.  Oceanographers used it to 111 

improve their understanding and quantification of sea level changes27–29.  Meanwhile, most 112 

hydrologists, if they had heard of the mission at all, fretted that GRACE’s spatial (>150,000 km2 113 

at mid-latitudes30,31) and temporal (monthly) resolutions were too coarse, and they were befuddled 114 

by its non-instantaneous, vertically integrated TWS anomaly data.  Further, non-geodesists were 115 

concerned that the retrievals could be contaminated by unknown or poorly modeled sources of 116 

mass change in Earth’s crust and mantle.   117 

Discord and controversy in the hydrology community are not unusual, so perhaps the initial 118 

resistance to GRACE is not surprising.  Multiple sub-disciplines compete for primacy and funding, 119 

and GRACE was likely viewed as additional competition, for example by soil moisture enthusiasts 120 

who, at the time, were advocating for their own mission.  Further, the characteristics of GRACE-121 

based TWS data did not lend themselves to comparisons with or incorporation into grid-based 122 

hydrological models.  The developers of these models were already busy evaluating and arguing 123 

the merits of global versus regional modeling, physics-based versus conceptual modeling, the use 124 

of empirically based parameters versus calibration, and complex, high resolution, computationally 125 

expensive models versus simplified approaches. 126 

While hydrologists were certainly unfamiliar with data products having characteristics like those 127 

of GRACE, their concerns were largely unfounded.  Mass changes attributable to viscoelastic 128 

mantle and crustal deformation occur over long enough timescales that they are non-factors in 129 

monthly to interannual terrestrial mass change, with two notable exceptions.  First, glacial isostatic 130 

adjustment (GIA) can be significant in polar and near-polar regions that were covered by ice during 131 



the last glacial maximum.  The gravitational effects can be removed reasonably well32 using 132 

models of GIA33,34 although errors in these models can be an issue for hydrological studies in 133 

regions with significant rates of GIA35.  Second, major earthquakes (magnitude > 8) produce both 134 

step function (coseismic) and exponential (postseismic) signals in mass anomaly time series, 135 

whose removal from the GRACE data is further complicated by their wavelike spatial patterns36.  136 

Fortunately, only a handful of major earthquakes have occurred in the GRACE era, and their 137 

effects are limited in time and space37.  In addition to redistribution of TWS, the other main drivers 138 

of mass and gravitational change are circulations of the atmosphere and oceans.  Both of these are 139 

modeled and removed from the observed gravity signal when TWS is the target observable, but 140 

errors stemming from the models continue to be a major component of the error budget of the 141 

derived TWS anomalies18,19,38.  Within the terrestrial mass changes that remain, seasonal and 142 

interannual changes in vegetation biomass have been shown to be at or below GRACE’s 143 

uncertainty threshold9.  That leaves groundwater, soil moisture, surface waters, snow, ice, and 144 

permafrost as the primary components of TWS retrieved from GRACE gravity observations.  Of 145 

those, seasonal variability is dominated by surface water in the wet tropics, by snow in alpine and 146 

high latitude regions, and by soil moisture most elsewhere8.  Transitioning across interannual to 147 

decadal timescales, soil moisture’s transient influence wanes and groundwater and ice trends 148 

eventually dominate the changes, save for loss of water from major surface water bodies such as 149 

the Aral and Caspian Seas39,40 and filling of manmade reservoirs41.   150 

Despite the skepticism, a handful of researchers described and evaluated new hydrological 151 

applications for GRACE, such as the use of GRACE-based TWS observations for closing the water 152 

budget and estimating regional mean evapotranspiration42 (ET) and net water flux43 (precipitation 153 

minus ET) at the land-atmosphere interface.  Also introduced were methods for using GRACE and 154 



other data to estimate river discharge44,45 and high latitude seasonal snow mass46.  GRACE TWS 155 

data revealed an anti-correlation of TWS variations during 2002-2006 in the Amazon and Congo 156 

River basins47.  They were employed to evaluate the water storage variations simulated by climate 157 

models48, while numerous other studies evaluated the GRACE TWS time series using ground-158 

based observations and models49–52.  During this same period, two studies53,54 demonstrated the 159 

ability to isolate groundwater storage changes from GRACE TWS data using in situ or modeled 160 

soil moisture and snow water equivalent.  The first GRACE data assimilation experiments were 161 

performed55 enabling the TWS components to be separated while also achieving spatial and 162 

temporal downscaling of the coarse resolution GRACE observations.  Nevertheless, only a tiny 163 

fraction of the hydrology community embraced GRACE during its early years. 164 

 165 

Onset of the era of GRACE hydrology 166 

A major impediment to the uptake of GRACE data by hydrologists was the necessity of enlisting 167 

geodesists to process the level-2 GRACE data (i.e., gravity field solutions) and derive TWS time 168 

series.  The monthly level-2 gravity field solutions were delivered as sets of spherical harmonic 169 

coefficients, and few, if any, hydrologists were familiar with that mathematical construct, capable 170 

of applying destriping techniques to remove correlated errors56, and able to apply Gaussian 171 

averaging kernels57 for computing regional time series and associated uncertainty estimates.   172 

That situation changed when the first 1° gridded GRACE TWS anomaly fields58 began to be 173 

distributed.  They included numerous caveats and warnings; for example, the method used to 174 

derive the fields was optimized for the ocean, not for the land.  Further, users were admonished 175 

that a TWS time series for an individual 1° grid cell was meaningless on its own; it was necessary 176 



to average the gridded data over sufficiently large regions in order to overcome spatial correlation 177 

errors associated with the data processing (Gaussian smoothing).  In fact, geodesists’ fear of such 178 

products being misused was one of the main reasons they had not previously been developed.  179 

Nevertheless, the original gridded product freed hydrologists to perform GRACE-based studies on 180 

their own, and as a result, the number of such studies began to grow.   181 

Over time, geodesists became increasingly uncomfortable with the way the first gridded product 182 

was being used and the failure of many hydrologists to acknowledge its deficiencies when drawing 183 

conclusions.  In particular, gravity signal “leakage” from adjacent, large, and imperfectly modeled 184 

gravitational phenomena such as ocean tides had not been minimized in the gridded product 185 

through advanced geodetic processing or properly accounted in hydrologists’ error budgets, and 186 

the Gaussian smoothing and destriping caused damping of the dynamic range of TWS that was 187 

particularly troublesome for water balance studies.  Further, geodesists argued that a consistent 188 

comparison between modeled or independently observed hydrological phenomena and GRACE 189 

TWS anomalies required the former to be converted to spherical harmonics and Gaussian 190 

smoothed in the same way as the latter.  Hydrologists saw little practical benefit to this approach 191 

beyond validation, and argued that gridded or otherwise preprocessed TWS products were 192 

imperative for maximizing GRACE data uptake and enabling the mission to reach its potential as 193 

a tool for hydrology.  Discussions between these two factions at the Second GRACE Hydrology 194 

Workshop59 in November 2009 sparked the development of a gridded TWS anomaly product that 195 

was better suited for land hydrology and was accompanied by a set of scale factors intended to 196 

counteract the signal damping60.  Just as importantly, data and a short routine were provided for 197 

estimating uncertainty in the resulting monthly TWS anomalies when averaged over a region of 198 

interest.  This uncertainty decreases dramatically as the size of the region increases, and it is also 199 



much smaller near the poles, where the satellite ground tracks are close, than near the equator.  200 

Since then, many other geodesy teams have introduced their own level-3 TWS products, catering 201 

to the needs of hydrologists61–65.   202 

Two headline-making publications66,67 helped to dissolve hydrologists’ remaining hesitancy and 203 

pique their interest in GRACE.  They described shocking rates of groundwater depletion occurring 204 

in northern India (Figure 2), driven by groundwater extractions to support irrigated agriculture in 205 

a semi-arid climate.  While it was known from local reports that groundwater levels were declining, 206 

the intensity and scale of declines had not previously been quantified due to the inaccessibility of 207 

in situ observations.  Considering that over 100 million live in the affected region and that its 208 

agricultural output underpins the food supply for all of India, the potential consequences of 209 

dewatering the aquifers cannot be overstated.  The two publications and the extensive media 210 

coverage surrounding them drew worldwide attention to the issue and engendered scores of follow-211 

on studies68–71.  According to Web of Science, in the prior decade (1999-2008) there had been 174 212 

publications with both “groundwater” and “India” in the title.  There were 832 in the decade that 213 

followed.  Scientists who were previously unconvinced began to comprehend the power of satellite 214 

gravimetry as a tool for seeing “beneath the surface” in a way that no other approach could, 215 

providing unique and essential value for the field of hydrology.  Figure 3 illustrates the steady 216 

growth of journal publications on GRACE and GRACE FO (hereafter GRACE/FO) hydrology 217 

since 2002.  Clearly, there are far too many to cite here.  What cannot be inferred from Figure 3 is 218 

that, prior to around 2010, a majority of these publications were written by non-hydrologists.  219 

Similarly, while early GRACE-based hydrological studies tended to focus on comparison and 220 

evaluation, starting around 2009, as discussed below, an increasing number of studies explored 221 

scientific and practical applications.   222 



 223 

Contributions of GRACE to the study of groundwater 224 

Following the formulas of the original Indian groundwater depletion studies66,67, researchers 225 

investigated other regions where notable TWS declines were seen in the GRACE data, often due 226 

to groundwater pumping.  In particular, GRACE was applied to provide new estimates of known 227 

groundwater depletion in California’s Central Valley72,73.  Considering that about one quarter of 228 

the food consumed in the U.S. comes from the Central Valley, monitoring and preserving its 229 

groundwater is crucial.  The GRACE-based studies and associated media coverage once again 230 

drew renewed attention to groundwater depletion, likely contributing to the passage of California’s 231 

2014 Sustainable Groundwater Management Act.  Several groups focused on another critical 232 

source of water for irrigated agriculture in the U.S., the High Plains aquifer74–76.  Over the past two 233 

decades, this aquifer, which supports “the breadbasket of America”, has been stable or gaining 234 

water in the north, while water stored in the central and southern portions has been slowly and 235 

steadily declining since records began in the middle of the 20th century77.  Others quantified 236 

groundwater losses in the North China plain78–80, another important agricultural region where 237 

withdrawals for irrigation have been outpacing recharge.  Several studies discussed substantial 238 

decreases in surface water and groundwater in the Middle East caused by a combination of drought 239 

and irrigated agriculture81–84.  Scientists also evaluated groundwater storage variations and 240 

depletion in the Great Lakes basin85, the Colorado River basin86, and across Africa87–90, among 241 

other regions.  Still other authors began to develop global assessments of groundwater storage 242 

changes based on GRACE data40,91–94.  Figure 4 displays a global map of 20-year trends in TWS 243 

based on GRACE and GRACE-FO observations61.  TWS declines in several of the regions, such 244 

as those previously noted, can be attributed at least in part to groundwater depletion to support 245 



irrigated agriculture, in some cases exacerbated by recent drought40.  Finally, as the only truly 246 

global source of TWS observations, GRACE first made possible a sub-section on groundwater and 247 

terrestrial water storage in the Bulletin of the American Meteorological Society’s annual “State of 248 

the Climate” report in 201195, and it has been included ever since. 249 

 250 

Global Water Budget Analysis 251 

Hydrologists have aspired to close the water budget (see equation 1, below) from global to 252 

catchment scales for more than a century2,96,97.  However, prior to the launch of GRACE, with few 253 

exceptions98 water budget analyses relied on the assumption that changes in TWS are insignificant 254 

on annual and longer timescales.  This assumption was enticing because the collocated, in situ 255 

observations of groundwater, soil moisture, and, in some cases, snowpack and surface water 256 

necessary to estimate interannual changes in TWS were extremely scarce20.  Analysis of the first 257 

few years of GRACE data provided ample evidence that the assumption of annual steady state of 258 

TWS was flawed at both river basin and global scales, and that interannual changes in TWS caused 259 

compensating changes in mean sea level99–101.   260 

In addition to the change in storage, ΔTWS, closing the terrestrial water budget requires estimates 261 

of the net fluxes into and out of a study region (often a catchment or river basin bounded by 262 

topography across which lateral flows are negligible):  263 

 264 

 ΔTWS = P – ET – Q         (1) 265 

 266 



where P, ET, and Q are accumulated precipitation, evapotranspiration, and runoff.  Given 267 

knowledge of three of the variables, the fourth can be estimated as a residual.  Early GRACE-268 

based studies estimated ET, which is difficult to measure directly, as the residual42,102.  However, 269 

because ΔTWS represents the change between instantaneous TWS values at the start and end of 270 

the flux accumulation period, while GRACE/FO provides monthly mean TWS anomalies, the 271 

approach requires either complex mathematics42, a multi-month moving window approach103, or 272 

higher tolerance for error.  Similarly, a combined atmospheric-terrestrial water budget can be used 273 

to estimate atmospheric convergence (P-ET) as a residual: 274 

 275 

 P - ET = Q + ΔTWS + ΔAMC       (2) 276 

 277 

where ΔAMC is the change in total atmospheric moisture content, which is typically assumed to 278 

be negligible43.  The resulting ET and P-ET estimates have proven useful for evaluating modeled 279 

and remote sensing-based fluxes104–109, at least in terms of magnitude or bias.  The approach even 280 

helped to resolve a scientific debate.  Hydrologists had disagreed on the strength of the seasonal 281 

cycle of ET in tropical regions, where water and energy are typically abundant throughout the 282 

year110,111.  The observed seasonality of TWS provided by GRACE was the key innovation that 283 

enabled the matter to be put to rest, as the water budget residual ET indicated that the seasonal 284 

cycle in Brazil and central Africa was relatively weak and less dynamic than that depicted by most 285 

models105.  Unfortunately, the scarcity of river discharge observations (from basins large enough 286 

for GRACE/FO to resolve) limits the applicability of this approach.  That’s one reason scientists 287 

use GRACE/FO TWS data together with atmospheric analysis model-based convergence to 288 



estimate river discharge as a water budget residual44,45.  However, the long term mean magnitude 289 

of the resulting estimates is almost entirely controlled by the simulated convergence, with 290 

GRACE/FO TWS primarily acting to modulate the seasonal cycle. 291 

Another innovative application of the water budget approach is to estimate accumulated snowfall 292 

in high latitude or alpine regions.  This can be accomplished with the aid of modeled ET and 293 

modeled or observed Q.  Both are generally small in comparison with P at high latitudes/altitudes 294 

during the winter prior to spring thaw, such that errors in a water budget residual are likewise 295 

small.  In other words, ΔTWS is mostly attributable to P in equation 1.  The resulting regional 296 

scale, monthly estimates of snowfall are valuable because precipitation is under-sampled in cold 297 

regions and snowfall is notoriously challenging to measure due to gauge undercatch, which itself 298 

is difficult to estimate.  The study that introduced this approach determined that the undercatch 299 

corrections in one popular, global precipitation dataset were too large112.  However, other GRACE-300 

based studies have shown that precipitation products underestimate cold season precipitation by 301 

30-50% in the Himalayas113 and that undercatch corrections applied in well-known products are 302 

both necessary and highly variable in the Arctic114.  Another concluded that four meteorological 303 

datasets generally underestimated P even after undercatch corrections had been applied115. 304 

When estimates of all the budget variables are available, they can be used within a water balance 305 

framework to constrain each other, thereby improving each individual estimate.  Among the first 306 

to apply this approach with GRACE data, a 2009 study estimated Mississippi River discharge as 307 

a water budget residual, showing that it significantly exceeded gauged discharge, and used the 308 

results to bias-correct satellite-derived precipitation116.  A follow-up study over ten global river 309 

basins similarly attributed most of the non-closure error to the precipitation data117.  In 2015, a 310 

multi-institutional investigation used observation-based datasets including GRACE data within a 311 



variational framework to enforce simultaneous water and energy budget closure over continents, 312 

ocean basins, and worldwide, on monthly mean and annual mean (2001-2010) timescales118,119.  313 

The approach successfully reduced bias in all of the estimated fluxes and storage changes.  Results 314 

showed that unconstrained annual terrestrial and atmospheric water budgets closed with 315 

considerably less than 10% imbalance (relative to precipitation) in most cases, however, on a mean 316 

monthly timescale, water budget imbalance approached or exceeded 20% in North America, 317 

Eurasia, and Australia.  Building on this technique, studies with larger suites of input datasets 318 

produced gridded, global results120 and results over longer periods121.  Rather than constraining 319 

the flux estimates, other investigators have computed the mass imbalance arising from different 320 

combinations of inputs to the water budget equation as a way to help select appropriate 321 

combinations of datasets for regional hydrological studies122.  322 

Because the Earth is a closed system, it has long been known that changes in the mass of water 323 

stored in the oceans, land, and atmosphere must sum to zero.  However, prior to GRACE, there 324 

was no way to perform an observation-based accounting.  The literature is rich with GRACE-325 

informed studies of the responses of ice sheets and sea level to climate change123,124.  GRACE 326 

similarly enabled quantification of non-ice sheet, terrestrial water contributions to seasonal and 327 

interannual variations in sea level.  A 2016 study demonstrated the use of GRACE data over land 328 

and ocean in a global least-squares inversion, together with ocean altimetry and steric data from 329 

ocean reanalyses and other data sets, to constrain the sea level budget including the TWS 330 

contribution to sea level125.  It has also been shown that non-ice TWS largely controls seasonal 331 

and interannual variations of the land-ocean water balance126.  Another study estimated that, during 332 

2002-2014 at the global scale, hydroclimate related increases in non-ice TWS acted to reduce the 333 

rate of sea level rise by about 15% after removing the effects of irrigation-enhanced groundwater 334 



depletion127.  It was concluded that this was consistent with regional increases in precipitation that 335 

drove flooding and drought recovery events in several locations globally.  Ironically, in the year 336 

after that study ended there was a huge decrease in non-ice sheet TWS (Figure 5), and it has not 337 

recovered to its earlier dynamic range128.  While it is possible that extreme glacier melt accounted 338 

for the sudden decline, recent analyses do not implicate that as the primary driver129,130, leaving 339 

liberation of unfrozen forms of TWS as the likely culprit.  Supporting that hypothesis, a subsequent 340 

study concluded that TWS in endorheic basins (which are often semi-arid to arid) declined by 341 

about 106 Gt/yr during 2002-2016131 – water which would ultimately enter the ocean.  TWS 342 

fluctuations cause seasonal mass variations in sea level, whose annual range of about 34 mm is 343 

comparable to about a decade of long-term barystatic level rise132.  Non-secular interannual 344 

variations in sea level also are largely driven by irregular gains and losses of TWS around the 345 

world.  For example, a powerful El Nino in 2011 caused an excess of TWS in the southern 346 

hemisphere, including record flooding Australia, which in turn produced a temporary decline in 347 

global mean sea level101,133.  Prior to GRACE, explanations for such a decline would have derived 348 

from circumstantial evidence.    349 

Because shifts in the water cycle will be among the most visible and consequential effects of 350 

climate change, understanding its variations and predicting how it is likely to change in the future 351 

are key goals for hydrologists and climate scientists118.  A study of the first eight years of GRACE 352 

data showed that observed TWS variations were consistent with known wet/dry precipitation 353 

patterns associated with El Nino and La Nina134.  Another study found evidence in the GRACE 354 

data for water cycle acceleration, which has long been predicted as a consequence of climate 355 

change135.  Certain regional trends observed by GRACE/FO (Figure 4) have similarly been flagged 356 

as possible climate change impacts40.  Further, global TWS itself seems to govern atmospheric 357 



carbon dioxide growth, with faster growth in drier years136, revealing one of possibly many TWS-358 

climate feedback loops.    359 

 360 

Integration of GRACE data into hydrological models 361 

Early in the mission, hydrological models were frequently used to validate the retrieval of TWS 362 

changes from the GRACE gravity observations57,137–139 and to refine retrieval algorithms140,141.  363 

Later, such models helped identify the processes controlling the observed TWS changes8,52,142,143.  364 

As hydrologists became satisfied that GRACE was, in fact, measuring what the geodesists claimed, 365 

the retrieved TWS began to be used to validate hydrological models144–146.  For example, it was 366 

shown that many land surface models, particularly those lacking a groundwater variable, have 367 

insufficient storage capacity to represent the true, full dynamic range of TWS147,148. 368 

While most GRACE-based studies have relied on in situ observations, model output, or 369 

simplifying assumptions to isolate variations in groundwater or the other components of TWS, 370 

scientists recognized that auxiliary data and hydrological models could be used more holistically 371 

to extract groundwater information from GRACE observations.  In particular, a Kalman smoother 372 

based data assimilation approach55 was introduced for integrating GRACE derived TWS data into 373 

a land surface model, thus enabling spatial and temporal downscaling and vertical disaggregation 374 

of the TWS components.  Just as importantly for practical, operational applications, data 375 

assimilation permitted extrapolation to near-real time based on the meteorological inputs55, 376 

whereas standard GRACE TWS products were typically released 2-5 months after the time of 377 

observation.  378 



Subsequent efforts developed techniques for assimilating GRACE data into different land surface 379 

models149–154. Others improved on the original Kalman smoother data assimilation by enabling 380 

assimilation of gridded (as opposed to basin average) GRACE data155,156.  This was important 381 

because it minimized spatial artifacts associated with pre-defined regions (i.e., river basin 382 

boundaries) and better utilized the spatial information contained in the data products.  Still, it was 383 

shown that the lack of vertical stratification in the GRACE data could lead to mischaracterization 384 

of subsurface processes157 which further could cause errors in the assimilated output158.  385 

Simultaneous assimilation of GRACE TWS, Soil Moisture and Ocean Salinity (SMOS) or Soil 386 

Moisture Active Passive (SMAP) soil moisture, Moderate Resolution Imaging Spectroradiometer 387 

(MODIS) or Advanced Microwave Scanning Radiometer (AMSR) snow, and other remote sensing 388 

data holds promise for overcoming such issues while also improving horizontal downscaling159–389 

164.  As an alternative to data assimilation, GRACE data have also been used to inform and calibrate 390 

hydrological models165–169.  391 

 392 

Practical Applications 393 

Monitoring drought was recognized early in the mission as a practical application of GRACE data, 394 

though multiple years of observations were needed to develop a baseline for quantifying wet or 395 

dry extremes170–173.  GRACE data assimilation was the foundation for the first routinely delivered 396 

GRACE-based soil moisture and groundwater drought/wetness indicator maps for the contiguous 397 

United States174.  These indicators were presented as wetness percentiles relative to the range of 398 

conditions at each specific location and time of year in a 60+ year historical model simulation. 399 

This enabled GRACE data to become useful for operational drought monitoring, and the indicator 400 

maps began to be consulted by the authors of the U.S. Drought Monitor175.  In addition to their 401 



improved spatial resolution, a key to the adoption of GRACE data assimilation products by 402 

drought, water resources, and agricultural decision-makers was their weekly, near-real time 403 

availability175,176.  Few operational applications can make use of data older than about 2 weeks177.  404 

GRACE/FO data assimilation was later expanded to cover all continents except Antarctica, serving 405 

as the basis for weekly, global, root zone soil moisture and groundwater wetness/drought indicator 406 

maps10, which were unprecedented (Figure 6).  One-to-three month forecasts of the same, for the 407 

contiguous U.S., are also available, initialized by GRACE-FO data assimilation178.  Several 408 

GRACE-only drought indices have been proposed as well, mostly quantifying drought relative to 409 

the historical range of season- and location-specific conditions179–184.      410 

Wet extremes can be detected and quantified in the same ways as dry extremes, and some of the 411 

indicators described above are meant to serve both purposes10,174,180.  Using GRACE, studies have 412 

investigated major flood events around the world185–187.  Further, owing to the importance of 413 

elevated water levels as a precursor to severe flooding, scientists have introduced means for 414 

assessing flood vulnerability based on the current TWS anomaly relative to the water holding 415 

capacity of the land inferred from the GRACE data record188,189.  It has also been demonstrated 416 

through a case study in the Missouri River basin that snow water equivalent, soil moisture, and 417 

groundwater output from a GRACE data assimilating land surface model174 have the potential to 418 

improve the predictability of flood events190. 419 

Ongoing GRACE/FO research may create additional opportunities for practical applications that 420 

could be developed in the future for user-specific needs.  For instance, application of the water 421 

budget approach for ET has been used to estimate water consumption during the summer season 422 

in the upper and lower Colorado River Basins191.  Remote detection of water usage would be 423 

valuable for agricultural monitoring and optimization purposes.  As another example, GRACE/FO 424 



data assimilation-based soil moisture estimates show promise as potential predictors of fire season 425 

intensity and burned area192 and could perhaps be incorporated into an operational framework for 426 

wildfire early warning193.  Similarly, such estimates have shown promise for predicting slope 427 

stability and landslide vulnerability194.  Finally, groundwater assessments that utilize GRACE/FO 428 

other remote sensing and in situ observations could be used for operational groundwater 429 

monitoring or even groundwater change prediction195–197.   430 

 431 

Future Prospects 432 

In contrast to the skepticism that many scientists had about GRACE when it launched in 2002, by 433 

the 2010s its importance as a tool for studying the water cycle, cryosphere, and oceans had become 434 

so clear that NASA, together with its partner, the German Space Agency, prioritized launching 435 

GRACE-FO above several other mission concepts that had been recommended by a 2007 U.S. 436 

National Research Council report198.  Moreover, the subsequent decadal report199 ranked a third 437 

Mass Change (satellite gravimetry) mission among its top five Earth science mission priorities for 438 

the following decade, in order to avoid a gap in the data record and to potentially improve upon 439 

GRACE/FO in terms of spatial resolution, temporal resolution, and/or accuracy.  GRACE-FO 440 

added an experimental laser interferometer to increase the precision of the inter-satellite range 441 

measurements (above that of the primary instrument, a microwave interferometer).  The laser has 442 

been a success, however, the principal source of error limiting improved resolution at a given level 443 

of accuracy is spatial-temporal undersampling of high frequency mass variations in the atmosphere 444 

and oceans200 (i.e., “aliasing”).  Overcoming aliasing is expected to require a constellation of two 445 

or more GRACE-like satellite pairs177.  While that may not materialize in the immediate future, 446 

extension of the satellite gravimetry-based TWS data record by GRACE-FO and a subsequent 447 



Mass Change mission will support improved understanding of water cycle variability and change 448 

associated with natural variations, climate change, direct human impacts, and even implementation 449 

of water management policy201. 450 

 451 
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  979 

Figure Captions 980 

Figure 1. Inadequacy of in situ groundwater observation availability. Global map: locations of 981 

groundwater observation wells whose records are archived by the International Groundwater 982 

Resources Assessment Centre. Inset map: locations of the U.S. Geological Survey’s Groundwater 983 

Climate Response Network wells. 984 

Figure 2. Terrestrial Water Storage depletion in India. Groundwater withdrawals to support 985 

irrigated agriculture in a large region of northern India (corresponding to large rates of TWS 986 

decline indicated by warm colors in panel a) have caused TWS to be depleted over the past 20+ 987 

years (time series in panel b) as observed by the GRACE (blue) and GRACE-FO (dark yellow) 988 

satellite missions. Values are reported as equivalent height of water (cm) relative to the long-term 989 

mean. 990 



Figure 3. Growth of GRACE hydrology publications. Yearly numbers of journal publications 991 

containing in their abstracts either "Gravity Recovery and Climate Experiment" or “GRACE 992 

satellite” and “water” or one of several other hydrology related terms. Source: Web of Science. 993 

Figure 4. Global trends in terrestrial water storage. Mean rates of change of TWS (cm yr-1) based 994 

on GRACE and GRACE-FO observations from April 2002 to May 2022. The map was smoothed 995 

with a 150 km radius Gaussian filter for the purpose of visualization, but the base product has a 996 

native 3° resolution. 997 

Figure 5. Global terrestrial water storage anomalies over time. Global average, non-seasonal 998 

terrestrial water storage anomalies from GRACE (blue) and GRACE-FO (dark yellow), in cm 999 

equivalent height of water, relative to a 2003-2020 mean baseline. Mascons containing TWS 1000 

declines in Antarctica, Greenland, the Gulf Coast of Alaska, and polar islands associated with ice 1001 

sheet and glacier losses were excluded from the average. 1002 

Figure 6. Global drought and wetness monitoring products. Wetness percentiles on 25 July 2022 1003 

(relative to the period 1948-2012) for (a) surface soil moisture, (b) root zone soil moisture, and (c) 1004 

shallow groundwater, based on output from a GRACE and GRACE-FO data assimilating land 1005 

surface model. As an example, a value of 5 indicates that the location was drier than present only 1006 

5% of the time in this week of the year during 1948-2012. The maps are generated weekly and 1007 

made available from https://nasagrace.unl.edu/. 1008 

 1009 

Methods 1010 

Figures 2, 4, and 5 were created using the Jet Propulsion Laboratory’s (JPL) monthly mass 3-1011 

degree gridded mascon RL06 version 02 dataset61 from April 2003 to April 2022 (December 2021 1012 



in the case of Figure 5).  For Figures 2a and 4, the data were smoothed using a 300 km Gaussian 1013 

to improve the visualization.  For Figure 2b, the data were averaged over a previously defined area 1014 

of TWS decline in northern India40 while simultaneously fitting a climatology and a trend to the 1015 

timeseries at each pixel.  For Figure 5, the data were averaged over the global land surface 1016 

excluding Antarctica, Greenland, the Gulf Coast of Alaska, and polar islands, and the mean 1017 

seasonal cycle was removed128.   1018 

 1019 

Data Availability 1020 

The well locations mapped in Figure 1 are available from the U.S. Geological Survey’s 1021 

Groundwater Water Climate Response Network website and the International Groundwater 1022 

Resources Assessment Centre’s website. The JPL RL06_v02 gridded monthly mass data used 1023 

Figures 2, 4, and 5 is identical to that which is available from the NASA/JPL GRACE Tellus 1024 

website61.  Figure 3 was created from a citation report that searched for journal articles containing 1025 

“GRACE satellite” or “Gravity Recovery and Climate Experiment” and one of nine hydrology-1026 

related terms, performed on the Web of Science website.  Figure 6 was constructed from images 1027 

available on the University of Nebraska-Lincoln National Drought Mitigation Center’s NASA 1028 

GRACE website10,174. 1029 

 1030 
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