

July 2023

NASA/TM–20230001772

Loft: An Automated Mesh Generator for

Stiffened-Shell Aerospace Vehicles

Lloyd B. Eldred

Langley Research Center, Hampton, Virginia

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI) pro-

gram plays a key part in helping NASA maintain this

important role.

The NASA STI program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NTRS Registered and its public interface, the

NASA Technical Reports Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in both

non-NASA channels and by NASA in the NASA STI

Report Series, which includes the following report

types:

• TECHNICAL PUBLICATION. Reports of com-

pleted research or a major significant phase of re-

search that present the results of NASA Programs

and include extensive data or theoretical analysis.

Includes compilations of significant scientific and

technical data and information deemed to be of

continuing reference value. NASA counterpart of

peer-reviewed formal professional papers but has

less stringent limitations on manuscript length and

extent of graphic presentations.

• TECHNICAL MEMORANDUM.

Scientific and technical findings that are prelimi-

nary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain minimal

annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and tech-

nical findings by NASA-sponsored contractors

and grantees.

• CONFERENCE PUBLICATION.

Collected papers from scientific and technical

conferences, symposia, seminars, or other meet-

ings sponsored or

co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific, tech-

nical, or historical information from NASA pro-

grams, projects, and missions, often concerned

with subjects having substantial public interest.

• TECHNICAL TRANSLATION.

English-language translations of foreign scien-

tific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing special-

ized research announcements and feeds, providing

information desk and personal search support, and

enabling data exchange services.

For more information about the NASA STI program,

see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/

and select the “General” help request type.

https://www.sti.nasa.gov/sti-contact-form/

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

July 2023

NASA/TM–20230001772

Loft: An Automated Mesh Generator for

Stiffened-Shell Aerospace Vehicles

Lloyd B. Eldred

Langley Research Center, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does

not constitute an official endorsement, either expressed or implied, of such products or manufac-

turers by the National Aeronautics and Space Administration.

1

Abstract

Loft is an automated mesh generation code that is designed for

aerospace vehicle structures. From user input, Loft generates meshes for

wings, noses, tanks, fuselage sections, thrust structures, and so on. As a

mesh is generated, each element is assigned properties to mark the part

of the vehicle with which it is associated. This property assignment is an

extremely powerful feature that enables detailed analysis tasks, such as

load application and structural sizing.

This memorandum is presented in two parts. The first part is an

overview of the code and its applications. The modeling approach that

was used to create the finite element meshes is described. Several

applications of the code are demonstrated, including a Next Generation

Launch Technology (NGLT) wing-sizing study, a lunar lander stage

study, a launch vehicle shroud shape study, and a two-stage-to-orbit

(TSTO) orbiter. Part two of the memorandum is the program user

manual. The manual includes in-depth tutorials and a complete

command reference.

Introduction

The ability to rapidly create, modify, and update a structural finite element model is a substantial asset

in conceptual analysis. A wide variety of shapes, concepts, and layouts may be considered during the ear-

ly trade study phases of a project. The large commercial finite element model creation programs are not

well suited for this kind of operation. Such commercial codes can be used to quickly create a mesh of

questionable quality for analysis using the code’s automeshing capabilities. Or significant analyst effort

can be expended to manually generate and set up a well-designed-for-analysis mesh. For the stiffened-

shell class of vehicles, Loft can produce a well-designed mesh that is parametrically generated and suita-

ble for conceptual trade studies for significantly less effort than required for a well-designed mesh with

the commercial code. As an illustration, compare two-stage-to-orbit (TSTO) orbiter meshes in Figure 1

and Figure 2. Figure 1 was produced by Loft. Figure 2 was produced by using the automeshing capability

of Patran on a CAD model of the outer mold line (OML). In particular, note mesh details at the wing lead-

ing edges. Further, the colors in Figure 1 illustrate the different sizing analysis regions that are automati-

cally created using Loft. This partitioning of the mesh would need to be performed manually on the Patran

model.

A large commercial meshing program is certainly capable of generating similar meshes to those pro-

duced by Loft, but at significantly more effort in positioning cutting planes, mesh seed positioning, proper-

ty assignments, etc. And that commercial code can then be used to add a lot of small detail that is impossi-

ble in Loft. (A more efficient approach might be to add those details to the mesh that started in Loft). But,

for rapid generation of high fidelity meshes for conceptual level design, Loft has clear advantages.

2

 An initial application of the Loft code was to produce a TSTO upper stage model that was based on a

NASA Intercenter Systems Analysis Team (ISAT) reference configuration. This model, which is illustrat-

ed in an expanded view in Figure 3, can be fully defined in a 100-line ascii-text Loft input file and the input

file can be created in a few hours. A similar model that was created manually with a commercial code re-

quired substantial efforts on the part of three engineers over a period of one year. The commercial code

based model did include significant additional detail, such as fillets; however, this level of detail is of little

interest at the conceptual study stage.

Figure 2. TSTO orbiter model created with Patran automeshing.

Figure 1. TSTO orbiter model created with Loft.

3

The model shown in Figure 3 includes tanks, thrust structure, wing, winglet, and tail. The wings use

NACA four-digit airfoil cross sections and include ribs and spars. Ring frames are used around one tank,

and longitudinal stiffeners are created along the other.

A powerful feature of Loft is its method for assigning properties to elements during model creation.

Users specify the name of each engineering component. This name is then assigned to the corresponding

elements’ physical property fields. The user may optionally subdivide the component by specifying the

number of material property definitions to be used across the object. These user-labeled definitions

streamline the analysis and sizing process significantly. Contrast the effort that is associated with an anal-

ysis code that reports that element 58 has a negative margin of safety with that of a code that reports that

“FWD LOX DOME” has the same failed result. This labeling significantly reduces the bookkeeping that

is required to set up, post-process, and evaluate the results of a structural analysis.

Modeling Approach

The basic geometric entity in Loft is the “curve.” This can be a two-dimensional (2-D) shape of any

kind*. Loft contains a library of standard curve shapes, as well as three different ways in which the user

can specify a nonstandard cross section. At its core, Loft linearly interpolates a three-dimensional (3-D)

section between two arbitrary curves†. Commercial codes call this operation “lofting,” thus the choice of

program name. Loft can also taper a cross section down to a single point to create a dome, nose cone, or

bulkhead. Figure 4 illustrates the 3-D shape that results from connecting a semicircle on the right to a

half-diamond at center and then to an “M” shaped (user-defined) cross section on the left. The white lines

on the figure are conformal ring frames that follow the interpolated shape along the left portion of the

model.

* The term “curve” refers to a planar path requiring two coordinates (e.g. x,y) to describe. A mathematician would

view such an entity as having only one dimension, length, and no thickness. Indeed, the actual lofting functionality

of the program uses this one-dimensional view of the curve (see tutorial projects 3 and 5). Further, for most

applications, curves within Loft should not be self intersecting other than possibly having coincident end points

when a closed shape is desired.
† Similarly, the term “section” refers to a surface requiring three coordinates (e.g. x,y,z) to describe. A

mathematician would consider this surface to have two dimensions, length and width, and no thickness.

Figure 3. ISAT TSTO upper-stage created with Loft.

4

Figure 4. Lofting of three 2-D curves into a 3-D object.

Wings are created by using a similar approach. The user specifies span, chord, taper, sweep, and any

desired 4- or 5-digit NACA airfoil shape for the wing root and wing tip. The code creates the correspond-

ing trapezoidal wing section, complete with ribs, spars, and (as desired) carry through. Partial wings may

be created to model ailerons. Figure 5 illustrates a wing and an expanded view of the same wing. The fig-

ure was created in Loft exactly as shown by requesting and offsetting different portions of the full wing

mesh. Four ribs and two spars are shown.

Figure 5. Expanded and normal view of a Loft-created wing.

User Interface

Loft uses an ascii-text input file as its user interface. Loft outputs a variety of standard mesh data files

including NASTRAN bulk data [1], I-DEAS universal [2], ABAQUS input [3], Tecplot[4], Virtual Reali-

ty Modeling Language (VRML) 2.0 [5], and Stereo Lithography (STL) files for 3-D printing. All of the

5

figures in this memorandum were created by using a third-party VRML viewing program. Loft is written

in portable C and has been compiled and used on a variety of computing platforms.

The Loft user creates a text input file with the text editor of their choice (e.g., notepad, vi, or emacs).

Each engineering component, such as a nose, dome, barrel, intertank, and so on, is called an “object” in

Loft. The user defines the first object by selecting an initial cross-sectional shape (curve) and its 2-D scal-

ing. The user then specifies a second shape for the other end of the object, as well as the length, and the

desired number of nodes in the circumferential and axial directions.

Each of these options is called a “parameter” in Loft. All parameters have a default value. Thus, the

user need only supply values if the default value is not the desired value. When the user begins work on a

second object, the default sizing and shape are set to those of the previous object to smoothly connect the

two components. The default new object position is immediately aft of the previous object. Thus, if a user

is creating an aircraft fuselage with a constant cross-sectional shape and dimension, those values only

need be specified once; the input values then become the default values for all later objects. This treat-

ment of default settings encourages the user to start at one end of the vehicle and move sequentially to the

other end. Furthermore, it substantially simplifies the user’s task of defining a model and enables the 18-

component, 4500-element model that is shown in Figure 3 to be completely defined in a 100-line input

file.

In addition, this continuous updating of default values makes Loft a parametric modeling tool. The user

can change the dimensions of the fuselage in one location and those changes propagate through the rest of

the model. If the user changes the length of an object, later objects shift appropriately and retain their rela-

tive positions.

Mesh Manipulation

Loft also contains a powerful collection of mesh manipulation capabilities. These include translation,

rotation, warping, inversion of element normal vectors, rotation of element material alignment vectors,

and cloning. Figure 6 shows a shuttle-like stack that was created from the TSTO upper-stage half-model

that is shown in Figure 3. That model was cloned and reversed, and the normal vectors of the mirror half

were flipped. A single booster model was created and similarly cloned to form a second booster. A single

Figure 6: A shuttle-like configuration created with Loft's cloning tools.

6

external tank model was then created. Finally, each vehicle component was appropriately positioned.

Loft can manipulate a mesh at a much finer level. Elements can be specified by object name, by prop-

erty ID, by the arbitrary user “marks” that can be assigned during object creation, or by a specified vol-

ume. These selected elements can be queried, modified, or deleted. This capability allows damage to be

modeled, partial models to be saved (e.g., only those elements labeled as part of the outer mold line

(OML)), and so on. Figure 7 shows shroud doors that were created by changing the properties within a

specified rectangular region of a mesh. The door frames were created with the same process. The ability

to save partial models based on this mesh labeling is discussed in more detail with the TSTO orbiter ex-

ample later in the document.

Figure 7. Shroud doors created by changing properties in a rectangular volume.

Limitations

Loft is intended as a tool for the conceptual design stage. Thus, some important limitations should be

kept in mind and taken into account when the time comes to convert to a more time-consuming and more

general mesh-creation tool.

Loft’s beam creation options are limited. Stiffening beams such as ring frames, longerons, and rib and

spar caps are easily created, but free-standing beams or trusses must be created manually, by specifying

coordinates of each end, or with another tool and merged with a panel mesh created in Loft. This merging

can be accomplished either in that tool or the data can be read into Loft for merging. The support struts

connecting the spherical tanks on the lander concept in Figure 8 were created manually but made substan-

tial use of Loft’s math and variable support to automatically relocate appropriately when other vehicle

dimensions changed.

7

Another limitation has implications even at the conceptual level. While Loft does merge finite element

nodes that are coincident, it does not attempt to merge or stitch dissimilarly meshed objects. A long fuse-

lage model will stitch correctly as long as the circumferential node counts do not change. However, the

wing, tail, and winglet of the booster in Figure 3 require manual stitching to the adjacent components be-

fore any analysis can be performed. This process can be simplified by positioning of ring frames at the

desired attachment stations, but the final connection must be made manually. Stitching is discussed fur-

ther in the lunar lander stage and the TSTO orbiter examples in the applications portion of this document.

Applications

Loft has been applied to a wide variety of aerospace analyses. Several of these applications will be

discussed to demonstrate the code’s capabilities.

NGLT Wing Sizing

Loft was used to determine the optimum rib and spar count for a Next Generation Launch Technology

(NGLT) vehicle wing. A simple Visual Basic front-end tool was created that allowed the user to vary the

basic wing geometry settings. Then, the user could push a button to: (1) call Loft to generate a mesh for

Figure 8. Tank struts created in Loft.

Figure 9. Visual Basic front end for wing sizing tool.

8

the specified wing, (2) call the finite element code I-DEAS to apply a specified pressure load and solve

the finite element analysis (FEA) system, and (3) call HyperSizer [6] to compute the required weight of

the wing, report back the weight, and report if any negative margins of safety were computed. Figure 9

shows the Visual Basic interface for the wing sizing tool.

This approach allowed a broad survey of the design space to be completed, including a variety of

structural materials, in just a few days. For this particular work, the wing planform was fixed and the rib

and spar counts were varied to determine the lowest weight configuration. Figure 10 illustrates a portion

of the computed wing weight results.

Lunar Lander Stage

In the preliminary stages of NASA’s Constellation program, a variety of lunar lander concepts were

studied. The “DASH Lander” design consists of three stages: an ascent stage, a decent stage, and a retro

stage. The retro stage is responsible for the lunar orbit insertion (LOI) burn and for a substantial portion

of the lander’s decent to the surface before being discarded to crash downrange of the actual landing site.

Both the ascent and decent stages have substantial structural truss components and are not well suited to

being modeled in Loft. However, the concept for the retro stage is similar to that of the Apollo service

module shown in Figure 11 [7].

107500

108000

108500

109000

109500

110000

110500

111000

111500

112000

4 5 6 7

W
e
ig

h
t

(l
b

)

Spars

NGLT4 Wing Weights

11 Ribs 10 Ribs 9 Ribs 8 Ribs 7 Ribs

Figure 10. Variation of wing weight with rib and spar count.

9

Both the CAD and finite element models of the full lander stack are illustrated in Figure 12. On the

right of the illustration, the external skin of the retro module has been removed from the sides and top, to

show the internal detail. Loft was used to create the tanks, the external skin including the lander adaptor at

the top, the cross module bulkheads, and all of the stiffening and attachment beams that lie along the skin

and tanks. A few additional beams were manually added to actually connect the prepositioned load-

bearing frames on the skin and bulkheads to those on the tanks.

Figure 11. Apollo service module.[7]

10

Following construction of the three component models (i.e., the ascent, decent, and retro modules), de-

sign loads were applied in NASTRAN, and the components were sized in HyperSizer. The beams on the

right side of Figure 12 are shown at the actual sizes that were computed by the structural sizing analysis.

Ares V Shroud

Loft was used to create all of the finite element models that were used by the Ares V Shroud pre-phase

A design team. Over the life of the project, this constituted approximately 20 distinct models. Of particu-

lar interest here are the 12 models that were developed in support of a shape optimization study for the

shroud. These shapes are illustrated in Figure 13 and show conic, biconic, hemisphere, ogive, power-law,

and blunted Haack shapes.

Each of the shroud concepts was modeled in Loft, and then analyzed and sized. Other team members

performed aerodynamic, thermal-protection, and trajectory analyses to determine the changes in the

delivered payload mass for each concept.

Figure 12. DASH Lander CAD and FEA models with FEA outer skin

removed.

11

Figure 13. Ares V shroud shapes considered.

One of the biconic-shape analysis models is shown in Figure 14. The model includes separation joints,

large access doors, and small fuel and purge doors. The color changes indicate the different sizing design

regions of the shroud. These regions were defined completely within Loft. Prior to the analysis, boundary

conditions were applied to the base of the structure, aerodynamic loads were mapped onto the finite ele-

ment mesh, and the combined and scaled load cases were defined in the finite element analysis deck.

Figure 14. Bi-conic shroud model created entirely in Loft.

The Loft input file to create the four petal, bi-conic shroud in Figure 14 is 134 lines of ascii text. This

count includes substantial comments for clarity. The following listings show the first 16 lines of the Loft

12

input file for this model. They are provided to illustrate the process that is used to define a model. More

comprehensive and in-depth tutorials are provided in part two of this memorandum.

The first line of the partial input file is a comment. It explains that the next 4-line block of input de-

fines a new curve named “qc” (for quarter circle). The first line of the block defines the type of user-

defined curve (compound) and specifies the “qc” name. The second line identifies the built-in “circle”

curve as the basis of the new shape. The last two lines of the block defines the parameters “sstart” and

“sstop” which specify that the new curve is defined as the section of the “circle” curve from one-eighth to

three-eighths of its circumference.

define "qc" curve as quarter circle

curve compound qc

 child circle

 sstart 0.125

 sstop 0.375

The next block of the input file then uses this “qc” curve to construct the dark blue spherical cap by

creating a dome object named “Nose Cap.” The next three parameter lines specify dimensions for the ob-

ject in the x, y, and z (length) directions. The “taper” parameter specifies a parabolic curvature and “zdist”

controls the spacing of nodes along the length of the dome. The last four parameters define the node and

component (structural sizing region) counts in the axial and circumferential directions.

object dome Nose Cap

 curve1 qc

 c1_xscale 50.688

 c1_yscale 50.688

 length -29.266

 taper para

 zdist 0.6

 nodes_circ 27

 nodes_axial 16

 components_circ 1

 components_axial 2

The remainder of the input file (not shown here) defines the rest of the quarter circumference petal,

creates three clone petals (for a total of four), marks the doors, and saves the completed model.

TSTO Orbiter

As part of a two-stage-to-orbit (TSTO) design study, a finite element model of the orbiter stage was

constructed by using Loft. Because the fuselage cross section is not a shape that is contained in Loft’s

curve library, a user-defined compound curve was specified. This compound curve combined a circular

top, an angled flat side, a round bottom corner, and a flat bottom as shown in Figure 15. Figure 16 shows

the finite element half-model of the vehicle. The last 34 pages of part 2 of this memorandum discuss the

full orbiter input file in fine detail.

13

Figure 15. User-defined compound curve used for fuselage cross section.

Figure 16. TSTO orbiter FEA model.

Figure 17 shows an expanded view of the model to illustrate wing and tank detail. After the manual

stitching was accomplished, simple loads and boundary conditions were applied to the model. A finite

element solution was performed to check for any mechanism behavior that would indicate insufficient

stitching.

14

The input file for the orbiter contains commands to mark the components that are on the vehicle outer

mold line with the label “OML.” Similar marks are applied to the two tanks. These labels can be used to

output a partial model, with all of the node and element indices intact. These partial models make the

mapping of external aerodynamic loads or internal pressure loads to the appropriate portions of the vehi-

cle easier and faster. The mapped data sets can then be applied directly to the full model. Figure 18 shows

OML-only and tank-only models that were created from the full vehicle input file. Note that the OML

model contains only the skins of the wings.

Figure 17. Expanded view of TSTO orbiter FEA model.

Figure 18. Three partial vehicle models created by labeling the full model.

15

Cerro et al. [8] describe the use of Loft as part of a complete conceptual vehicle sizing process.

Eldred et al. [9] describe the incorporation of Loft into a design of experiments driven multidiscipli-

nary system to perform conceptual design of supersonic aircraft with complex wing and fuselage shapes

as illustrated in Figure 19. The wings studied include a potentially large number of spanwise variations of

chord lengths, airfoil shape, twist, and sweep angles. The fuselage configurations allowed for arbitrary

changes in vertical and horizontal diameters and vertical location along the length of the aircraft. These

variations were examined for level of induced sonic boom with the Loft generated structural models being

used to predict vehicle weight for each configuration. Note that Loft generated these wing models as mul-

tiple trapezoidal planforms that automatically stitched together to form a single piecewise-trapezoidal

model with arbitrary sweep, chord, span, twist, and airfoil shape for each section.

User Manual

An extensive manual for users has been created for the Loft program and is included as part two of this

document.

Chapter 1 of the user manual describes the basic terminology and the user interface for the program.

Chapter 2 contains a variety of tutorials, beginning with a very basic commercial aircraft model and pro-

gressing to more advanced subjects, such as user-defined curves and the region mode. Chapter 3 describes

the region mode in significant detail. A programmer’s reference is included in Chapter 4. Chapter 5 de-

scribes two small, related, utility programs. Chapter 6 is a quick reference for all of the commands, pa-

rameters, curves in the library, and taper types that are used for domes and noses. Finally, two complete

input files are provided with discussion and illustrations for each section of the files.

Summary

Loft is a very powerful automated mesh generator that is designed to allow the rapid production of de-

tailed conceptual finite element models that are suitable for analysis and sizing. Its focus on stiffened-

shell aerospace vehicles allows it to produce cleaner meshes than auto-meshing models from commercial

codes. Suitable models for analysis can be produced much more quickly with Loft than with a commercial

code, since the latter requires creation of the geometry and then manual definition of the mesh. The inher-

Figure 19. Complex supersonic wing model.

16

ent parametric nature of Loft makes it ideal for rapidly updating models for trade studies or for design

refinement.

References

1. MSC Nastran, https://hexagon.com/products/product-groups/computer-aided-engineering-software/msc-nastran,

accessed March 1, 2023.

2. Siemens I-DEAS NX, https://www.plm.automation.siemens.com/global/en/resource/i-deas-software-to-nx/96560,

accessed March 1, 2023.

3. Simulia Abaqus FEA, https://www.3ds.com/products-services/simulia/products/abaqus/, accessed March 1, 2023.

4. Tecplot Data File Types, https://www.tecplot.com/2016/09/16/tecplot-data-file-types-dat-plt-szplt/, accessed

March 1, 2023.

5. The Virtual Reality Modeling Language Specification, Version 2.0 ISO/IEC WD 13772,

http://graphcomp.com/info/specs/sgi/vrml/spec/, accessed March 1, 2023.

6. Collier Research Corporation HyperSizer/HyperX, https://collieraerospace.com/, accessed March 1, 2023.

7. “NASA Apollo Command Module New Reference,” North American Aviation, 1968, p. 53

8. Cerro, Jeff; Martinovic, Zoran; Eldred, Lloyd; “Reference Models for Structural Technology Assessment and

Weight Estimation,” SAWE Paper No. 3355, 4th International Conference of the Society of Allied Weight Engi-

neers, Inc., Annapolis, Maryland, 16-18th May, 2005

9. Eldred, Lloyd B., Padula, Sharon L. and Li, Wu; “Enabling Rapid and Robust Structural Analysis During Con-

ceptual Design,” NASA/TM–2015-218687

17

Part 2

Loft: An Automated Mesh Generator

For Stiffened-Shell Aerospace Vehicles

Program Manual

18

Chapter 1: Introduction

Loft is an automated mesh generation code designed for aerospace vehicle structures. Based on user

input, it can generate meshes for wings, noses, tanks, fuselage sections, thrust structures, etc. As the mesh

is generated, each element is assigned properties that mark what part of the vehicle it is associated with.

This property assignment is an extremely powerful feature making possible detailed analysis tasks such as

load application and sizing.

Loft can save its meshes in NASTRAN bulk data deck, Seimens’ I-DEAS Universal File format,

Abaqus input file format, VRML 2.0 (Virtual Reality Modeling Language), Tecplot, and STL (STereo

Lithography) files. The property assignment scheme was designed to make sizing in Collier Research’s

HyperSizer and HyperX easy. Support for other mesh storage formats can be added as needed.

This Manual

This manual consists of six parts. The first part is an introduction and overview of the program and

how it works. The second section is a practical tutorial on constructing a variety of vehicles and

components. The third part of the manual discusses the powerful region concept in detail. The fourth

section of the manual is a technical/programmer’s reference describing how the code is written and how

to add to it. Part five documents various external utility programs that have been written for Loft. The

final part is a reference guide giving details on all commands and objects.

Mesh Construction

Loft uses very basic finite elements: 4-node quadrilaterals, 3-node triangles, 2-node bars, and 2-node

beams. It uses these simple elements and user input dimensions to build complex full vehicle finite ele-

ment meshes.

A vehicle is described starting at one end, typically the nose in the case of a fuselage. The user

specifies that first component’s shape, dimensions, mesh density, and position. The adjacent component is

described next and the process is repeated until the entire structure has been defined. Loft copies the

dimensions and mesh density from object to object and automatically positions a new object directly

behind the previous one, allowing easy construction of a sequential stack of objects. This minimizes user

19

input, with only changes from the default values needing to be specified. In the exploded view above, the

example booster object contains 18 “objects” including ring frames and longerons. Yet it can be built

from a 100-line text input file.

Node ordering is set so that element normal vectors point outward. In situations where this is not the

desired behavior (such as a concave tank dome), most object types support a flip parameter that revers-

es element node ordering.

Formatting in this manual

A variety of fonts and styles are used in this manual for distinct purposes. Italics are used to introduce

new terms and when the Loft program itself is named. The courier font is used for input file exam-

ples and references.

Terminology

The lowest level geometric entity used by Loft is a curve. A curve is a two-dimensional object such as

a circle, semi-circle, or box. Loft includes a library of basic curves and others may be added to the code as

needed. Alternatively, Loft also features a number of ways for a user to specify a curve in the input file,

including linearly interpolated curves and compound curves built up from any previously defined curves.

An object is a three-dimensional meshed part made by either extruding one curve or linearly interpo-

lating an extrusion between two curves. (Some objects, such as bulkheads or a ring frame, are actually

two-dimensional). Objects include parts such as nose cones, tank domes, tank barrels, bulkheads, etc.

Each object is defined separately and has its own name and parameters.

A stack is a collection of objects that may make up an entire vehicle. Each object is added to the current

stack as it is created, and the full stack is written by the write command. The new command can be used

to start a new stack. The store command can be used to assign a name to the current stack, to save it in

memory (to a temporary internal clipboard which is lost when the program exits), and to start a new stack.

The recall command is used to copy a stored stack back into the current stack. Store and recall

can be used to control the scope of object movement, sizing, and distortion commands, as well as to build

different configurations of a multi-part vehicle (e.g., Shuttle with external tank and solid rocket boosters,

Shuttle with just the external tank, Shuttle alone).

Object Types

There are a few basic types of objects. Meta-objects are simply macros that combine several of the

basic types. Any number and combination of these object types can be created and merged into a single

mesh.

Domes are the class of extruded objects taking a single curve to a single nose point. These objects can

taper to the nose point in a number of ways, resulting in elliptical domes, conical domes, parabolic noses,

ogive noses, power-law noses or flat bulkheads. Optionally, a droop can be added to a dome to produce

simple aircraft nose objects. Domes are meshed with quadrilateral panel elements, except at the nose

point where triangular elements are used.

20

Sections are the class of objects that are extruded between two curves. This extrusion is linear and re-

sults in parts that can represent tank barrels, fuselage barrels, thrust structures, payload bays, etc. Sections

are meshed with quadrilateral panel elements.

Frames and Dframes are the classes of objects that distribute beam elements along a curve. These can

use a single curve as their basis to align with a dome object or be positioned between two curves to align

with a panel section. They can run circumferentially or longitudinally (ring frames or longerons). The

frame object type is used to stiffen a section object and the dframe object type is used to stiffen a dome

object.

A wing is an extruded surface with internal stiffening (ribs and spars). Wings are meshed with quadri-

lateral panel elements except at the leading edge of each rib where a triangular element is used.

A tank is an example of a meta-object macro that combines two dome objects and a section object in a

consistent way. It allows for somewhat fewer options than building the tank up from lower level objects.

A Stifftank is a meta-object that produces a ring frame stiffened tank

Property Marking

One of the powerful features of Loft is the labeling of elements corresponding to their location on the

model. This is accomplished by assigning dummy properties with descriptive names. (Actual property

values are replaced in the analysis or sizing stage). With an I-DEAS output file, each element has a phys-

ical and material property reference. Each type of property has a 40-character name available. For

NASTRAN, property names are indicated as Patran-compatible comments on the element property and

material cards. VRML output files are colored to indicate their property assignments.

For simple domes and sections, the name of the object is placed in the physical property, referenced by

all of its elements. The material property is used to indicate where on the object the elements are. The

resolution of the material property name is controlled by the “components axial” and “components cir-

cumferential” object parameters. A typical material property name could be “Axial 3 Circ 5.” Note that

these are not element coordinates; there is generally more than one element per component in each direc-

tion (but there need not be).

For wing objects and meta-objects like tanks, the physical property name will be more descriptive. It

will start with the object name but then add details such as “RIB,” “SKIN UPPER,” or “DOME AFT.”

For these kinds of objects, a short object name is recommended so that the full property name will fit in

40 characters. An object name longer than 27 characters will be occasionally truncated. This truncation

will be just enough to allow the full inclusion of the detail string.

HyperSizer concatenates the physical and material property names to make component names. Thus,

each group of elements with a unique combination of property names will be collected into a component.

Typical component names will look like:

“LOX TANK | AXIAL 5 CIRC 2”

“CANARD SKIN LOWER | SB 2 CB 5”

I-DEAS universal files that HyperSizer generates will contain property names that start with

“(HSGEN)” and are followed by as much of the component name as will fit in 40 characters.

21

Loft also generates a variety of groups when running. These groups mark nodes that are on curve end-

points, lines of symmetry, wing attachment points, etc. These groups are named based on their object

name. Thus, for an object called “MyWing,” there will be groups called: “MyWing Root Nodes,”

“MyWing Tip Nodes,” “MyWing All Nodes,” etc.

The user can specify additional groups to which an object’s nodes or elements can be added, using the

mark object parameter. Any number of marks can be specified per object and a particular group name

can be used by any number of objects. For example, a small nose-cap object might belong to marked

groups “Booster Nose Elements” and “Booster OML Elements.”

User Interface Introduction

Loft is controlled by a text file input deck. The user specifies each object that is desired in the model.

For each object, geometric data such as diameter, length, and position are supplied. Meshing variables

such as the number of elements and the number of sizing components in each direction are also needed.

Most input values are optional; default values will be used for any not supplied by the user.

A Loft input deck is read line by line. Each line can be a comment, command, or a parameter for the

most recent command. Any number of parameter lines can be given (including zero), with a new com-

mand line marking the end of the previous command and its parameters. All input is case-insensitive.

Comment lines start with a pound sign, “#,” followed by any amount of text. Comments are ignored by

the Loft code. Comments can also be placed on a line after a command or parameter by using the pound

sign marker.

Command lines cause objects to be created, output to be written, and meta-variables to be set (such as

unit type). There is a very short list of legal commands.

Parameters are optional lines that specify details for commands. All parameters are optional and are

used when the program default is not what is desired. Some defaults are fixed, but most defaults will

change based on previous user input. For instance, the default position for a new object is immediately

behind the previous object, and the default curve to extrude is the previous curve. Thus, the defaults will

attempt to produce a stack of smoothly connected objects.

To specify parameters, add lines after the command with the parameter names followed by the new

values. Parameter ordering does not matter for object parameters; an object is actually generated when the

next command is encountered. Parameter ordering does matter for the move command.

Input lines may contain basic mathematical operations, specified in infix notation with equal priority for

all operations, e.g., multiplication and division are not given precedence over addition and subtraction.

Currently supported operations include addition, subtraction, multiplication, and division.

Loft also supports user-defined variables using the define command. These variables may be com-

bined or modified using the basic math operations.

Here is a short example.

22

This creates a circular to breadbox transition

for a half vehicle

object section MyTransition

 curve1 sc # semi-circle

 curve2 sbb # semi-breadbox

 length 12

save

write vrml MyTransition.wrl

The three parameter lines for the section object are indented for clarity. This is not required by Loft.

Loft is designed to be run from a command line. Windows users may call this a “DOS shell.” One way

to open a command line interface in Windows is to select “Run…” from the Start Menu, then type “cmd”

as the name of the program to be run. Then use the “cd” command to change directories to where the in-

put file and Loft executable are located. The input file name is given as an argument when Loft is run,

such as:

loft mytransition.txt

On Windows another option is to create a text file with the desired command. It is recommended that a

greater than symbol and then the name of a file is also added to capture the output from Loft. Your new file

would end up something like:

loft inputfile.txt >outputfile.txt

Save that text file, then change the extension to “.bat.” Now you can double click on the file to execute

the stored command or commands. A DOS window will open, show you the command running, and then

close. The specified output file can be read to see the run-time output from Loft. Other operating systems

have similar functionality (Linux/unix shell scripts, etc.)

Special Characters in Loft

Several symbols are used as flags for Loft’s input parsing routines. They indicate that the text following

has a special meaning. Here is a current list:

- The number or pound symbol is used to start a comment. It can be used at any point on an input line.

Everything after the pound symbol is ignored by Loft.

$ - The dollar symbol is used to recall a user variable that has previously been set using the define

command. See tutorial project 7 on Variables and Math for more details.

@ - The at-sign symbol is used to recall a system variable. A list of variables is available in Chapter 6’s

“System Variable List” charts. See tutorial project 7 on Variables and Math for more details.

% - The percent sign is used to call a math function such as sine or squareroot. See tutorial project 7 for

details and Chapter 6’s “Math Function List” chart.

+,-,*,/ - The plus, minus, star, and forward slash symbols are used for their corresponding math function:

addition, subtraction, multiplication, and division. See tutorial project 7.

23

Positioning in Loft

Each object is automatically positioned by Loft in such a way as to produce a single, continuous vehi-

cle. From time to time, this default positioning will need to be overridden. There are a wide variety of

positioning, rotation, scaling, and warping options available to the user. Most of these operations can be

done at both the object and stack levels, with some significant ordering related differences between the

two approaches.

The default axes for a vehicle are X as the lateral direction, Y as the vertical direction, and Z as the ve-

hicle axial direction. These axes are aligned in a right-hand rule configuration. Z increases as the stack is

built. Another way to state this is that all of the 2-D curves are defined in the X-Y plane, with Z as the

extrusion direction. If, as in the example vehicle included in this manual, the stack starts at the nose then

the positive Z direction is aft on the vehicle. Use of the rotation commands prior to saving the mesh can

align the mesh as the user prefers. NASA models will typically use X as the vehicle axial direction. Con-

verting to this alignment requires two lines before saving the model:

move

roty 90

Each object has a local origin that is placed at the current default location. For wings, the local origin

is the leading edge root node. For domes, sections, and frames, the local origin is the center point of curve

1.

Most Loft vehicles start with an outward dome object (vehicle nose). Consequently, that nose will be

specified with a negative length and will be created with most nodes residing on the negative Z-axis. The

global origin will be at the rear of the nose (the center of curve 1). A translation must be specified if mov-

ing the global origin to the vehicle nose tip is desired.

When a new section object is created, the default position for any subsequent objects is moved to the

center point of curve 2 (to position it behind that section object). Other object types do not move the de-

fault creation point. However, any use of object level or stack level positioning commands (see the head-

ing below) will change the default creation point of all following objects. Note that meta-objects, such as

the tank type that contain sections, will also move the default creation point.

The default positioning for a new object can be set back to the global origin with the reset command

(which also resets all object dimension defaults to their initial values). A store command moves the

current stack to an internal clipboard then resets the default position values as well.

Object vs. Stack Level Positioning

To use a positioning parameter at an object level, just add a line specifying the parameter name and

value(s) to the file section describing that object. The ordering of object level parameters does not matter.

Once all parameters for the object have been read, the mesh is generated, and then the positioning is per-

formed in the following order: warping, rotations, and then translations.

To position the entire current stack, the move command is used. Position parameters that are given,

following a move command, are acted upon in the order in which they are read.

24

Translations

There are two types of translation setting options: absolute and relative. The parameters transx,

transy, and transy override the default position setting and assign an absolute position to the item.

The parameters relx, rely, and relz can only be used at the object level. They add the user-specified

value to the default value, rather than just replacing the default. In most cases, the relative translation

parameters are preferable, as a dimension change much earlier in a vehicle stack will not cause inaccurate

positioning.

Usage: <parameter> <value>

Example: relx 2.0

Rotations

Similarly, there are absolute and relative rotation commands. They are rotx, roty, rotz,

relrotx, relroty, and relrotz. As with the translation commands, the relative rotation com-

mands can only be used at the object level.

Usage: <parameter> <value>

Example: relrotx 2.0

Scaling

The three scaling commands can only be used at the stack level. They are scalex, scaley, and

scalez. (Use the curve xscale and yscale parameters at the object level to perform a similar function.)

Usage: <parameter> <value>

Example: scalex 2.0

Warping

Warping allows the distortion of part of a mesh. All of the warp commands use a coordinate axis as the

dividing line between parts of the mesh that are modified and parts that are not. The last two letters of the

parameter specify the side of the axis (p for positive, n for negative) and the axis to use as the division.

For instance, the warppx parameter will distort all nodes that start with positive x coordinates.

There are two types of warping available: constant and gradient. Constant warps (warppx, warppy,

warppz, warpnx, warpny, and warpnz) will scale all nodes in the specified zone by the given val-

ues. Gradient warps (gwarppx, gwarppy, gwarppz, gwarpnx, gwarpny, and gwarpnz) increase

the distortion the further the node is from the given axis. The user-supplied value is the scaling applied for

nodes that start one unit away from the axis. Nodes that start two units away from the axis are distorted

twice as much, and so on.

Each of the warp parameters takes three arguments: the amounts to scale the x, y, and z coordinates of

affected nodes. For example, the parameter “gwarpny 1.0 1.0 2.0” will scale the z coordinates of

any node that starts with a y coordinate less than zero. A node that starts at y = –1 will have its z coordi-

nate doubled, if it starts at y = –1.5 it will have its z coordinate tripled, etc.

25

Only one warp operation can be specified at the object level per object (the last one read will be the

one that is performed.) A warp operation combined with a scale operation can produce the effect of two

warp operations. Any number of warp operations can be performed at the stack level. Interleaving warp

parameters with translation parameters can give a very fine control over the nodes being distorted.

These commands can significantly change element aspect ratios and lead to poorly formed elements.

Use with care and verify that the desired effect is being obtained before proceeding.

Usage: <parameter> <x scale> <y scale> <z scale>

Example: warpnx 0.1 2.0 5.2

Flipping

By default, node ordering for elements is chosen such that element normals will point outward. The

flip parameter can be used to reverse this ordering. It is valid for both objects and the full stack. Only

panel node ordering is affected.

Usage: flip

Turning

This option is valid only at the stack level. A turn parameter reorders the nodes with the intention of

changing the material orientation vector to be parallel to a different element axis. A quad that started with

nodes 1-2-3-4 when turned will be connected 2-3-4-1. The actual result of this operation will depend on

the FEA package used.

Usage: turn

User Specified Curves

Loft supports three ways of defining new curves in the input file. Once defined, a user-defined curve

can be used in exactly the same ways that a curve from the built-in curve library is used. As part of the

definition process, the user specifies a mnemonic for the new curve. Whenever a curve mnemonic is en-

countered after that point, Loft will search its internal curve mnemonics, then the list of user-defined

curves.

Interpolated curves are built from user-specified x,y coordinates pairs. At the moment, only linear in-

terpolation between the user’s points is supported; options for curved interpolation may be added in the

future.

Compound curves are built by tracing the outside of sequentially listed curves until the next curve is

encountered, then tracing its outside until it intersects with the next curve, etc. This curve option can be

used to define the shape of multi-lobe tanks, etc.

Lofted curves are curves created by blending two parent curves. These curves are temporarily created

in most mesh creation processes that Loft performs where the cross section of the object is changing along

its length from the curve specified at one end to the curve specified at the other end. The user-defined

26

lofted curves allow the user to store and use these blended shapes. One application of the lofted curve

type is to create a bulkhead in the middle of a section.

Curves are defined by using the curve command, followed by the type (interpolated, com-

pound, lofted, etc.) and a user supplied name. Parameter lists for the curve command are discussed

in the chapter 6, and tutorials on using all types of user-defined curves are in the tutorial project 3 found

in chapter 2.

27

Chapter 2: Tutorials

Introduction

Loft is an easy-to-use program that takes very simple finite elements and builds detailed finite element

meshes. A user controls Loft by creating a text input deck with their favorite editor such as notepad in

Windows and vi or emacs in Unix/Linux.

The input files developed in these tutorials are all available in their finished forms in the “tutorials”

subdirectory. They are named “project1.txt,” etc. and will produce output files named “project1.wrl,” etc.

List of Tutorials

Project 1: A Simple Commuter Jet

Project 2: Converting Project 1 Mesh to a full vehicle

Project 3: Creating and using User-defined Curves

Part A: Interpolated Curves

Part B: User-defined Compound Curves

Part C: User-defined Lofted curves

Project 4: A Tapered Four-Lobe Tank

Project 5: Controlling Circumferential Node Distribution

Project 6: Introduction to Regions

Project 7: Variables and Math

Project 8: Bodies of Revolution, Toroids, and Helixes

28

Project 1: A Simple Commuter Jet

The examples in these tutorials will consist mostly of symmetric or half models, where only one side

of the vehicle is generated. This is done so that internal details of the meshes can be viewed easily. Pro-

ject 2 will show how to modify the input file to produce a full vehicle model.

A good practice is to start the file with a number of comment lines describing the file. The tutorial pro-

jects will also use comments throughout the files being created for ease of reading and to explain what is

going on. These are completely optional. So, the input deck starts:

Loft Tutorials: Project 1

A Simple Airliner

Created 4/16/03 by N. Jineer

Generally a user will want to describe a vehicle starting at one end and moving sequentially from ma-

jor component to major component. This example starts with the nose:

The nose

object dome Nose

Object is a Loft command. As might be inferred from its name, it creates a new object. That’s all that

is needed, assuming the desired result is a spherical dome that is one unit in radius and one unit in length.

But, let’s change from the default values. To do that, parameters are supplied for the object command.

All parameters are optional. It’s only when the default values need to be overridden or when the user

wants clarity that they are needed. For instance, the initial default value for the curve1 parameter (as

found in the dome object documentation in Chapter 6 of this manual) is sc, so the first new line below

isn’t actually necessary at this stage.

curve1 sc

29

length –15.0

c1_xscale 10.0

c1_yscale 10.0

The curve library chart in Chapter 6 shows the various curve shapes that Loft currently supports and

the mnemonics by which a user references them. The sc mnemonic produces a semi-circle. The length

parameter controls how long the dome is. Since the positive axial direction for Loft is aft, and the nose

should be generated in the other direction, a negative value is given. The next two lines change the radius

of the circle in the horizontal (x) and vertical (y) directions. Here both scale factors, c1_xscale and

c1_yscale, are set to be the same value of 10.0.

Now, let’s see the result. To do that, an output command is added to the file:

Save and exit

write vrml project1.wrl

end

The write command tells Loft to write the current mesh to a data file, in a variety of possible formats

(see the write command reference in Chapter 6 for supported formats). The end command is optional;

Loft will exit when it runs out of input. Save the file, then run Loft at a command line prompt (under Win-

dows open a DOS Shell window)

 loft project1.txt

Loft will produce a variety of text output describing what it is doing. If all went well, Loft created a

new VRML 2.0 file called “project1.wrl.” Open this file in an appropriate viewer (one is not included

with Loft), and rotate the model to see it from various perspectives:

Obviously, the model could use some improvements. Open the input file in the editor again.

More parameters will be added to the end of the nose object definition, so move the cursor above the

“# Save and exit” line. From now on save, run Loft, and view the current object whenever desired

to see how things are going. Note that write commands can be added wherever desired in the input file, so

“write vrml project1-nose.wrl” could be added after all the nose object parameters and

“write vrml project1-nose-and-body.wrl” after the body is added, etc. Remember, how-

ever, that all parameters for a command (such as the object command currently being edited) need to fol-

30

low that command directly; once another command is encountered (i.e., a write command) the previous

command is finished.

The first thing to change is the curvature of the nose. Referring to the “dome taper library” figure in

Chapter 6, there are illustrations of differently shaped dome objects and the mnemonics necessary to use

them. Change from the default spherical tapered dome to a parabolic tapered one.

taper para

Now, drop the nose tip down a little so the pilots can see out.

zdroop 4.0

And make the mesh a little denser.

nodes_circ 21

nodes_axial 15

31

Now, create a fuselage body. That requires a new section object.

Fuselage

object section Fuselage

length 50

nodes_axial 60

Notice that significantly fewer parameters are needed compared to the nose. Most of the nose shape

parameters are now the default for the next object. Only those that change need to be specified.

Next, add a flat bulkhead to show a little bit of internal detail. Note that a bulkhead is created by mak-

ing a dome object and specifying another taper schedule. A parabolic taper was used for the nose; here a

bulkhead taper is used.

Bulkhead

object dome Bulkhead

taper bulk

nodes_axial 10

32

Each new object is automatically positioned behind the previous object: the fuselage is behind the

nose, and the bulkhead is behind the fuselage. This makes building sequential structures like this very

simple. Manually positioning objects will be covered shortly.

Next, add the rear part of the fuselage. In this case, it will look very much like the nose, but drooping

in the opposite direction.

Rear Cap

object dome Rear cap

taper para

length 15.0

zdroop -4.5

nodes_circ 21

nodes_axial 15

Next, move onto the wing.

Main Wing

object wing Main Wing

span 40

33

chord 20

taper 0.5

sweep 20

mesh 1

rootnaca 3412

tipnaca 3410

sparpos 10

sparpos 25

sparpos 75

ribpos 33

ribpos 66

wingbox 5

boxfront 2

That’s a lot of parameters, but the meaning of most of them should be obvious (refer to the wing ob-

ject reference in Chapter 6). Spars are positioned at 10, 25, and 75 percent of chord and ribs at 33 and 66

percent of the span (ribs are automatically created at 0 and 100 percent). The last two lines ask for Loft to

create a wingbox carrythrough. The default behavior is to extrude the front most and rear most spars to

make this box, but the boxfront parameter here says to use the second front-most spar instead (thus

extruding from the 25 and 75 percent spars, not the 10 percent.) The resulting model looks like this:

The wing shape is correct, but it’s in the wrong place. Why is that? First, dome objects’ lengths do not

alter the default starting point of the next object. And the origin of a wing object is at its leading edge

root. So, the leading edge root point of the wing is sitting at the rear center point of the fuselage section.

There are a couple of ways to move the wing. It is possible to specify the exact position of the leading

edge root point with the transx, transy, and transz parameters. There are cases when this is the

way to go, but in most cases, the relative translation parameters relx, etc. are better. These values are

translations relative to the default position. Doing things this way will result in the wing staying in the

same spot at the rear of the fuselage even if the fuselage length is later changed.

relx 5

rely -9.5

relz –25

34

The x translation moves the carrythough to the centerline. The y translation moves the wing down to

the bottom of the fuselage, and the z translation moves the wing forward.

Now, add a vertical tail to the top of the rear cap.

Vertical Tail

object wing Vertical Tail

span 18

chord 15

rootnaca 0412

tipnaca 0410

halfwing bottom

wingbox 1

rotz 90

rely 19.5

relz 25

relx –5

Here symmetric airfoil sections were chosen, and since the tail is on the line of symmetry, only half of

it was generated by specifying the halfwing parameter. The default position for the tail object is at the

leading edge root point of the main wing, so the x translation moves the origin (leading edge root) of the

tail back to the centerline, the y translation moves it to the top of the fuselage, and the z translation moves

it back to the end of the fuselage section object. The rotation command spins the tail to be vertical.

35

With the halfwing option, it’s possible to see the internal spars and ribs on the tail, which are in the

same position as on the main wing (since no change was specified).

Finally, add a high horizontal tail to the top of the vertical tail:

Horizontal Tail

object wing Horizontal Tail

chord 7.5

span 11.0

rely 18

relz 6.551

rotz 0

The rotz parameter needs to be reset back to zero, from its new default of 90. Notice, however, that

the halfwing parameter did not have to be turned off – as seen in the wing object documentation in-

Chapter 6 it always defaults to off. The chord length and y and z translations are chosen to position the

horizontal tail aligned with the top of the swept vertical tail.

Note that the various wing objects are not actually connected (in a finite element sense) to the fuselage

or each other at this stage. Before actually using this model to perform an analysis, some work should be

done with the mesh density on the horizontal tail (to make it match that on the vertical tail), and some ring

frames should probably be added where the wing and tail connect to the fuselage to provide stronger at-

tachment points.

36

Project 2: Converting Project 1 Mesh to a Full Vehicle

There are two different ways to accomplish this task. Both will be demonstrated in this tutorial. The

choice as to which option is better depends on the situation. The first approach is to modify a few lines in

the input deck to change the half pieces to full ones and to make portside wing surfaces. The second ap-

proach is to use Loft’s internal clipboard to clone and mirror the half vehicle. The first option is better if

only a full model is desired. The second is convenient if both models are needed for different reasons.

Approach 1: Change from half objects to full

Copy project1.txt file to project2a.txt. Open the new file in the editor and move down to the second

non-comment line: “curve1 sc.” Change the “sc” to “cir.” Running Loft on this modified file produc-

es:

The new full circle curve1 parameter becomes the default for the rest of the fuselage objects by only

changing the one line at the beginning of the file. You may also want to double the circumferential node

density so that the spacing is the same as before: “nodes_circ 41.” Now, fix the wings.

After the Main Wing object (which could be renamed as Starboard Wing), add the following:

object wing Port Wing

wingside port

wingbox 5

relx -10

This can be short because all of the Main Wing geometric parameters have become the default for any

subsequent wing object. The wingbox parameter, however, always defaults to zero (see the wing ob-

ject documentation in Chapter 6) so it needs to be set again. And other than the two parameters specified

in the new lines above, that’s exactly what is wanted.

37

Why has the vertical tail moved? This is one of the hazards of using relative position parameters: the

vertical tail is now 5 units to the port of the origin of the port wing (leading edge root), rather than the

origin of the starboard wing. Instead of changing the tail’s relx –5 parameter to relx 5, change it to:

transx 0.0

Also, delete the tail’s halfwing parameter. Finally, create a port horizontal tail object by adding

these two lines after the starboard horizontal tail object:

object wing P Horizontal Tail

wingside port

With all of the edits, the final input deck, with some (optional) added indentation for reading clarity, is:

Loft Tutorials: Project 2a

A Simple Airliner

Created 4/16/03 by N. Jineer

The nose

object dome Nose

curve1 cir

length -15.0

c1_xscale 10.0

c1_yscale 10.0

taper para

zdroop 4.0

nodes_circ 41

nodes_axial 15

Fuselage

object section Fuselage

length 50

nodes_axial 60

Bulkhead

object dome Bulkhead

taper bulk

nodes_axial 10

Rear Cap

38

object dome Rear cap

taper para

length 15.0

zdroop -4.5

nodes_circ 21

nodes_axial 15

Main Wing

object wing Starboard Wing

span 40

chord 20

taper 0.5

sweep 20

mesh 1

rootnaca 3412

tipnaca 3410

sparpos 10

sparpos 25

sparpos 75

ribpos 33

ribpos 66

wingbox 5

boxfront 2

relx 5

rely -9.5

relz -25

object wing Port Wing

wingside port

wingbox 5

relx -10

Vertical Tail

object wing Vertical Tail

span 18

chord 15

rootnaca 0412

tipnaca 0410

wingbox 1

rotz 90

rely 19.5

relz 25

transx 0.0

Horizontal Tail

object wing SB Horizontal Tail

chord 7.5

span 11.0

rely 18

39

relz 6.551

rotz 0

object wing P Horizontal Tail

wingside port

Save and exit

write vrml project2a.wrl

end

which produces the complete model shown below. As with the half model, manual stitching of the wing

surfaces to each other and the fuselage would be necessary prior to any finite element analysis.

Approach 2: Clone the half model into a full model

This part of the tutorial will create a very similar mesh another way. Start by copying project1.txt file

to project2b.txt. Open the file and move the cursor down past all the object commands and parameters

and before the # Save and exit line. Add the following lines:

Store the starboard half model

store SB

Recall and mirror it

recall SB

move

scalex -1.0

flip

These commands start by moving the half model to the internal clipboard and naming it “SB.” The

store command clears and resets the active workspace. So, the next command recalls it back into active

memory. The next three lines perform two stack level move operations. The scalex –1.0 parameter

changes the sign of all nodes’ x coordinates. This mirrors the mesh, but also has the undesired effect of

causing all the element normal vectors to point inward rather than outward. The flip parameter reverses

all the normal vectors. At this stage, the model looks exactly like before, but mirrored onto the port side:

40

Now, to get the original starboard mesh recalled and merged, just add:

Recall it again

recall SB

The merge part of the operation, which is performed automatically, can be a little slow, particularly

when the same object is being combined. The final mesh looks like:

The meshes produced by these two approaches are in many ways identical. The nodes and the ele-

ments are in the same places (the cloned approach may have extra nodes and elements in the vertical tail

due to being created as two halfwings). The real differences are subtle. If I-DEAS universal files were

created by adding lines like

write unv project2a.unv

to each file and these universal files were imported into I-DEAS, the differences could be located. In the

first case, the two wing and the two horizontal tail meshes each have differently named properties and

groups associated with them. With the second approach, the two wings share properties and groups, and

the two horizontal tails do as well.

41

Project 3: Creating and Using User-defined Curves

Part A: Interpolated Curves

Loft’s curve and curve family library covers the basic shapes used for many aerospace vehicle compo-

nents. But, the library can’t contain everything. This project explains how to use the interpolated curve

definition capability to create user-defined shapes.

Defining an interpolated curve is easy. Just provide a sequential list of nodes that define the corners of

the shape. Start at the top of the curve (12 o’clock), and define nodes in a clockwise fashion.

In general, try to define your curve with a nominal radius of 1.0. The user then defines an object’s size

with the xscale and yscale parameters. Alternatively, give full-scale coordinates for the curve’s defi-

nition points and keep the object scale parameters close to 1.0.

The figure above is generated using the built-in semi-circle shape on the right end and two user-

defined interpolated curves at the center and left end. The center shape is a half diamond. The cross sec-

tion looks like:

42

To define this shape to fit in a unit circle, start at the top. The coordinates are x=0, y=1. The midpoint

of the shape is at x=1, y=0, and the bottom point is at x=0, y=-1. The command and parameters to specify

these coordinates as a Loft interpolated curve named “sd” are:

half diamond shape

curve interpolated sd

start 0.0 1.0

line 1.0 0.0

line 0.0 -1.0

Once defined, the “sd” mnemonic can be used in any subsequent objects as if it were a curve in the li-

brary.

The user should keep in mind that due to the sampling scheme used by Loft to distribute nodes, the

points given when defining the shape may or may not appear exactly in the final meshed objects that use

the curve. When the user has finished defining a curve, Loft will compute the lengths of each segment and

the total length of the curve. Then, when the curve is used it will evenly distribute the meshed points

along the total length of the curve.

For example, if the user specifies the above “sd” curve and has a nodes_circ parameter of three,

Loft will generate nodes at 0, 50, and 100 percent along the curve, and by coincidence, create the exact

inputted shape:

But, if the user instead had a nodes_circ parameter of four, Loft would generate nodes at 0, 33, 66,

and 100 percent along the curve, giving a cross-sectional shape that looks like:

43

By the way, Loft will show this same corner-rounding behavior when using library curves and the oth-

er types of user-defined curves. The user may need to experiment with the number of nodes specified if

hitting the corners exactly is important. See project 5 for some additional ways to address this issue.

To finish this project, define a second interpolated curve (the M-shaped left side of the original figure)

and then use both curves:

curve interpolated toothout

start 0.0 1.0

line 1.0 1.0

line 0.25 0.0

line 1.0 -1.0

line 0.0 -1.0

object section Barrel

curve1 sc

curve2 sd

c1_xscale 15.589

c1_yscale 15.589

c2_xscale 15.589

c2_yscale 15.589

nodes_circ 21

length 50

nodes_axial 30

components_axial 6

object section Barrel2

curve2 toothout

length 40

nodes_axial 25

object frame Ring Frames

save

write vrml project3a.wrl

end

44

The complete file specifies two user-defined curves and then builds two sections. The first section

blends a semi-circle to the user’s semi-diamond shape. The second section blends the semi-diamond to

the letter “M” shaped “toothout” curve. Note that in the finished mesh the corner of the “sd” curve is

sampled exactly, as is the middle corner of the “toothout,” but the two intermediate corners are slightly

rounded. Finally, a frame object is added to the second section. The white lines in the figure show the cir-

cumferential beam elements that make up the frame.

45

Part B: User-defined Compound Curves

A more powerful option for user-defined curves is the compound curve. As the name implies, com-

pound curves are combinations of previously defined curves. In fact, any previously defined curve can be

used as a child curve to build up a more complex parent compound curve. Any library curve, as well as

any previously defined interpolated, compound, or lofted curve, can be used.

This power comes at a price. Loft is currently unable to compute the intersections of two arbitrary

curves, so the user must tell the code where to stop using one child curve and where to start using the

next. Loft can locate the intersection points of circles and semi-circles with other circles or semi-circles.

However, any other curve combination will need user intervention to specify intersection locations.

The Compound Curve Concept

To picture the basic idea of a compound curve, imagine a sheet of rolled dough and a handful of inter-

estingly shaped cookie cutters. Imagine selecting a cutter and making an impression in the dough with it

but not removing the cookie. Then, select another (or perhaps the same) cutter and make another impres-

sion – that intersects the first. Continue this process as long as desired. Now imagine using a finger to re-

blend all of the internal lines leaving only the outer-most indention. This could produce a very strange

shape. That’s basically what the compound curve type allows one to do.

The “s” Parameter

Internally, Loft’s curves are generated based on fractional location along their perimeter. This perime-

ter coordinate is called “s” and varies between zero and one. If the user generates a barrel object with

three nodes in the circumferential direction, Loft will generate nodes at s = 0.0, s = 0.5, and s = 1.0 on

each curve and linearly connect them.

The library curve subroutines’ only function is to accept an “s” value as input and to return the two-

dimensional coordinates of the point at that fraction along the curve. All library curves are defined with s

= 0 at the 12 o’clock position, and s increasing as one moves clockwise around the curve to s = 1 at its

end.

This is the semi-circle subroutine:

46

angle = (90.0 - 180.0 * s) * pi / 180.0;

x = cos(angle);

y = sin(angle);

The full circle routine uses instead:

angle = (90.0 - 360.0 * s) * pi / 180.0;

Looking at these two code snippets confirms that s = 0 generates the (x,y) coordinates of a node on the

curve at 12 o’clock and a nominal radius of 1.0. Any other s value generates the coordinates for that frac-

tional location along the curve.

Of Parents, Children, and Arcs

Return to the dough and cookie cutter metaphor above. Each time a cookie cutter was used. a child

curve was created. Now picture the outer-most “parent” boundary line. Each portion of that curve con-

tributed by a new child is called an “arc.”

The task when defining a compound curve is to sequentially specify the child curves necessary to

generate each arc of the final curve. In many cases, a particular child will be specified more than once

since it may contribute to more than one section of the parent curve.

For each child curve, specify the mnemonic for the child curve, its center coordinates, and its ra-

dius. The next step is to specify what portion of the child will contribute to the parent curve. This is

done with the sstart and sstop parameters. These are the “s” coordinates of the child curve that mark

the endpoints of the arc being specified. Optionally, Loft can automatically compute these parameters

when two circle or semi-circle children intersect.

For proper extruding and connection of panels, the final compound curve should start on the horizontal

centerline at the 12 o’clock position and trace clockwise around to the end of the curve. Typically, the end

will be either at 6 o’clock or back at 12 o’clock. Put some planning into the radius values used for the

child curves. Ideally, the resulting parent curve should have a nominal unit radius. This will make later

use of the compound curve and selection of x and y scale values consistent with the scale values used

with the library curves. Alternatively, the compound curve can be specified with actual dimensions. In

such a case, the x and y scale values for objects using those curves will be near unity. Just keep in mind

that the radii and center points specified when defining the curves will be scaled later by the meshing rou-

tines.

How Loft Uses a Compound Curve

Once a compound curve has been defined, Loft calculates the circumference of each arc (by a piece-

wise-linear approximation for non-circular arcs) and sums them to compute the total circumference for

the compound curve. Each child’s contribution to the total circumference is used to determine what range

of the parent’s “s” coordinate for which it is responsible. When the compound curve code is asked for an

(x,y) coordinate based on a particular “s,” Loft will figure out which child is responsible for that location

and where on that child’s arc the point is. This information is used to compute a “local s” parameter for

the child curve. The coordinates returned by the child are scaled and translated to generate the coordinate

of that spot on the parent curve.

47

A Compound Curve Example

The first example project is a half-model of a three lobe tank cross section. Looking at the picture

above imagine making the shape by combining a semi-circle on the left with a full circle on the right.

Start with the user specified curve command, specify “compound” as the type of user curve, and sup-

ply a curve name:

curve compound half3lobe

From the picture above, there are three “arcs” that make up the full compound curve. So, three child

blocks must be specified to define the curve. In this case, the first and the last arc are made from the same

child, but this is not necessarily always the case. For this first project, the semi-circle and circle library

curves are used. Since they are circular shapes, Loft can compute the intersection points rather than re-

quiring the user to specify the endpoints of each arc with the sstop and sstart parameters.

So, the first child is a semi-circle centered at (0,0) with a radius of 5:

child sc

x 0.0

y 0.0

radius 5.0

Then, the next arc uses the full circle library curve:

child cir

x 3.5

y 0.0

radius 4.0

The last arc is part of the first curve, so that block is copied here:

child sc

x 0.0

48

y 0.0

radius 5.0

Finally, to generate the picture above, create a very short section object using the new compound curve

object section Barrel

curve1 half3lobe

curve2 half3lobe

length 1

nodes_circ 51

nodes_axial 2

save

write vrml project3b1.wrl

end

The next step for this tutorial project is to generate a different compound curve. This time, using a half

square and a circle to generate a shape like this:

First, start a new compound curve:

curve compound roundbox

49

The mnemonic for a half (or semi) square is ss. The compound curve parameter radius can be used

for any child curve to scale it up from the default nominal unit radius. The two corners of the square occur

at 25 and 75 percent along the curve. For the first arc, only the top edge of the curve is needed, so the arc

goes from s = 0.0 to s = 0.25. Since sstart = 0.0 is the default, it does not have to be specified.

child ss

x 0.0

y 0.0

radius 3.0

sstop 0.25

Next, a full circle is specified with the same radius and an sstop parameter of 0.5:

child cir

x 3.0

y 0.0

radius 3.0

sstop 0.5

(Yes, a semi-circle could have been used here with no sstop parameter necessary.) Finally, to specify

the bottom flat arc, return to the semi-square and specify portion between s = 0.75 and 1.0.

child ss

x 0.0

y 0.0

radius 3.0

sstart 0.75

To generate a sample representation of the new compound curve just add:

object section Barrel

curve1 roundbox

curve2 roundbox

length 1

nodes_circ 51

nodes_axial 2

object frame Ring Frames

save

write vrml project3b2.wrl

end

50

Finally, create the picture at the top of this tutorial by combining the two compound curves in a file

that contains the two curve specifications. The ring frame object is optional but demonstrates that beams

can be created that will follow the interpolated shape between the two user-defined compound curves

(they are the white lines at either end and the center in the figure).

object section Barrel

curve1 roundbox

curve2 half3lobe

c2_xscale 1.0

c2_yscale 1.0

length 20

nodes_axial 21

nodes_circ 31

components_axial 3

object frame Ring Frames

save

 write vrml project3b3.wrl

end

51

Part C: User-defined Lofted curves

The third type of user-defined curve is the “lofted” curve. Loft generates, but does not save, curves au-

tomatically when building a section object. At each station along the section object the program computes

the intermediate cross section as it transitions from the “curve1” end to the “curve2” end. The “lofted”

curve type allows the user to do the same thing, with or without actually creating a corresponding section

object. Another way to look at these curves is that they create a cross-sectional slice shape from a (possi-

bly virtual) section.

To create a lofted curve, the user specifies the curves that are to be blended to form the new cross sec-

tion. As with the compound curve, any type of curve including user-defined curves can be used as the end

shapes. The user then specifies the fraction along the transition from curve1 to curve2 with the sta-

tion parameter. A station value of 0.0 would result in a curve exactly matching curve1. A value of

1.0 would match curve2. The example below uses 0.5, which is 50% along the transition from 1 to 2

and results in the cross section shown.

curve lofted lcurve1

curve1 sc

curve2 ss

station 0.5

object section test-section

curve1 lcurve1

curve2 lcurve1

length 0.1

nodes_axial 3

nodes_circ 30

write vrml project3c1.wrl

end

One use of this curve type is to generate mid-section bulkheads:

test of mid-section bulkheads

curve lofted lcurve1

curve1 sc

curve2 ss

station 0.5

object section test-section

curve1 sc

curve2 ss

length 4.

nodes_axial 11

nodes_circ 29

object dome bulkhead

taper bulk

52

curve1 lcurve1

relz -2

write vrml project3c2.wrl

end

Care should be taken if node-stitching is desired to make sure that the bulkhead is positioned at a spot

on the section object with nodes. In the above example, an odd number of nodes was used axially to en-

sure that a node line existed at the 50% axial station on the section. The lofted curve was defined as a

50% blend of the two end curves. And the created bulkhead, which by default would have been posi-

tioned at the rear (square end) of the section, had a relz of –2 applied to position it at the midpoint of a

4 unit long section.

If the desired position of the bulkhead is not at an easy-to-align position (e.g., 46.4543% of the section

length), then the best approach will be to create the lofted curve and use it to create a forward section

(curve1 to the bulkhead), the bulkhead, and the aft section (bulkhead to curve2) as three objects rather

than two. This approach allows for easy and exact positioning and node-stitching at completely arbitrary

axial stations. The following input file generates the same result as before, but creates three objects:

curve lofted lcurve1

curve1 sc

curve2 ss

station 0.5

object section forward

curve1 sc

curve2 lcurve1

length 2.

nodes_axial 6

nodes_circ 29

object dome bulkhead

taper bulk

object section aft

curve2 ss

length 2.

nodes_axial 6

write vrml project3c3.wrl

end

A very similar approach can be used to create a bulkhead that supports an internal structure such as a

tank. The bulkhead would be constructed using a zero-length section object with one end curve defined as

a lofted curve extracted from the desired position along the fuselage section and the other end as a lofted

curve extracted from the tank object.

53

Project 4: A Tapered Four-Lobe Tank

This project represents a tank that might be used in a vehicle nose cone if very tight packaging were

necessary.

The first step to building this tank is to define our compound four-lobe curve.

Remember, our task is to define this curve in a clockwise fashion starting at 12 o’clock. Thus, we start

with the upper-right circle:

curve compound 4lobe

child cir

x 1.0

y 1.0

radius 2.0

The default for any child curve is to start at s = 0. This is not what we need here. Some trigonometry

will show that the 12 o’clock point is at (0.0, 1.732). This corresponds to 30 counter-clockwise from ver-

tical, or 330 clockwise. Using the full circle formula from project 4, we get:

sstart 0.916666667

54

We don’t need to specify sstop since Loft can automatically calculate it for the intersection of two

circles. So, we can just specify our remaining three lobes:

child cir

x 1.0

y -1.0

radius 2.0

child cir

x -1.0

y -1.0

radius 2.0

child cir

x -1.0

y 1.0

radius 2.0

Since we’re not specifying any further child curves, we again need to do some math to find that the

point (0, 1.732) is 30 clockwise from curve four’s start, resulting in:

sstop 0.083333333

To generate the rest of the pictured tank you can add:

object dome front

curve1 cir

c1_xscale 1.5

c1_yscale 1.5

nodes_circ 37

length -1

nodes_axial 5

object section Barrel

curve2 4lobe

c2_xscale 1.0

c2_yscale 1.0

length 5

nodes_axial 21

components_axial 3

object frame Ring Frames

object dome back

length 3

nodes_axial 13

Set units and save

units feet

write vrml project4.wrl

end

55

Project 5: Controlling Circumferential Node Distribution

By default, Loft distributes nodes spaced evenly along a curve’s circumference (with a couple of minor

exceptions – see the breadbox and filleted square curves in Chapter 6). This is the best general approach

for producing a smooth finite element mesh, but it may fail to capture details in some cases. This “sam-

pling error” was discussed briefly in the tutorial project 4.

This project discusses a number of advanced approaches to addressing problems with the circumferen-

tial node distribution. Some are rather involved.

Approach 1: Change the Node Count

By far the easiest technique to address a sampling problem is to change the value of the nodes_circ

parameter. Generally, increasing this value will do a better job of accurately capturing any particular

curve’s shape.

But, if you have insight into where a particular feature occurs along a curve, choosing a value of this

parameter that places a node that percentage along the shape can also improve the modeling of that fea-

ture. This may mean decreasing the nodes_circ value. The interpolated curve tutorial showed an ex-

ample where a value of 3 did a better job of catching a sharp point than a value of 4.

Approach 2: Local s-distribution

A relatively easy way to address sampling problems with user-defined curves is to switch to local ra-

ther than global s-distribution. Each child-arc of a user-defined curve contributes some fraction of the to-

tal circumference of the parent curve. That fraction of the total nodes in the circumferential direction will

be used to sample that curve. In the default global s-distribution approach, the nodes are spaced evenly

along the parent curve.

The local s-distribution option moves the nodes that model each child-arc to be evenly spaced along

the child-arc. This has the effect of forcing a node to be generated at most junctions between child-arcs. If

a child-arc is too short to qualify for a node in the global approach, it won’t get one in the local approach

either. If the detail from that short child-arc is important, the user will need to resort to one of the other

approaches in this section to capture that detail.

The s-distribution approach is controlled by the parameters c1_s and c2_s. Thus, you can use differ-

ent approaches for each end of a section object. Valid values for the parameter are global (the default),

local, and copy.

The copy option indicates that the curve is to use the same s-distribution as used for the other end of

the section. This can produce less twisted elements if the local distribution on the other end of the section

has significantly moved nodes. The use of the copy option only has practical effect if the other end is set

to local. (If both ends are set to copy, the global approach will be used on both ends).

Like all circumferential parameters, the settings of these two parameters are used to change the de-

faults for all subsequent objects. Be sure to reset their values when they are no longer needed.

56

Be careful using these parameters when adjacent objects are expected to stitch together. Nodes that

have different spacing are unlikely to be merged accurately. The “copy” option is particularly likely to

create these kinds of problems, as it may copy its s-distribution from a completely different curve than the

adjacent object.

Approach 3: Sub-Curves

A rather involved approach that gives much more control is to create a user-defined curve, then use

Loft’s debug output to break the curve back into “sub-curves” that are used to generate partial objects.

This is a lot more work but allows the user to specify exactly how many nodes are to be used to represent

each child-arc of the original parent.

If you look at the debug output that is generated when using the “roundbox” compound curve created

in the previous tutorial, you’ll see this summary of the calculations that Loft made in order to use the

curve. For each child-arc, the output lists its circumference, the local “s” start and end points of the arc,

and the global “s” start and stop points:

finish_ccurve: Summary of Compound Curve roundbox

 child circ local_sstart local_sstop global_sstart global_sstop

 0 1.000000 0.000000 0.250000 0.000000 0.194305

 1 3.141560 0.000000 0.500000 0.194305 0.804724

 2 1.005000 0.750000 1.000000 0.804724 1.000000

 End of Summary for Compound curve roundbox

The global “s” start and stop points indicate what portions of the parent curve are contributed by each

child. We can use those values to extract just those contributions into new compound curves:

curve compound rb-arc1

child roundbox

sstart 0.0

sstop 0.194305

curve compound rb-arc2

child roundbox

sstart 0.194305

sstop 0.804724

curve compound rb-arc3

child roundbox

sstart 0.804724

sstop 1.0

(Remember that the “roundbox” curve definition needs to be copied into this new input file – user-

defined curves are not added to Loft’s internal library permanently.)

Now, each of these new sub-curves can be used to create partial objects with much more control over

node density on each arc. Here’s an example creating an extruded “roundbox” object with varying mesh

densities.

57

object section arc1

curve1 rb-arc1

curve2 rb-arc1

length 5

nodes_circ 11

nodes_axial 5

object section arc2

curve1 rb-arc2

curve2 rb-arc2

nodes_circ 31

object section arc3

curve1 rb-arc3

curve2 rb-arc3

nodes_circ 21

This figure shows the three new curves separately. The bottom section does have twice the mesh den-

sity of the other two sections, and nodes are created exactly at the junction points of the arcs. But, the au-

tomatic positioning in Loft is putting each new section object immediately behind the previous one. To fix

that, add a “relz –5” parameter to both “arc2” and “arc3.” Notice that no positioning is needed in

the x or y directions, since the new curves are already positioned correctly in x and y. Once that is done,

the result is:

This sub-curve technique gives the user a lot of additional control on mesh density and locating im-

portant nodes, but it is a lot more effort than the other approaches. The main drawback in this approach is

the difficulty in obtaining compatibility with meshes generated without sub-curves. Generally, objects

generated from sub-curves can only be effectively attached to other sub-curve based objects without a lot

of additional work.

Finally, note that if the goal of this sub-curve project was only to double the mesh-density on the bot-

tom plate of the curve, the same result could have been accomplished with just two sub-curves. The first

would be the top plate and round section (from s = 0.0 to 0.804724), and the second would be the bottom

plate. The sub-curve approach can be used to grab any portion of another curve.

58

Project 6: Introduction to Regions

The Loft command region contains a powerful set of tools to allow the user to query or modify por-

tions of the current stack. This tutorial illustrates a small portion of these capabilities.

Start with an ogive-shaped nose cone with a short barrel. The colors on the picture indicate the two

property sets used in the model. Also note the beams running the length of the model that represent the

separation joint for the shroud.

object dome Nose

curve1 cir

c1_xscale 1.0

c1_yscale 1.0

length -550.000

nodes_circ 41

nodes_axial 35

components_circ 1

components_axial 1

taper ogive

param1 55.

param2 983.230

param3 198.0

zdist 0.73

transz 618.0

object dframe Sep Joints

count 3

align axial

object section Barrel

length 200.0

c1_xscale 198.0

c1_yscale 198.0

c2_xscale 196.0

c2_yscale 198.0

59

nodes_axial 12

components_axial 1

object frame Bottom Ring

count 1

position 1.0

object frame Top Ring

count 1

position 0.0

object frame Sep Joints

count 3

align axial

rotate so that x is aft

move

roty 90

Next, use the region command to specify a volume and change the element property settings within

that volume. Here, the goal is to make the elements on the very tip of the nose into a different component

for later sizing purposes:

Nose Cap

region

iadd xcyl 0.0 0.0 0.0 200. 30. 30.

pprem Nose Sep

setpp Nose Cap

There are two parts of defining this region. The inclusive add parameter iadd adds all elements that

have any nodes within the specified cylindrical area. In this case, the beam elements that represent the

separation joint should not be updated. So, the remove by physical property name parameter pprem is

used to delete those elements from the region specification (but not from the stack!). Finally, the remain-

ing elements are changed to a new physical property name using the setpp parameter.

The first two operations are “passive” parameters. They have not changed the stored stack data in any

way. The last parameter, setpp, changed the stored stack data. This is an example of an “active” region

parameter. Any number of passive parameters may be performed to set up and query a region. But for the

sake of clarity, only one active parameter is allowed per region definition.

60

The next step is to stencil out a door on one side of the barrel. This is very similar to the previous ex-

ample. However, we’ll go one step further and specify a doorframe of panel elements around the door

itself. This requires two region commands to perform the two active parameters.

Cut out a door with frame border

region

iadd box 732. 0. 198. 85. 72. 120

setpp Large Door Frame

region

eadd box 732. 0. 198. 85. 72. 120

setpp Large Door

Note that the two add operations use exactly the same coordinates and dimensions. The difference is

that the second operation uses the exclusive add parameter eadd rather than the inclusive add parameter

iadd. The eadd parameter requires that all nodes for an element fall in the specified volume while the

iadd parameter requires only one node to be in the volume. This difference makes building these border

frames easy. Note that it is possible for the volume to exactly intersect a line of nodes and produce identi-

cal results along an edge for the two parameters.

The region command can also be used to produce partial models. The following code creates an output

file that does not contain the door or door frame:

region

ppadd Large Door Frame

ppadd Large Door

inverse

format vrml

filenew project6a.wrl

rwrite

61

The additional input lines add the door and frame to the region, then invert the region membership. Fi-

nally, an output file containing just the elements in the region is written. These elements will have the

same indices and properties as they do in the full model. Thus, this approach can be used to generate

models for tasks such as mapping aerodynamic loads to the exterior elements of a model. The resulting

load data can then be applied to the full model (with interior elements) with no element renumbering re-

quired.

For a more complex model with many more objects, the object level mark command can be used to

arbitrarily apply labels to each component such as “OML” or “LH2.” Objects can have any number of

marks. Then the region-mode commands mkadd and mkrem can be used to add/remove groups of com-

ponents by these labels.

62

Project 7: Variables and Math

Loft supports two types of variables: “user-defined” and “system.” This capability greatly ex-

pands the parametric power of the program by allowing critical dimensions or values to be set once and

then used repeatedly. If a requirement changes, only that single value has to be updated. The basic math

support in the Loft input file reader adds even more flexibility.

Input Line Math

Loft supports simple math operations on an input line. These operations are addition, subtraction,

multiplication, and division. The corresponding operation symbols are the normal “+,” “-,“ “*,” and “/.”

A space must be used on either side of the operation symbol. Any number of operations can be per-

formed on a line. All math calculations are performed left to right, with no preference given to multiplica-

tion or division. Parentheses are not supported. Multiple variables can be used to perform a complex

computation where order must be controlled.

Since computation of math operations is performed left to right, the expression “50 + 10 * 3”

evaluates sequentially as:

50 + 10 * 3 = 60 * 3 = 180

User-defined variables

A variable can be defined in a Loft input file by using the define command. Any desired name

(with no spaces and any desired number of characters) can be used for the variable name. In order to ref-

erence a user variable the dollar symbol, “$,” is placed before the variable name. These variables can be

used in any Loft input command or parameter as needed.

Here are some examples:

define var1 50.0

define var2 10.0

define var3 $var1 + $var2 * 3.0

define var1 40.0

The user variable “var3” is computed using the previously defined “var1” and “var2” variables. It

has the value of 180.0 (see discussion of input line math above). The last example redefines “var1.” Any

later references to that variable will use the new value.

System Variables

System variables are the collection of Loft’s current default values for object parameters. These

values are continuously updated as the user specifies parameters. Thus, there is no define command,

per se, to set these values. Rather, they are set through the normal use of Loft.

63

System variables are referred to by a specific name (see a chart of all system variables in Chapter

6 of this manual). To reference a system variable an “at” symbol, “@,” is placed before the variable

name.

Examples:

object wing demo

span 10.0

chord @wing.span / 2.0

Math Functions

Loft supports some standard math functions including trigonometry, roots, etc. See the math function

chart in Chapter 6 for a full list of supported functions.

Math functions are called by using the percent symbol and the function mnemonic. They have to be

placed at the end of a line after any variable or arithmetic. Multiple functions can be used on a single line.

Each function will be applied to the preceding number in the order read.

Examples:

define pi 3.14159265359

define four 4.

define two $four %sqrt

define zero $pi %sin

define negone $pi %cos

define zeroagain $pi * $pi %sqrt %sin

Example: A Compound Wing

Loft supports only trapezoidal wing planforms. More complex shapes can be built up from multi-

ple trapezoids, and the math and variables capability of Loft can be used to make this assembly easier. For

this example, we’ll construct a swept wing with a large root strake.

64

In this example, math is used first to calculate the strake’s taper ratio directly from the root and

tip chords rather than requiring the file creator to do the calculation. Then, the chordwise mesh density of

the outboard section is computed using the system variables that contain the outboard section’s root chord

and the strake’s taper ratio.

object wing strake

 chord 900.

 span 80.

Use math to calculate tip/root = 0.48

 taper 432. / 900.

 sweep 80.0

 rootnaca 2212

 tipnaca 2208

 sparpos reset

 sparpos 10.

 sparpos 36.

 sparpos 80.

 ribpos reset

 ribpos 33.

 ribpos 66.

 notip 1

 meshchord 0.02

 meshspan 0.06

 meshthick 0.02

object wing mainwing

 chord 432.

 span 251.

to match strake, divide its mesh value by its taper ratio = 0.0416

 meshchord @wing.mesh_chord / @wing.taper

 taper 0.37037

 sweep 45.0

 naca 2208

65

 relx 80.

 relz 453.70255

An Important Caveat

The math and variable support described in this project is implemented as a preprocessor that immedi-

ately replaces all the variables with their corresponding values and performs all the requested calculations

before handing the now conventional input line to the main Loft user interface. Objects are only actually

created when a new command is read, and Loft determines that the user is therefore done with specifying

parameters for that object. Finally, the positioning system variables (transx, etc.) are only updated after

an object has been created and merged into the current stack.

The combination of these three factors can lead to some confusion. Consider the following code exam-

ple, which will result in different values assigned to the two user variables “var1” and “var2.”

object section fuselage

length 10

define var1 @transz

define var2 @transz

Loft will read these lines in order. It will start a new section object and define its length to be 10. Then it

will read the first define command, and the preprocessor will replace the @transz system variable with

the value of 0. Then, the main Loft code will determine that a new command has been specified, and thus

the user is done with the previous object. The section object will be created, and the @transz system var-

iable will be assigned a new value of 10. Next, Loft will actually create the “var1” variable and assign it the

value of 0 that the preprocessor had already placed on the input line. Finally, the last define command will

be read. The preprocessor will replace the variable @transz with the value 10, and then the main code

will assign that value to var2. Thus, for very subtle reasons, the values of var1 and var2 will be different.

A work around for this issue is to put another command between the last object parameter and the first

define command. That command will trigger the generation of the object and the updating of the

@transz system variable before the definition command is read and handed to the preprocessor. For in-

stance, just adding the command move, with no parameter lines before the var1 definition would result in

both variables have the same, expected, value of 10.

66

Project 8: Bodies of Revolution, Toroids, and Helixes

Any curve type can be used to create a body of revolution in Loft. Five parameters in the section object

type can be used to create bodies of revolution, toroids, and helixes. These parameters are radius,

c1_rotation, c2_rotation, c1_yoffset, and c2_yoffset.

There are some caveats for these objects. These meshes will not stack well in a sequential object genera-

tion (like the full examples at the end of this manual). Currently, frames won’t generate on the rotated ob-

ject except at the initial curve1 position. Finally, the model will not be aligned with the center of rotation at

zero; it will need to be moved if that is desired (the examples in this project include this move.)

The parameter radius is used to specify the desired distance from the y-axis aligned rotation axis to the

x=0 point on the curve being extruded. On half curves in the built-in library, x=0 on the line of symmetry

of the curve (where the missing mirror half would start). For full curves, x=0 on the centerline of the curve.

The simplest body of rotation using a half curve is illustrated below where a semi-breadbox (“sbb”) library

curve (square bottom half, circular top half) is rotated 360 degrees. The Loft input file to generate this mesh

is:

Body of revolution

object section bor

 curve1 sbb

 curve2 sbb

 nodes_axial 36

 nodes_circ 21

 length 0

 radius 0

 c1_rotation 0
 c2_rotation 360
save

write vrml bor.wrl

 end

The two rotation parameters are used to specify the arc in degrees that the corresponding end is rotat-

ed. Using 0 and 360 will produce a full body of revolution.

By using a much higher value for the rotation, such as 3600

degrees (10 revolutions), and a yoffset at one end, a helix

can be produced.

Helix

object section Spring

 curve1 cir

 curve2 cir

 nodes_axial 360

 nodes_circ 10

 length 0

67

 radius 2

 c1_rotation 0
 c2_rotation 3600
 c2_yoffset 30
move

 transx -2

save

write vrml spring.wrl

 end

Any Loft curve type can be used including user-defined curves. Curve 1 and Curve 2 can even be different,

which will work fine for a helix or partial body of revolution but will not stitch well in a full 360 body. The

images below use three different cross section curves (cir, fillet, and squ), with the same 360-degree

rotation, radius (higher than one), and zero yoffset. Note the move command that aligns the x=0 axis

with the center of the finished object. Only one input file is shown.

Simple Toroid

define myrad 3.0

object section tank1

 curve1 cir

 curve2 cir

 c1_yscale 1.5
 c2_yscale 1.5
 nodes_axial 36

 nodes_circ 20

 length 0

 radius $myrad

 c1_rotation 0
 c2_rotation 360
move

 transx -1 * $myrad

save

write vrml toroid.wrl

 end

68

Chapter 3: Regions

The region tool set is a feature of Loft that allows the user to query or modify a section of the current

stack. Regions are inherently temporary constructs, but their effects may include permanent changes to

the mesh by deleting parts, changing property assignments, etc. Regions can also be used to query statis-

tics on the mesh and produce reports.

There are two parts of the region process. The first is to specify what nodes and elements make up the

region. The second is to perform the desired task(s) on those nodes and elements.

First, recall the distinction between Loft commands and Loft parameters. There are a very short list of

Loft commands (object, move, define, write, read, region, etc.). Parameters modify

how the active command is executed by changing a default value such as a dimension. For the region

command all of the parameters are acted on when specified and are therefore more active than the term

“parameter” implies, so the term “operation” is used instead.

Defining a Region

There are multiple ways to identify nodes and elements to add to a region. A control volume such as a

box or sphere can be specified. A material or physical property can be used. A name previously used in a

Loft “mark” command can be accessed to add those elements to a region. Multiple combinations of these

options can be strung together.

For instance, one could define a region as all elements marked as “OML” that do not have “main

wing” as their physical property. While exact syntax will be discussed later in this chapter, the logic of

this operation would be “add all elements marked oml” followed by “remove elements with physical

property main wing.”

Acting on a Region

There are two classes of operations that can be performed on a region. Passive operations are actions

such as queries that do not change the mesh data. Active operations modify the mesh data in the region by

changing properties, deleting nodes or elements, etc. Only one active operation can be performed in

any particular use of the region command, as the node and element lists that Loft uses to define that

region will become stale. A new region command can be started to perform additional active operations.

Like the stack-level move command operations, the region commands are acted upon sequentially.

Thus, one could add some elements, do a (passive) query, add some more elements, do another query,

remove some elements, query, and then perform an (active) cut operation to complete the current region

operation.

Region Operations

Region mode is entered by issuing the Loft command region. Any number of region-mode opera-

tions can be specified in sequence until another Loft command is encountered. After the first active opera-

tion, any further operations will be ignored and a warning to that effect issued. All region commands reset

the list of selected nodes and elements to be empty.

69

Definition Operations
These operations add or remove elements and nodes from the current selection list. They are all

passive.

The volumetric selection operations identify nodes that fall in the specified volume. Loft then adds all

elements that use those nodes to its selection list as well. This element addition can be “inclusive,” result-

ing in the addition of any element that has at least one of its nodes in the specified volume, or it can be

“exclusive,” where all element nodes must be in the volume for that element to get added to the selection

list.

The property selection parameters identify elements that have the specified material property, physical

property, or Loft mark. In turn each node that those elements use is also added to the selection list.

Volumetric Selection Operations

iadd – Inclusive node addition. Adds all nodes that fall within a specified volume of space. Any ele-

ments that use any of these nodes will be added as well. Volumes are specified by use of simple three-

dimensional shapes including spheres, cylinders, and boxes. Cylinders are aligned with an axis and are

infinite in length. Warning: Any beams whose alignment nodes fall in the specified volume, even if the

beam end points themselves do not, will also be added. The type “all” will add all nodes (and thus all el-

ements) in the current stack. No dimensions are required for the “all” type.

Usage: iadd <type> <center of volume> <dimensions of volume>

Type = “all”, “sphere”, “xcyl”, “ycyl”, “zcyl”, “box”

Center = x, y, z coordinate of center of volume

Dimensions = radius for sphere and cylinders,

 = xlength, ylength, zlength for box.

Example: iadd sphere 10. 20. 25. 5.

irem – Inclusive node removal. Removes from the selection list all nodes that fall within a specified

volume of space. Any elements that use any of these nodes will be removed as well. This operation does

not delete anything from the mesh, it just removes the specified items from the region selection list.

Volumes are specified by use of simple three-dimensional shapes including spheres, cylinders, and boxes.

Cylinders are aligned with an axis and are infinite in length. Warning: Any beams whose alignment nodes

fall in the specified volume, even if the beam end points themselves do not, will also be removed. The

type “all” will remove all nodes (and thus all elements) in the current stack. No dimensions are required

for the “all” type.

Usage: irem <type> <center of volume> <dimensions of volume>

Type = “all,” “sphere,” “xcyl,” “ycyl,” “zcyl,” “box”

Center = x, y, z coordinate of center of volume

Dimensions = radius for sphere and cylinders,

 = xlength, ylength, zlength for box.

Example: irem sphere 10. 20. 25. 5.

eadd – Exclusive node addition. Adds all nodes that fall within a specified volume of space. Any el-

ements with all of their nodes in the selection list will be added as well. Volumes are specified by use of

simple three-dimensional shapes including spheres, cylinders, and boxes. Cylinders are aligned with an

70

axis and are infinite in length. The type “all” will add all nodes (and thus all elements) in the current

stack. No dimensions are required for the “all” type.

Usage: eadd <type> <center of volume> <dimensions of volume>

Type = “all,” “sphere,” “xcyl,” “ycyl,” “zcyl,” “box”

Center = x, y, z coordinate of center of volume

Dimensions = radius for sphere and cylinders,

 = xlength, ylength, zlength for box.

Example: eadd sphere 10. 20. 25. 5.

erem – Exclusive node removal. Removes from the selection list all nodes that fall within a specified

volume of space. Any elements with all of their nodes in the volume will be removed as well. This oper-

ation does not delete anything from the mesh, it just removes the specified items from the region

selection list. Volumes are specified by use of simple three dimensional shapes including spheres, cylin-

ders, and boxes. Cylinders are aligned with an axis and are infinite in length. The type “all” will remove

all nodes (and thus all elements) in the current stack. No dimensions are required for the “all” type.

Usage: erem <type> <center of volume> <dimensions of volume>

Example: erem sphere 10. 20. 25. 5.

Type = “all,” “sphere,” “xcyl,” “ycyl,” “zcyl,” “box”

Center = x, y, z coordinate of center of volume

Dimensions = radius for sphere and cylinders,

 = xlength, ylength, zlength for box

Example: erem sphere 10. 20. 25. 5.

Property Selection Operations

mpadd – Add elements to the selected list based on their material property name. The material proper-

ty name is used by Loft during object creation to indicate where on the component the elements reside and

vary based on the components_axial and components_circ object variables. All nodes used by

the elements are also added to the selected list.

Usage: mpadd <material property name>

Example: mpadd lox tank

mprem – Remove elements from the selected list based on their material property name. The material

property name is used by Loft during object creation to indicate where on the component the elements

reside and vary based on the components_axial and components_circ object variables. All

nodes used by the elements are also removed from the selected list. If some of those nodes are used by

other elements that are still selected, an update operation may be desired to restore those nodes to the

active region list.

Usage: mprem <material property name>

Example: mprem lox tank

ppadd – Add elements to the selected list based on their physical property name. The physical proper-

ty name is in most cases the object name given by the user. All nodes used by the elements are also added

to the selected list.

71

Usage: ppadd <physical property name>

Example: ppadd lox tank

pprem – Remove elements from the selected list based on their physical property name. The physical

property name is in most cases the object name given by the user. All nodes used by the elements are also

removed from the selected list. If some of those nodes are used by other elements that are still selected, an

update operation may be desired to restore those nodes to the active region list.

Usage: pprem <physical property name>

Example: pprem lox tank

mkadd – Add elements to the selected list based on their marks. Marks are set using the mark param-

eter during object creation. An object can have any number of marks. By default, it will have several that

contain its object name and different collections of nodes and elements. In preparation for the use of this

command, the user can assign marks such as “OML,” “fuselage,” “tankage,” “bulkheads,” “wings,” etc.

and then add and remove multiple objects based on the chosen marks. All nodes used by the elements are

also added to the selected list.

Usage: mkadd <mark name>

Example: mkadd OML

mkrem – Remove elements from the selected list based on their marks. Marks are set using the mark

parameter during object creation. An object can have any number of marks. By default, it will have sever-

al that contain its object name and different collections of nodes and elements. In preparation for the use

of this command, the user can assign marks such as “OML,” “fuselage,” “tankage,” “bulkheads,”

“wings,” etc. and then add and remove multiple objects based on the chosen marks. All nodes used by the

elements are also removed from the selected list. If some of those nodes are used by other elements that

are still selected, an update operation may be desired to restore those nodes to the active region list.

Usage: mkrem <mark name>

Example: mkrem OML

Passive Operations

Passive operations can be used to list information about all of the current nodes or elements that are in

the selected list. By default, the output is printed to the screen, and the user has the option of piping the

output to a file using the command line. Alternatively, the user can specify an output filename for the que-

ry results to be sent to. The user can also specify that the data is to be formatted as FEA file data lines

(e.g., the node list could be in NASTRAN GRID cards) or (by default) in a more human readable format.

Some query results will not have an appropriate FEA format to be printed in and will only be reported in

the Loft native style.

inverse – Change all items in the selection list to not-selected and all not-selected items to selected.

Usage: inverse

72

update – Re-add all nodes used by elements in the selection list to the node selection list. Depending

on the order of addition and removal operations and the choice of exclusive or inclusive, the two lists may

not be completely synced. If syncing is desired, this will force an update.

Usage: update

fileout – Specify an output file to send query and rwrite outputs to. By default, this output is

printed to the screen. Since the user may wish to save multiple results to the same file, all output is ap-

pended to the end of a (possibly) pre-existing file.

Usage: fileout <filename>

Example: fileout region1.wrl

filenew – Specify an output file to send query and rwrite outputs to. By default, this output is

printed to the screen. This variant creates a new file (overwriting any existing file of the same name) ra-

ther than appending to a possibly pre-existing file as fileout does.

Usage: filenew <filename>

Example: filenew region1.wrl

format – Specify the format for the query outputs. The Loft default is a human readable chart format.

Some queries may produce output not suitable for the requested format in which case that output will be

presented in the Loft format. This value will be reset to the default when a new region is created.

Usage: format <filetype>

Filetype = “loft”, “nastran,” “abaqus,” “stl,” “vrml.” (loft is the default)

Example: format vrml

query – Request various reports on the items in the selected list. Specifying “nodes” will list the se-

lected node numbers and each node’s coordinates. “Elements” will list the element numbers, their nodes,

their properties, and (as supported by the chosen format) any marks on the elements. “Matprop” will list

the material properties used, and “physprop” will list the physical properties used. “Properties” will list

both the material and the physical properties used by the selected elements.

Usage: query <type>

Type = “nodes,” “elements,””properties,””matprop,””physprop”

Example: query elements

comment – Write a commented line of text to current output in the current format.

Usage: comment <text of comment>

Example: comment These elements are all marked OML

rwrite – Write the selected items as if they were a complete mesh. Uses the values set by the format

and fileout or filenew commands.

Usage: rwrite

Example: rwrite

73

Active Operations

Active operations attempt to change the portion of the stack’s mesh that is contained in selected region

in some way. This can be a property change, the addition of a mark, deletion, rotation, flipping of ele-

ments, etc. Again, once one active operation has been performed on the specified region, the selection list

is marked as being “stale” (since nodes and elements it points to may no longer exist or may no longer

meet the region selection criteria) and no further operations are permitted on the region.

cut – Remove selected elements and nodes. This operation has two modes. The element mode will

remove only the elements in the current region. No nodes will be deleted. The node mode will remove

both the marked elements and the marked nodes. Additionally, non-selected elements may be deleted de-

pending on the number of their nodes that remain after node deletion. Panels that end up with three nodes

are converted to triangles. Panels with two or fewer nodes are deleted. Bars or beams that lose any nodes

(including their alignment node) will also be deleted. The node version of this operation is similar, but not

identical, to the (non-region) subtract command.

Usage: cut <type>

Type = “element,” “node”

Example: cut element

mark – Add a mark to all selected elements. Note the difference in syntax versus the object level mark

command where one specifies “element” or “node” as well as a name.

Usage: mark <name>

Example: mark OML

setmp – Change elements to use the specified material property. If the property name does not exist,

it will be created.

Usage: setmp <name>

Example: setmp nose cap

setpp – Change elements to use the specified physical property. If the property name does not exist,

it will be created.

Usage: setpp <name>

Example: setpp nose cap

flip – Reorder element nodes to reverse normal vector direction

Usage: flip

rotate – Reorder element nodes to rotate element orientation

Usage: rotate

74

Chapter 4: Programmer’s Guide and Reference

Introduction

This portion of the Loft manual can be used to gain a deeper insight into how Loft functions. But, it is

really intended for someone who wants to add new object types or functions to the program. The chapter

starts with a conceptual description of how the program works and is followed by an overview of the code

structure. Finally, there are sections that describe how to add objects, commands, new output types, and

new curve types to the program.

As some program operations are described, the C file and/or subroutine that performs the function may

be listed in the form “subroutine.c/function-name.”

Geometries and Meshes

A Loft input file contains a user’s definition of a vehicle’s geometry. The user’s specified object types,

dimensions, and meshing parameters are called the “abstract geometry.” Loft’s main function is to read

this abstract geometry and turn it into a concrete mesh made of nodes, elements, and a wide collection of

elemental properties.

Loft does not internally store the abstract geometry of a vehicle. It has a “master” abstract geometry

that consists of one object of each supported type. This master geometry is populated at program start

with the default values described in chapter 6. (interface.c/initial_defaults). As the pro-

gram reads the user’s geometry parameters, this master geometry is updated with the user’s specified val-

ues (interface.c/generate_object). When an object definition is completed, a mesh is generat-

ed for the object and the master geometry is updated by copying appropriate changes to the other object

types and by resetting other parameters to their initial values.

Loft works with two mesh data structures at a time. Both start with no data. The “stack” is a mesh con-

taining all the previously generated objects’ nodes, elements, and elemental properties. The “mesh” is the

structure containing the current object. Both data structures are stored in the exact same way. An object

generation subroutine is passed an empty “mesh” for which it allocates memory, populates with nodes

and elements, and returns. When the “mesh” is completed, it is immediately merged with the “stack” and

then erased by freeing its allocated memory. (The store command works very much like the “cut”

command on a word processor. A pointer to the current stack is stored, and then a new empty working

stack is created. Similarly, a recall command is like a “paste” command. The same routine that com-

bines the main stack and a new mesh (util.c/merge_sections) combines the current working

stack with the specified stored stack. In this case, the stored stack is not erased.)

Code Overview

Data structure/Constant definitions

 loft.h

 loft-const.h

Mesh storage and manipulation

 util.c

 modify.c

Mesh generation

75

 loft.c

 wing.c

Curve definitions

 curves.c

Region operations

 region.c

Output routines

 abaqus.c

 ideas.c

 nastran.c

 vrml.c

tecplot.c

stl-ascii.c

 custom.c

User input/Program control

 interface.c

 variables.c

Adding a New Object Type to Loft

The first step in adding a new object type to Loft is design. Determine the parameters that the user

must set to define the abstract geometry of the new object and select default values for those parameters.

Then, work out the logic of using those parameters to generate nodes, elements, and properties.

Now that there is a plan, it’s time to start coding. In broad terms, there are two parts to writing the

code: writing the meshing routine itself and adding support for the new object to the user interface. Both

are somewhat involved.

Both parts of the coding will rely heavily on the object definition in “loft.h.” Edit this file and

move down to the abstract geometry object definitions section. Add a new structure here that defines the

abstract geometry’s parameters for your new object. Be sure to include structure members to define the

object name, position, alignment, and a list of marks (a marklist structure). Finally, add your geometry

structure to the “master_geom” structure near the end of the file.

The New Meshing Routine

You can add your meshing routine to “loft.c” or start a new source file. Your choice should be

made based on the length and complexity of the meshing code. For instance, the various wing related

meshing routines were created in a separate “wing.c” file. If you create a new file, remember to update

the makefile so that it will be compiled and linked. Take a look at the various existing meshing routines

for a feel of how they are written. The basic outline of each of these codes is as follows:

1. Based on geometry input parameters, make a conservative estimate of the number of nodes,

elements, material properties, and physical properties needed by the new mesh. It is okay to

allocate a little more space than is actually used if an exact calculation is difficult.

2. Call malloc_mesh to allocate memory for that data.

76

3. Create appropriate loops to generate the mesh data. As it is generated, store each piece of data by

using the data storage routines from “util.c,” e.g., storenode, storequad, storetri,

storegroup, addgroupmember, createproperty, etc.

4. Update the mesh node (mesh-> nnodes) and panel (mesh->npanels) counts with the actual

numbers of objects created.

5. Warp, rotate, and move the mesh.

6. Call group_all_nodes and group_all_panels.

If you look at the wing generation code, you’ll note that it intentionally creates many duplicate nodes.

It is okay to do this as long as space is allocated for them in the call to malloc_mesh. Just add a call to

merge_points to the end of your routine to consolidate these duplicates.

Integrating Your New Object Into the User Interface

The first step is to edit “loft-const.h” and create a new constant for your object type in the sec-

tion that starts with “#define OBJ_NONE 0.” Use the next available integer after the ones that are

currently in use. For illustration purposes, let’s say the mesher is used to create a wheel object and that the

last object type used was number 12. Add “#define OBJ_WHEEL 13” at the end of the block.

Next, there is a lot of work to be done in “interface.c.” Here we’re going to create a new routine

to parse the parameters for your new object and then add support for the new object to the

“parse_input,” “parse_new_object,” “generate_object,” and “initial_defaults,”

routines.

The parameter parsing routine created should be similar to “interface.c

/parse_section_param.” This routine will receive each line of text that is a parameter for the ob-

ject. It should parse the parameter name and values from that line and assign them to appropriate data

blocks in the abstract geometry structure. Finally, it should issue a warning if it was unable to do anything

with the parameter it was given. Remember to add a prototype for the new parsing routine to the top of

the interface file.

The next step is to add the object to the “parse_input” routine. There are only two parts to this.

First, add a malloc call at the top of the routine to make space to store your abstract geometry data. Be

sure to add your new structure to the section that checks that the malloc succeeded. Then, scroll down

to the line “case CMD_NONE” and add a line to the end of the parsing routines. It should be something

like:

if(current_object == OBJ_WHEEL)

 parse_wheel_param(line,master.wheel);

Now, move down to the “generate_object” routine. Add a pointer variable for the abstract ge-

ometry and extract that pointer from the master geometry. Then, add a block that calls the mesher routine

if the object is of your new type:

if(type == OBJ_WHEEL){

77

 printf(“ Calling make_wheel\n”);

 make_wheel(*wheel_geom,mesh);

}

After the new mesh is generated, we need to update the defaults of any abstract geometry types that

need it. In most cases, you’ll want to leave the current object’s parameters as the defaults for the next ob-

ject of the same type, but in some cases you’ll want to set them back to the defined default every time.

You can update the defaults for any other geometry types as well. Add lines to your version of the block

above in “generate_object” to update the desired defaults.

Scroll down to the “initial_defaults” routine. As with the previous routine, the first step is to

add and extract a pointer variable for your abstract geometry. The other task here is to add a block that

populates every data item in your geometry structure with its default value. Your defaults should be cho-

sen such that if the user specifies no parameters, the mesher will still generate a valid mesh.

Finally, scroll down to the “parse_new_object” routine. Again, add and extract a pointer variable

to your abstract geometry. Next, add a block that tests for a object type name of your new type, sets the

object name, and sets the current_object variable to your new type if it’s found. For example:

if(strncmp(type,"wheel",5)==0){

 sprintf(wheel_geom->name,"%s",objectname);

 *current_object=OBJ_WHEEL;

 return;

 }

Now, compile, test, and debug your new object.

Adding a New Command to Loft

Adding a new command is a very similar process to adding a new object. As before, there are two

steps: creating the routine to perform the new operation and integrating the command into the interface.

It’s difficult to be more specific since new commands could do anything and be logically integrated in

many different places. You will probably want to add a new command number to “loft-const.h”

and a “case” statement to the main loop in “interface.c/parse_input.”

Adding a New Output Type

Loft currently supports several types of mesh outputs. With accurate documentation of the new de-

sired output format, it should be straightforward to use one of the existing output types as a basis for the

new type and then edit the “interface.c/output_stack” routine to add a new block for your out-

put routine.

A special case is the “custom” output type. This was created to make it easier for the user to modify

the output to be exactly as they desire. No editing of the interface code is required. Modify “custom.c”

to produce the desired output and recompile. Typically, this approach has been used to make a short-term

modification to one of the existing output types. For example, one could copy the NASTRAN output rou-

tines into custom.c and then make small changes that might a) specify a non-structural mass for some

elements, b) change the order that elements are written, or c) reduce the number of properties that the el-

78

ements use. By making these types of changes to the custom output type, no hard-to-remove changes are

made to the core output routines.

Adding a New Curve Type

The curve primitive routines are all located in the “curves.c” file. Scroll down to look at the semi-

circle routine. The variable “s” is an input variable that ranges between 0.0 and 1.0. It represents the frac-

tional position along the curve from its start (0.0) to end (1.0) for which coordinates are desired. The vari-

ables “x” and “y” are output values used to return the coordinates. If you’re creating a curve family like

the filleted curve, then “x” is also used as an input variable giving the family shape parameter.

The first step is to write a generation routine for your new curve type similar to the others in the file.

Remember when modifying the variables “x” and “y” that their pointers are being passed rather than the

variables themselves. Thus, your routine needs to set “*x” to the computed x coordinate.

Next, to add the new curve to the interface, return to the top of the “curves.c” file. Add a prototype

for your generation routine. Now, scroll down a little and add a block for your new curve type and gen-

eration routine to the “curves.c/curvefunctionptr” routine. Note that there are different sec-

tions for non-family curves, family curves, and user-defined curves.

Be careful when selecting your curve’s mnemonic to avoid collisions with other curves. For instance,

if you want to use the mnemonic “ssquiggle,” you need to add your check to curvefunctionptr be-

fore the check for the semi-square curve, since that check compares the first two characters of the curve

name to “ss.” It might be clearer if you chose “semisq” for your mnemonic instead. (You can see in the

current routine that the check for the semi-circle “sc” mnemonic occurs after the check for the semi-

cosine-wiggle “sccw.”)

Now, save, compile, and test your curve. It should be usable from any object that uses curve primi-

tives. There is no need to modify any of the meshing routines or user interface routines.

79

Chapter 5: External Utility Programs

In order to integrate Loft into a variety of multidisciplinary analysis systems, several utility programs

have been written. These were created with general utility in mind and are therefore included in the Loft

distribution and documentation. These programs can be used in a batch mode or can be used to speed up a

manual model generation. They create normal Loft input files that can be modified as desired.

WingCoords2Loft

WingCoords2Loft is an utilty that reads a

file containing wing cross section data at

various stations along the span of the

wing and generates a Loft input file to

create that wing. The resultant model can

be viewed as piecewise trapezoidal.

WingCoords2Loft reads two input files. “hrm2wingcoords.out” contains the wing cross section data.

“wingcoords2loft.in” is an optional input file that specifies structural details such as rib and spar locations

and mesh density. It creates multiple output files. “wingcoords2loft.out” contains a Loft input file for the

wing. “wingcoords2loft.spars” contains the x (axial) coordinate of the spar roots in feet. When the Loft

input file is run, Loft creates NASTRAN, VRML, and Tecplot versions of the FEA model. Loft’s region

mode is used to create additional files that are used to automate analysis of the model. “upper-

skinelems.txt” contains a list of elements on the wing upper skin. It also contains the total wing planform

area. If the weight parameter is used in wingcoords2loft.in, then a smeared pressure value is printed that

will produce 25% of that weight as lift when applied to the listed skin elements. “lowerskinelems.txt” is a

similar file containing the lower skin elements. “rootnodes.txt” contains a list of nodes at the centerline. It

is intended to be used to automate boundary condition application. “rootprops.txt” contains a list of the

NASTRAN physical and material properties used on the root spars.

hrm2wingcoords.out

This file contains the wing cross section data. Note that for the purposes of this program, the normal

NASA coordinate system is used: x is axial (chordwise), y is lateral (spanwise), and z is vertical. This is

different than the base coordinates used for Loft. Also, the interleaving text lines shown in the example file

are required to be present although they are not required to contain anything specific. Input units are feet.

The models created by Loft are scaled to be in inches.

 x0, y0, z0 - Coordinates of wing reference location (leading edge root). Will be added to section

x,y,z values below to produce true positions of wing nodes. Should be 0,0,0 if section x,y,z's are absolute

positions. Units are feet.

wfuse - Half of average width of vehicle fuselage along wing. This value is used to create non-

skinned carrythrough.

80

n - Supplied number of wing sections.

n lines of Xle,Yle,Zle,Xte,Yte,Zte,Tmax where

 Xle = x location (axial) of section leading edge

 Xte = x location of section trailing edge

 Yle,Yte = y location (span) of leading/trailing edge section nodes

 Zle,Zte = z locations (height) of leading/trailing edge nodes. This will affect Loft positioning

and wing twist.

 Tmax = Maximum thickness of wing section in inches. WingCoords2Loft will convert this to per-

cent thickness to generate an approximate NACA airfoil section.

Example hrm2wingcoords.out file
Wing Reference Coordinates

50.0 0.0 3.0

Maximum Fuselage Half Width

0.75

Number of Sections

4

Section Details (X,Y,Z)le,(X,Y,Z)te, Tmax

0.0 0.75 0.0 5.0 0.75 0.0 0.2

3.0 15.0 0.0 8.0 15.0 0.0 0.4

6.0 25.0 0.0 12.0 25.0 0.0 0.2

10.0 40.0 0.0 15.0 40.0 0.0 0.2

wingcoords2loft.in

This file contains the information on desired structural details for the model. It is optional. If it is not pre-

sent, default values are used. As with Loft itself, all parameters in this file are also optional. Again, default

values will be used for any non-specified parameters.

As with Loft, the user can either specify a rib/spar count or give exact positions, but not both. Giving a

rib/spar count will result in that many evenly distributed ribs or spars. (for example, an input of nspars

2 will give the exact same result as sparpos 33.33 and sparpos 66.666.) Rib and spar positions

are specified in percentages of span and chord. The two styles of rib/spar specification should not be

mixed. Using both won't break things for either code but may result in unexpected outcomes. In both

codes, only the last style of specification will be used by the code. Earlier parameters will have no effect.

Unlike the default behavior of Loft, if ribs are desired at 0 and 100% span; they will need to be specified

in this file (using an nribs value of 2, the default, will create just the 0 and 100% ribs.).

Parameter List (can be specified in any order):

nribs = Number of evenly spaced ribs to create (default 2)

nspars = Number of evenly spaced spars to create (default 0)

ribpos = Percent span (0-100) location to create a rib (no default)

sparpos = Percent chord (0-100) location to create a spar (no default)

81

mesh = Finite element mesh density per unit length (higher values produce a denser mesh) for all

three mesh directions. The three specific parameters meshthick, meshspan, and meshchord are

reset to this value when the general mesh parameter is used.

meshchord = Finite element mesh density per unit length in the chordwise direction (higher

values produce a denser mesh). Note that tapering of chord length and thickness across the span of the

wing will not cause a change in mesh counts; there will be the same number of nodes along the tip rib as

on the root rib. Example: a setting of 5 on a wing with a 5 unit long chord setting will result in approxi-

mately 25 nodes in the chordwise direction on both the top and bottom skin (the exact node count will

depend on spar positions and integer math truncations). This is a real number not an integer and can be

less than one if desired. This parameter changes the chordwise mesh distribution for the skins and ribs.

(default 3.0)

meshspan = Finite element mesh density per unit length in the spanwise direction. (See discus-

sion above.) This parameter changes the spanwise mesh distribution on the skins and spars. (default 3.0)

meshthick = Finite element mesh density per unit length in the thickness direction. (See dis-

cussion above.) This parameter changes the vertical mesh density of the ribs and spars. It has no effect on

the wing skins. (default 3.0)

rotx = Specifies a desired rotation about the x (axial) axis (dihedral) of completed wing (de-

fault 0.0)

roty = Specifies a desired rotation about the y (spanwise) axis (angle of attack) of completed

wing. (default 0.0)

rotz = Specifies a desired rotation about the z (vertical) axis of the completed wing. (default

0.0)

weight = Specifies total vehicle weight. Used to compute pressure required on wing to support

this weight. A line of text specifying that pressure is added to the upper and lower skin element output

files. This pressure is sufficient to support one quarter of the specified weight on each of the upper and

lower wing surfaces. (default 0.0)

mergetol = Specifies tolerance for Loft’s node equivalence operation. Any nodes that are at the

specified value or closer will be merged together. (default 0.02)

minthick = Integer value specifying minimum percent thickness for wing sections. (default 1)

naca = Specifies the NACA 4 or 5 digit airfoil series to use for the wing. The last two digits

represent the wing thicknesses and are replaced at each section by the value derived from the geometry

information. (default “00XX”)

 halfwing = Flag to turn on generation of just the top or bottom half of the wing. Used

primarily for vertical tails on the symmetry lines of a half vehicle. Values are “off,” “on,” “bottom,” and

“top.” (“Top” and “on” are the same, default = off.)

82

 wingside = Flag to control which side of the vehicle to build the wing for. Values are

“starboard,” “port,” “right,” and “left” (starboard = right, port = left, default = starboard).

Example wingcoords2loft.in file:

sparpos 25.

sparpos 45.

sparpos 65.

ribpos 0.

ribpos 30.

ribpos 60.

ribpos 100.

mesh 0.8

naca 00XX

 weight 25000.

wingcoords2loft.out

Running WingCoords2Loft will produce this output file. This file is a Loft input file for the specified wing.

Running it with Loft will produce FEA models of the wing.

upperskinelems.txt

This file contains a list of elements on the wing upper skin. It also contains the total wing planform area. If

the weight parameter is used in wingcoords2loft.in, then a smeared pressure value is printed that will

produce 25% of that weight as lift when applied to the listed skin elements.

Example partial upperskinelems.txt file:

These are upper skin elements.

Planform area is 36666.497808 square inches.

Constant pressure for 5250.000000 of lift is -0.143182 psi.

Region Element Listing

 i node1 node2 node3 node4 matprop physprop

 13 2 9 8 1 1 3

 14 4 11 9 2 1 3

 15 6 13 11 4 1 3

 16 15 21 13 6 2 3

lowerskinelems.txt

This file contains a list of elements on the wing lower skin. It also contains the total wing planform area. If

the weight parameter is used in wingcoords2loft.in, then a smeared pressure value is printed that will

produce 25% of that weight as lift when applied to the listed skin elements.

rootnodes.txt

This file contains a list of nodes at the centerline. It is intended to be used to automate boundary condition

application.

Example rootnodes.txt file:

83

$ These are the wing centerline nodes to have BC applied.

GRID 49 6.3728E2-9.6E-134.0013E1

GRID 50 6.3725E2-9.4E-135.2924E1

GRID 51 8.0024E2-1.2E-124.1210E1

GRID 52 8.0024E2-1.2E-125.2714E1

GRID 53 9.6320E2-1.5E-124.1476E1

 GRID 54 9.6324E2-1.5E-124.8343E1

wingcoords2loft.spars

This file contains the x (axial) coordinate of the spar roots in inches.

rootprops.txt

This file contains a listing of the properties used in the spar roots.

FuseCoords2Loft

FuseCoords2Loft is a similar utility program that generates a Loft input file for a vehicle fuselage. The in-

put files describe the cross-sectional dimensions of the fuselage at various stations and optionally the loca-

tion of desired bulkheads.

FuseCoords2Loft reads two input files. “hrm2fusecoords.out” contains the cross-sectional dimensions at

various stations. “fusecoords2loft.in” is an optional file that contains structural model details such as bulk-

head locations and mesh density.

The program writes a Loft input file to “fusecoords2loft.out.”

When the Loft input file is run, Loft creates NASTRAN, VRML, and Tecplot versions of the FEA model.

Region mode commands are included that create a list of the requested bulkheads and their NASTRAN

property IDs in “bulkprops.txt.” This information is used to tell NASTRAN how to “glue” the wing spars

to the appropriately positioned bulkheads.

hrm2fusecoords.out

This file contains the fuselage cross section data. Note that for the purposes of this program, the normal

NASA coordinate system is used: x is axial (chordwise), y is lateral (spanwise), and z is vertical. This is

different than the base coordinates used for Loft. Also, the interleaving text lines shown in the example file

are required to be present although they are not required to contain anything specific. Input units are feet.

The models created by Loft are scaled to be in inches.

x0, y0, z0 = Coordinates of fuselage reference location (nose).

84

 n = Supplied number of fuselage sections.

n lines of x,z,Rhorz,Rvert, where

x = axial station of section

z = vertical station of the section center

Rhorz = horizontal radius of fuselage at that station

Rvert = vertical radius of the fuselage at that station

Example hrm2fusecoords.out file:
Fuselage Reference Coordinates

50.0 0.0 3.0

Number of Sections

6

Section Details x,z,rhorz,rvert

0.0 0.1 0.0 0.0

0.5 0.0 .08 .08

2.0 0.1 .1 .12

4.0 -0.1 .1 .1

5.5 -0.01 .08 .08

6.0 0.1 0.0 0.0

fusecoords2loft.in

This file contains the information on desired structural details for the model. It is optional. If it is not pre-

sent, default values are used. As with Loft itself, all parameters in this file are also optional. Again, default

values will be used for any non-specified parameters.

Parameter List (can be specified in any order):

mesh = Finite element mesh density per unit length (higher values produce a denser mesh) for

both mesh directions. When used, the two specific parameters meshcirc and meshaxial are reset to

this value.

meshaxial = Finite element mesh density per unit length (higher values produce a denser

mesh) in the axial direction. (default = 3.0)

meshcirc = Finite element mesh density per unit length (higher values produce a denser mesh)

in the circumferential direction. (default = 3.0)

bulkhead - Specifies the name and absolute axial position of a requested bulkhead. A corre-

sponding entry listing its assigned property id will be written to bulkheadlist.txt. Bulkheads can be speci-

fied in any order. FuseCoords2Loft will sort them and create them. (default none)

Example: bulkhead mainwing 28.75

rotx = Desired rotation about the x (axial) axis of completed fuselage (roll). (default 0.0)

roty = Desired rotation about the y (spanwise) axis of completed fuselage (pitch). (default 0.0)

rotz = Desired rotation about the z (vertical) axis of the completed fuselage (yaw). (default 0.0)

85

curve = Specifies a Loft curve name to be used for the fuselage. The rhorz and rvert values read

from hrm2fusecoords.out will scale this shape to the specified dimensions. (default sc)

Example fusecoords2loft.in file:

meshaxial .1

meshcirc 1.

bulkhead glue1 51.588333

bulkhead glue2 62.863333

 bulkhead glue3 74.138333

fusecoords2loft.out

Running FuseCoords2Loft will produce this output file. This is a Loft input file that generates the specified

fuselage. Running it with Loft will produce the FEA models.

bulkprops.txt

This output file contains the NASTRAN property IDs for the requested bulkheads.

Example bulkprops.txt file:

$ These are the fuselage bulkheads and their propeties.

$ Loft physical property 100006 is mapped to the following Nastran p- cards

$ Pset: "glue1" will be imported as: "pshell.170000"

PSHELL 170000 100000 1.0000 100000 100000

$ Loft physical property 100008 is mapped to the following Nastran p- cards

$ Pset: "glue2" will be imported as: "pshell.190000"

PSHELL 190000 100000 1.0000 100000 100000

$ Loft physical property 100010 is mapped to the following Nastran p- cards

$ Pset: "glue3" will be imported as: "pshell.210000"

PSHELL 210000 100000 1.0000 100000 100000

86

Chapter 6: Command & Object Reference

Alphabetical Command List

Curve – Define a user curve

Usage: curve <type> <mnemonic>

type = “interpolated,” “compound,” “lofted”

mnemonic = user name for the curve

Example: curve compound 3lt

Define – Define a variable

This command allows the user to define a named variable to be used later in the input deck. The dollar

symbol, “$,” is used to invoke a variable and tell Loft to replace the text with the previously specified val-

ue.

Usage: define <name> <value>

Variable usage example: length $mydimension

Example: define mydimension 5.6

End – End program (optional)

Usage: End

Example: end

Ideas – Indicate I-Deas version for output

This command only affects which datasets are used in any I-DEAS universal files that are written after

the command is used. It does not affect Loft’s internal data. Thus, it is possible to write different output

files with different I-DEAS versions for the same data.

Usage: ideas <version>

Version = 8 or 9 (Default = 9)

Example: ideas 8

List – Output various lists to the screen

 This command is intended for debugging purposes. The options “groups” and “marks” are

synonymous.

Usage: list <type>

Default: none

type = “ccurves,” “icurves,” “lcurves,” “stacks,” “variables,” “groups,” “marks,” “mprops” (material

properties), “pprops” (physical properties), “ribs,” “spars,” “mesh” (gives various data counts), or

“all.”

Example: list stacks

87

Mark – Add a label to a group of nodes or elements. Items can have as many different labels as desired.

Marks have limited uses. They can be used to sort elements in the region command and will be output as

groups when an I-DEAS output file is created. Support for NASTRAN SET grouping can be enabled by

removing a comment in “nastran.c.” The mark parameter takes two arguments: the group type (node

or element) and the group name. A marked group can contain either nodes or elements, but not both.

Current labels can be listed using the list groups or list marks command.

Usage: mark <type> <name>

Default: none

Example: mark element OML

MergeTol – Tolerance distance for considering nodes to be identical. These nodes are merged by

removing higher numbered duplicates and replacing references to them with references to the lower

numbered, remaining, node. This merging is done at various points in wing generation as well as when

adding new objects to the current stack.

Usage: mergetol <distance>

Default: 0.001

Example: mergetol 0.01

Move – Rotate, translate, scale, warp, split and/or flip the full stack

Note that, unlike the rotation and translation parameters for an individual object, results of this command

do depend on the order of the parameters – each operation is executed following each parameter.

Rotation and translation values are set with the rotx, roty, rotz, transx, transy, and

transz parameters just like those allowed for single objects. (Note that these are absolute translations

and rotations, not relative to any previous settings.) In addition, the scalex, scaley, and scalez

parameters can be used to adjust the size of the current stack.

There are also six “warp” parameters that distort part of the stack. The six parameters are warppx,

warpnx, warppy, warpny, warppz, and warpnz. The two letters after the “warp” prefix indicate

the region of action of the warping. Thus, warppx will scale the parts of the stack that are in the positive

x region and leave the nodes where x is less than or equal to 0 alone. These six parameters all take three

values that are the amount to scale that region in the x, y, and z directions. So, a move parameter of

“warpnz 1.0 2.0 1.0” would double the y coordinates of all nodes that started with z less than 0.

Use of the rotation and translation parameters before and after a warp operation allows fine-tuning of the

area to be affected. The “warp” options are intended to be used to make shapes such as the fuselage for a

lifting body. Care should be taken with the scale factors and the object mesh options to keep element as-

pect ratios reasonable.

Gradient warps are also possible with the six gwarp parameters. These are gwarppx, gwarpnx,

gwarppy, gwarpny, gwarppz, and gwarpnz. They work identically to the constant warp parame-

ters above, but the distortion increases linearly from zero distortion at the axis to the specified values at a

unit distance from the axis and higher further away from the axis. So, a parameter like “gwarppy 2.0

1.0 1.0” would double the x coordinates of any node at y equals 1 and quadruple the x coordinate of

any node starting at y equals 2.

88

The flip parameter reverses the node ordering for panel elements, thus changing the direction of

their normal vectors. It takes no arguments.

The split parameter breaks each quadrilateral element into two triangular elements with node order-

ing going from 1-2-3-4 to 1-2-4 and 3-4-2.

Usage: move

Example: Move

 Scalex 0.5

 Scaley 0.2

 Transx 30.5

 Roty 33.3

 Warpnz 1.0 2.0 1.0

 Gwarppy 2.0 1.0 1.0

 Flip

 split

Nastran – Controls NASTRAN format output options

Usage: nastran <parameter> <value>

 Parameters:

 grid = number of columns used in grid cards. Values are 8 or 16. Default is 8.

 cylx, cyly, cylz = flag to turn on cylindrical coordinate output. Last letter indicates the non-

transformed axis (axial direction). Coordinates are converted on the fly as the NASTRAN file is written;

the internal Loft coordinates are not transformed.

 cart = flag to restore Cartesian coordinate output, which is the default setting.

Examples: nastran grid 8, nastran cylx

New – Deletes current stack from memory

By default each new object’s mesh is added to the previous meshes - creating a stack. This command

starts a new stack (presumably after issuing a write command to save the previous one.) All defaults are

reset to their initial values.

Usage: new

Example: new

Object – Create a meshed object

Usage: object <type> <name>

Type = type of object to create, e.g., “dome,” “section,” “wing,” “tank,” etc.

Name = descriptive name of the object, 40 characters or less, used to mark elements

Example: object dome LOX Tank Aft Dome

Offset – Define index offset for written meshes. This value can be set by output file type or globally. If

no type is specified, all the offset for all types are set. Note that the offset value is not used for VRML or

Tecplot output as nodes receive their index implicitly by their order in the output file.

89

 Usage: offset <type> <value> or Offset <value>

 Type = output file type effected. Valid types are “nastran,” “ideas,” “abaqus,” and “region.” The “re-

gion” type effects the output of the query parameter in region mode.

 Value = amount to offset the indices. Note: Loft internal indices start from 0. NASTRAN, for instance,

does not support elements or nodes numbered 0, so a value greater than zero should be specified. Default

for ideas and abaqus is 1. Default for nastran and region is 100000.

 Examples: offset nastran 100000, offset 50

Quality – Performs mesh quality checks on the current stack and prints a report. (under development)

 Usage: quality

 Example: quality

Read – Reads a supported format mesh into Loft as a new object

This command allows the import of a variety of externally generated meshes into Loft. This is an ex-

tremely simplified process focusing on capturing nodes and connectivity. All property information is lost.

All elements are converted to simple 4-node rectangles, 3-node triangles, or 2-node bars. Unusual element

types are very likely to fail.

Usage: read <file type> <file name>

File type = type of file to read: “vrml,” “abaqus,” or “Nastran” (I-DEAS’ universal (.unv) not currently

supported.)

File name = Name of file to be read

Example: read nastran myinput.bdf

Recall – Copies a clipboard stack into the active stack

 This command copies a previously stored stack (see store command) from the temporary stack

clipboard back into active memory. The copy on the clipboard is not deleted and can be recalled any

number of times. Multiple recalls of the same complex object can take some time to accomplish, as the

various merging operations for items with the same name can be slow. A recall operation does not change

any default geometric values.

Usage: recall <name>

Example: recall External Tank

Region – Enter region mode.

The region tool set is a powerful feature of Loft that allows the user to query or modify a section of the

current stack. Regions are inherently temporary constructs, but their effects may include permanent chang-

es to the mesh by deleting parts, changing property assignments, etc. Regions can also be used to query

statistics on the mesh and produce reports. The region mode has a long list of operations that are described

in chapter 3. These abilities partially overlap the list and subtract commands.

Usage: region

Example: region

90

Reset – Reset defaults to initial values, without deleting the current stack.

Usage: reset

Example: reset

Store – Move the current stack to a temporary clipboard and start over, reset-ing all default values.

The current stack is assigned the supplied name and stored in memory. The active stack that commands

operate on is cleared and values are set back to the initial defaults. Any number of stacks can be simultane-

ously copied to the clipboard.

Usage: store <name>

Example: store External Tank

Subtract – Delete all nodes that fall within a specified volume of space. Any elements that use these

nodes will be deleted as well. Quads (4-node elements) that lose one node will be converted to triangles.

Volumes are specified by use of simple three dimensional shapes including spheres, cylinders, and boxes.

Cylinders are aligned with an axis and are infinite in length. Warning: Any beams whose alignment nodes

fall in the specified volume, even if the beam end points themselves do not, will also be deleted. A

similar, but not identical, effect can be produced by the region mode cut operation.

Usage: subtract <type> <center of volume> <dimensions of volume>

Type = “sphere,” “xcyl,” “ycyl,” “zcyl,” “box”

Center = x, y, z coordinate of center of volume

Dimensions = radius for sphere and cylinders,

 = xlength, ylength, zlength for box.

Example: subtract sphere 10. 20. 25. 5.

Units – Specify unit set. (default = inch)

Loft is unit-less. For NASTRAN output this affects the magnitude of the values used on property or ma-

terial cards. For I-DEAS universal file output, this command just changes which units are indicated for any

files written after the command.

Usage: units <length unit>

Length unit = “foot” or “feet”, “inch”, “cm” or “meter”

Example: units meter

Vrml – Control vrml color output

Selects if the vrml output mesh contains color information and if so, which color pallet to use. Options

listed below in parenthesis are synonyms of each other. The forward option produces a more red/blue pic-

ture. The backward option produces more yellow/pink.

Usage: vrml <option>

option = (“off”, “no”), (“forward”, “on”), (“reverse”, “backward”), rainbow, primary

Example: vrml reverse

91

Default: primary

Write – Write current stack to an output file.

Usage: write <file type> <file name>

File type = type of file to save: “custom,” “vrml,,” “unv,” “abaqus,” “tecplot,” “stl,” or “nastran”

File name = Name of file to be saved to

Example: write vrml rocket.wrl

STL (STereo Lithography) is a 3D printing file format. Loft will output a readable mesh for all triangles

and quads in the model, but that model will not necessarily be manifold/watertight (in fact none of the

models in this manual are). Some additional effort with adding endcaps or suppressing internal detail can

produce a printable model. Alternatively, some third-party tools (for example, Microsoft’s 3D-Builder)

may be able to make the model watertight and printable.

92

Object Types and Parameters

Common Parameters

All object types except the individual beam object use these parameters. They control positioning, ro-

tation, distortion, alignment, and group marking.

rotx – angle to rotate object about its origin’s x axis in degrees (absolute)

 default = 0, or last value specified

roty – angle to rotate object about its origin’s y axis in degrees (absolute)

 default = 0, or last value specified

rotz – angle to rotate object about its origin’s z axis in degrees (absolute)

 default = 0, or last value specified

transx – distance to translate object’s origin from the global origin in the x direction

 default = 0, or endpoint of previous section (domes do not update this default)

transy– distance to translate object’s origin from the global origin in the y direction

 default = 0, or endpoint of previous section (domes do not update this default)

transz– distance to translate object’s origin from the global origin in the z direction

 default = 0, or endpoint of previous section (domes do not update this default)

relrotx – angle to rotate object from its default position about the x axis in degrees.

 default = 0

relroty – angle to rotate object from its default position about the y axis in degrees.

 default = 0

relrotz – angle to rotate object from its default position about the z axis in degrees.

 default = 0

relx – distance to translate object’s origin from its default position in the x direction.

 default = 0

rely – distance to translate object’s origin from its default position in the y direction.

 default = 0

relz – distance to translate object’s origin from its default position in the z direction.

 default = 0

flip – change the element normal direction to point inward rather than outward. This parameter takes no

argument. It must be specified for each object where flipping is desired (it does not change the default

orientation).

93

warppx, warppy, warppz, warpnx, warpny, warpnz – distort the part of the object in the region

specified by the last two letters (p means positive, n means negative, and x, y, and z are the coordinate

axes) by the specified three values. Only one warp or gwarp parameter may be specified per object.

 Default: (no warp)

gwarppx, gwarppy, gwarppz, gwarpnx, gwarpny, gwarpnz - distort the part of the object in

the region specified by the last two letters (p means positive, n means negative, and x, y, and z are the

coordinate axes) by the specified three values. Scaling of the original coordinates varies linearly with the

node’s original distance from the specified axis. Only one warp or gwarp parameter may be specified

per object.

 Default: (no warp)

mark – Add a label to a group of nodes or elements. Items can have as many different labels as desired.

Marks have limited uses. They can be used to sort elements in the region command and will be output as

groups when an I-DEAS output file is created. Support for Nastran SET grouping can be enabled by

removing a comment in “nastran.c.” The mark parameter takes two arguments: the group type

(node or element) and the group name. A marked group can contain either nodes or elements, but not

both.

 Example: mark element OML

94

Section

A section is a 3-D object made by interpolating between two 2-D curves. Curved transitions may be

generated using the taper parameter. The origin of the object is the center point of curve 1 (which for

semi-curves is on the axis of symmetry).

Parameter List
Note that most axial direction defaults do not change to match earlier inputted values (the transx pa-

rameter is an exception).

curve1 – mnemonic for first curve (see curve library)

 default = sc, or last curve used

curve2 – mnemonic for second curve (see curve library)

 default = sc, or last curve used

c1_xscale – factor to scale x dimensions of curve 1 by

 default = 1, or last x scale

c1_yscale – factor to scale y dimensions of curve 1 by

 default = 1 or last y scale

c2_xscale – factor to scale x dimensions of curve 2 by

 default = 1, or last x scale

c2_yscale – factor to scale y dimensions of curve 2 by

 default = 1, or last y scale

c1_xoffset – distance to horizontally translate curve 1

 default = 0, or last x offset

95

c1_yoffset – distance to vertically translate curve 1

 default = 0, or last y offset

c2_xoffset – distance to horizontally translate curve 2

 default = 0, or last x offset

c2_yoffset – distance to vertically translate curve 2

 default = 0, or last y offset

c1_rotation – angle in degrees to rotate end 1

about the y axis. This parameter is intended to make

toroidal or helixical shapes. For instance, setting one

end to zero, the other to 3600 (ten 360 rotatations) and

the yoffset on an end to something greater than 10 times

the yscale will produce a 10 revolution spring.

default = 0, or last rotation

c2_rotation – angle in degrees to rotate end 2

about the y axis. This parameter is intended to make

toroidal or helixical shapes.

default = 0, or last rotation

c1_s – scheme to distribute nodes circumferentially along curve 1. Values may be “global,” “local,” or

“copy.” A “global” distribution spaces nodes evenly along the circumference of the un-scaled curve. A

“local” distribution spaces nodes evenly along each arc of a user-defined piecewise curve (interpolated or

compound). This has the effect of positioning nodes at each joint between child arcs. A “copy”

distribution uses the node spacing of the other end of the section in order to produce less twisted

elements. If both ends of the section are set to “copy,” a “global” distribution will be used.

 default = global, or previous c2_s

c2_s – scheme to distribute nodes circumferentially along curve 2. See discussion of c1_s above.

 default = global, or previous c2_s

length – length of section

 default = 1

radius – rotation radius used when c1_rotation or c2_rotation are non zero.

default = 1, or last radius

nodes_circ – number of finite element nodes to use in the circumferential direction

 default = 10, or last value specified

nodes_axial – number of finite element nodes to use in the axial direction

 default = 10

96

components_circ – number of different material props to use in circumfrential direction. Use of this

parameter overrides the circ_cpos list of component edge positions and creates evenly distributed

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of

circumference)

 default = 1, or last value specified

components_axial – number of different material properties to use in axial direction. Use of this

parameter overrides the axial_cpos list of component edge positions and creates evenly distributed

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of length)

 default = 1

axial_cpos – position of one axial component edge in percent. Values can be the word “reset” to re-

move the current list of positions, or between 0 and 100 to set the percentage where elements created after

that location will be in a new component. Multiple positions can be set. Use of this parameter overrides the

components_axial setting and vise versa.

circ_cpos – position of one circumferential component edge in percent. Values can be the word “reset”

to remove the current list of positions, or between 0 and 100 to set the percentage where elements created

after that location will be in a new component. Multiple positions can be set. Use of this parameter over-

rides the components_circ setting and vise versa.

taper – This setting controls how quickly curve 1 transitions to curve 2. This taper option will have sig-

nificant effect only if the scales and/or offsets of the two end curves are significantly different. Pictures of

these taper types are shown in the library section at the end of chapter 6. Those pictures show a section that

transitions between two semi-circles of different size and offset.

For the linear option, value has no effect. For the cosine option, value is the number of half waves. For the

power option, value is the exponent of the interpolation curve (1.0 gives linear).

 Usage: taper <type> <value>

 Type = “linear”, “power”, “cosine”

 Defaults: type = “linear”, value = 1.0

97

TSection

A TSection is an under-development variation on the section object type. This object allows the user to

specify a different value of nodes_circ at each end of the section. This results in a number of triangu-

lar elements being created to gradually change from one node count to the other.

No TFrame object has been created to allow ring frames and longerons to attach to a TSection. A con-

ventional frame object may be used. It should stitch well along edges of the section but will generally not

attach properly across the middle of a Tsection. If such a mid-frame is desired, use multiple base objects

to force straight element edges at the desired location.

The TSection object uses the same parameters as the section object with one addition:

nodes_circ2 – number of finite element nodes to use in the circumferential direction at the second end

of the section.

 default = 10, or last value specified

98

Dome

A dome is a 3-D object made by extruding a single 2-D curve to a single nose point. The origin of the

object is the center point of curve 1 (which for semi-curves is on the axis of symmetry). Adding a dome

object does not change the default position of the next object (unless a translation/rotation parameter is

specified).

Parameter List

curve1 – mnemonic for first curve (see curve library)

 default = sc, or last curve used

c1_xscale – factor to scale x dimensions of curve 1 by

 default = 1, or last x scale

c1_yscale – factor to scale y dimensions of curve 1 by

 default = 1, or last y scale

c1_xoffset – distance to horizontally translate curve 1

 default = 0, or last x offset

c1_yoffset – distance to vertically translate curve 1

 default = 0, or last y offset

c1_s – scheme to use to distribute nodes circumferentially along curve 1. Values may be “global,”

“local,” or “copy.” A “global” distribution spaces nodes evenly along the circumference of the un-scaled

curve. A “local” distribution spaces nodes evenly along each arc of a user-defined piecewise curve

(interpolated or compound). This has the effect of positioning nodes at each joint between child arcs. A

“copy” distribution uses the node spacing of the other end of the section in order to produce less twisted

elements. If both ends of the section are set to “copy,” a “global” distribution will be used.

 default = global, or previous scheme

99

length – length of section

 default = 1

nodes_circ – number of finite element nodes to use in the circumferential direction

 default = 10, or last value specified

nodes_axial – number of finite element nodes to use in the axial direction

 default = 10

components_circ – number of different material props to use in circumferntial direction. Use of this

parameter overrides the “circ_cpos” list of component edge positions and creates evenly distributed

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of

circumference)

 default = 1, or last value specified

components_axial - number of different material properties to use in axial direction. Use of this

parameter overrides the axial_cpos list of component edge positions and creates evenly distributed

component edges (e.g., specifying 3 components will produce edges at 33 and 67 percent of length)

 default = 1

axial_cpos – position of one axial component edge in percent. Values can be the word “reset” to re-

move the current list of positions, or between 0 and 100 to set the percentage where elements created after

that location will be in a new component. Multiple positions can be set. Use of this parameter overrides the

components_axial setting and vise-versa.

circ_cpos – position of one circumferential component edge in percent. Values can be the word “reset”

to remove the current list of positions, or between 0 and 100 to set the percentage where elements created

after that location will be in a new component. Multiple positions can be set. Use of this parameter over-

rides the components_circ setting and vise-versa.

taper – mnemonic for taper schedule (see taper library)

 default = elli

droop – mnemonic for droop schedule (see droop library)

 default = line

zdist – Controls distribution of nodes axially. The value must be greater than zero and less than or

equal to one. The lower the value specified the more the nodes are biased toward the dome nose. A value

of one (the default) results in nodes being distributed linearly in the z direction. A value of 0.5 results in

nodes spaced in such a way as to produce equal radial spacing when viewed from nose on.

The actual equation used is: zi= length * (i/nodes_axial)zdist

 default = 1.0

zdroop – distance to droop nose point from centerline

 default = 0

100

param1, param2, param3 – Additional parameters whose meanings vary depending on the value of

the taper option chosen. Since the meaning may change from an exponent expected to be between zero

and one to a radius that may be hundreds of inches, exercise care in the use of these values. These values

are reset to -1.0 after use. This indicates to Loft that the default value should be used. Thus, any desired

parameters need to be set for each dome created. (see taper library).

101

TDome

A TDome is an under-development variation on the dome object type. This object allows the user to

specify a different value of nodes_circ at each end of the section. This results in a number of triangu-

lar elements being created to gradually change from one node count to the other.

No TDframe object has been created to allow ring frames and longerons to attach to a TDome. A con-

ventional DFrame object may be used. It should stitch well along edges of the section but will generally

not attach properly across the middle of a TDome. If such a mid-frame is desired, use multiple base ob-

jects to force straight element edges at the desired location.

The TDome object uses the same parameters as the dome object with one addition:

nodes_circ2 – number of finite element nodes to use in the circumferential direction at the nose end

of the dome (the tip is a single node and this value is the count of nodes in the row just before the nose).

 default = 10, or last value specified

102

Wing

A wing object is a 3-D object composed of panels that represent a lifting surface’s skin, ribs, and spars.

This object creates one trapezoidal lifting surface (e.g., a right wing, a tail, a winglet, etc.) per call. It al-

lows the user to specify spar and rib positions and which spars to extrude to form the wingbox carry-

through. Other optional settings allow wing twist, different airfoil shapes at the root and tip, and beam/bar

stiffening of the ribs and spars. Partial generation of the wing in the chordwise direction (to support things

like control surfaces) is also supported. Beam stiffening is only partially implemented at this time. The

beams are connected properly, but their alignment is not properly set. (They are all aligned with node 1.)

The object local origin is the leading edge root node.

The wing object supports two types of parameters: specific and generic. Generic parameters change

one or more specific parameters. For instance, the generic naca parameter will change the values of both

the specific parameters rootnaca and tipnaca. The main parameter list contains just the specific pa-

rameters. A separate list of generic parameters is given at the end of this object section. The effect of the

two parameter types is read-order specific. Specifying “naca 2015” followed by “rootnaca 2212”

will result in the root using a 2212 airfoil and the tip using a 2015. If the rootnaca parameter was spec-

ified before the naca parameter then both the root and tip would use a 2015 airfoil.

Parameter List (Specific)

chord – Root chord length

 Default: 1

span – Single wing span

 Default: 1

taper – Ratio of tip chord length to root chord length

 Default: 1

103

sweep – Leading edge sweep angle in degrees

 Default: 0

rootnaca – Airfoil NACA designation (contains camber and thickness data) for wing root. Currently

only 4 and 5 digit airfoils are supported, but more series may be added in the future.

 Default: 2410

ripnaca – Airfoil designation for wing tip.

 Default: 2410

rootaoa – Root twist angle in degrees. Wing half-chord at the root is the rotation axis and positive

twist produces a higher section angle of attack (root up).

 Default: 0

tipaoa – Tip twist angle in degrees. Wing half-chord at the tip is the rotation axis and positive twist

produces a higher section angle of attack (tip up).

 Default: 0

twist – synonym for tipaoa parameter.

rootvert – Vertical offset of wing root. Positive is up (y-direction).

 Default: 0

tipvert – Vertical offset of wing tip. Positive is up (y-direction). Can be used to produce wing

dihedral.

 Default: 0

wingbox – Carrythrough length. May be zero. At least 2 spars must be specified if a carrythrough is

desired. This value is always reset to zero after object generation, so any desired non-zero values must be

set for each new object.

 Default: 0

sparpos – Percentage of chord to place a spar. These can be specified in any order; the program

automatically sorts them as they are read. If either of the words “reset” or “clear” is specified rather than a

percentage, the current list of spars is deleted and the boxfront and boxrear parameters are reset to

their default values. This reset option is needed because the lists of spars and ribs are kept as the default

from one wing to the next.

ribpos – Percentage of span to place a rib. Automatic ribs are created at 0 and 100 percent span and do

not need to be specified by the user. These can be specified in any order; the program automatically sorts

them as they are read. If either of the words “reset” or “clear” is specified rather than a percentage, the

current list of ribs is deleted (with the 0 and 100 percent automatic ribs being immediately re-added). See

the notip parameter if suppression of the tip rib is desired.

boxfront – Spar number to extrude to make wingbox carrythrough front (used only if the wingbox

parameter is > 0). Numbering is based on proximity to the wing leading edge, not on the order that the

sparpos parameters occur. This value is reset to the default if the list of spar positions is cleared.

 Default: 1

104

boxrear – Spar number to extrude to make wingbox carrythrough back (used only if wingbox

parameter is > 0). Numbering is based on proximity to the wing leading edge, not on the order that the

sparpos parameters occur. This value is reset to the default if the list of spar positions is cleared.

 Default: (last spar)

meshchord – Finite element mesh density per unit length in the chordwise direction (higher values

produce a denser mesh). Note that tapering of chord length and thickness across the span of the wing will

not cause a change in mesh counts; there will be the same number of nodes along the tip rib as on the root

rib. Example: a setting of 5 on a wing with a 5 unit long chord setting will result in approximately 25

nodes in the chordwise direction on both the top and bottom skin (the exact node count will depend on

spar positions and integer math truncations). This is a real number, not an integer, and can be less than

one if desired. This parameter changes the chordwise mesh distribution for the skins and ribs.

 Default: 3.0

meshspan – Finite element mesh density per unit length in the spanwise direction. (See discussion

above.) This parameter changes the spanwise mesh distribution on the skins and spars.

 Default: 3.0

meshthick – Finite element mesh density per unit length in the thickness direction. (See discussion

above.) This parameter changes the vertical mesh density of the ribs and spars. It has no effect on the

wing skins.

 Default: 3.0

sparstiff – Flag to turn on generation of stiffening bars/rods or beams at the top and bottom of the

spars. Values are “off,” “on,” “beam,” “bar,” and “rod.” (“on,” “bar,” and “rod” are all equivalent.)

 Default: off

ribstiff – Flag to turn on generation of stiffening bars/rods or beams at the top and bottom of the ribs.

Values are “off,” “on,” “beam,” “bar,” and “rod.” (“on,” “bar,” and “rod” are all equivalent.)

 Default: off

halfwing – Flag to turn on generation of just the top or bottom half of the wing. Used primarily for

vertical tails on the symmetry lines of a half vehicle. Values are “off,” “on,” “bottom,” and “top.” (“top”

and “on” are the same).

 Default: off

wingside – Flag to control which side of the vehicle to build the wing. Values are “starboard,” “port,”

“right,” and “left” (starboard = right, port = left).

 Default: starboard

notip – Flag to control generation of outboard (100% span) rib. This is useful when you are building up

a compound wing of multiple trapezoidal sections and do not want a double rib at the junction. Values of

“1,” “on,” or “true” will disable the wingtip rib generation. Values of “0,” “off,” or “false” will re-enable

it. This flag is always reset to off after each wing generation.

 Default: off (wingtip rib is generated)

105

nowbrib – Flag to control generation of the rib at the end of the wingbox carrythrough. Generally this

rib would fall on the centerline of the vehicle. Values of “1,” “on,” or “true” will disable the wingbox rib

generation. Values of “0,” “off,” or “false” will re-enable it. This flag is always reset to off after each

wing generation.

 Default: off (wingbox rib is generated)

start – Percentage of chord length to start generating the object. Any spars that are specified at lower

positions than this value are ignored. The start and stop parameters are used to generate partial wing

objects (e.g., control surfaces).

 Default: 0

stop – Percentage of chord length to stop generating the object. Any spars that are specified at higher

positions than this value are ignored. The start and stop parameters are used to generate partial wing

objects (e.g., control surfaces).

 Default: 100

gen_up_skin – Flag to control the creation of the wing upper skin. Values are “on” and “off.” This flag

is always reset to “on” after an object has been created.

 Default: on

gen_low_skin – Flag to control the creation of the wing lower skin. Values are “on” and “off.” This

flag is always reset to “on” after an object has been created.

 Default: on

gen_spars – Flag to control the creation of the wing spars. Values are “on” and “off.” Even when off,

the other wing elements will be positioned to align with the spars that are specified in the object

geometry. Thus, each part of the wing could be generated separately and merged to create the same mesh

as if they were created together. This flag is always reset to “on” after an object has been created.

 Default: on

gen_ribs – Flag to control the creation of the wing ribs. Values are “on” and “off.” Even when off, the

other wing elements will be positioned to align with the ribs that are specified in the object geometry.

Thus, each part of the wing could be generated separately and merged to create the same mesh as if they

were created together. This flag is always reset to “on” after an object has been created.

 Default: on

106

Expanded view of Wing parts created by sequential use of each of the gen_XXX flags

Parameter list (Generic)

mesh – Finite element mesh density per unit length (higher values produce a denser mesh). This is a

global setting for the entire object. When used, the three specific parameters meshthick, meshspan,

and meshchord are reset to this value.

naca – Airfoil NACA designation (contains camber and thickness data). When used, the specific

parameters rootnaca and tipnaca are reset to this value.

nribs – Number of wing ribs, including root and tip. Must be greater than or equal to 2. When used, the

current ribpos parameter settings are erased and the specified number of new evenly spaced ribs are

placed in the ribpos list.

nspars – Number of wing spars. When used, the current sparpos parameter settings are erased and

the specified number of new evenly spaced spars are placed in the sparpos list.

nodeschordwise – Approximate number of finite element nodes to use along each chord line (the top

surface and the bottom surface will each have this many nodes.) This will reset the meshchord value to

(specified value)/(current chord). The actual number of nodes may vary due to integer math and

positioning of nodes exactly at spar positions.

elemPerSpanBay – Approximate number of finite elements to use between each rib. This parameter

will reset the meshspan parameter to (specified value) * (current number of ribs) / (current span).

107

Frame/DFrame

A Frame is an object made of beam elements distributed between two curves. Frame objects are based

on the last section object – taking their shape and dimensions from that section. To attach stiffeners to a

dome object, use the DFrame object described below. The align parameter can be used to select axial

or circumferential alignment. If a single line of beams is desired, the count variable can be set to one,

and the position parameter can be used to specify the position along the curve. A frame object does

not change the default position of the next object. All beams are by default aligned with a node set at x =

0, y = 0, z = <beam start point z>. This may not be what is desired in all cases, so the x3, y3, and z3

parameters can be used to override this setting.

A DFrame is also a frame type object but is based on/attached to the previous dome object. It has the

same parameters as the frame object.

The bright lines in the figure above are thrust structure stiffening beams created using both frames and

dframes. Loft will detect and remove duplicate beam/bar elements created at the junction points of two

adjacent sections.

Parameter List

align – Direction of beam elements. Values are “axial” or “circ.”

 Default: circ

count – Number of frames to make (integer)

 Default: components setting of parent section/dome +1 in direction specified. The frames will be

positioned at the same component edge locations that are used in the parent object, whether set by count

(components_axial) or by explicit location (axial_cpos). Overriding the count will lose this

location paring and result in even spacing of the specified number of frames.

position – Location of a single frame, in fraction of the direction specified, must be between zero and

one. Ignored if count does not equal one.

 Default: 0

108

type – Type of 1-D object to generate. Values are “beam,” “rod,” or “bar” (rod and bar are the

same).

 Default: beam

x3,y3,z3 – Location of beam alignment node

 Default: x3 = 0, y3 = 0, z3 = beam start coordinate

109

Beam

A Beam is a one-dimensional object where the user specifies the absolute position of the end points.

This object type can generate either a beam (has axial and bending stiffness) or a rod/bar (has only axial

stiffness). The parameters specified for this object do not change the defaults for the other object types

(but are remembered for other beam objects). None of the general object parameters (move, rotate,

scale, warp, flip) are supported at the object level.

Parameter List

type – Kind of 1-D object to generate. Values are “beam,” “rod,” or “bar” (rod and bar are the

same).

 Default: beam

x1,y1,z1 – End point coordinates

 Default: 0,0,0, or previous settings

x2,y2,z2 – End point coordinates

 Default: 1,1,1, or previous settings

x3,y3,z3 – Beam alignment node coordinates

 Default: 0,1,0 or previous settings

110

Tank

A Tank is a meta-object composed of three objects: an elliptical dome of negative length, a tank barrel

section, and an elliptical dome with positive length (the same as the negative length). The three objects

will be named based on the supplied name for the tank meta-object but will have “ FD,” “ B,” or “ AD”

(for “forward dome,” “barrel,” and “aft dome”) added. The tank object shares the section object parame-

ters and defaults, with one additional parameter: dome length.

The tank local origin point is the centerpoint of curve 1 (the center of the front of the barrel section).

Use of a tank object does update the global default creation point to the center of curve 2.

Additional Parameter List

 See list for the section object type above for a base list of parameters.

domelength – Length of the elliptical domes

 Default: 0.707 * Average of corresponding section end’s scale_x,scale_y

111

StiffTank

A StiffTank is a ring frame stiffened tank meta-object. It is constructed the same as the tank meta-

object with the addition of circumferential ring frames being added along the edge of each barrel compo-

nent (as controlled by the components_axial parameter). The string “ R” is added to the object name

for the frame object. See the tank and section objects for its parameters. No stiffening is added to the

domes.

112

Box

A Box is a trapezoidal flat faced object with the front and back surfaces parallel. Stiffeners may optionally

be placed along face component edges and/or through the volume of the box using the stiff_skin_X

and stiff_vol_X parameters detailed below. There are no parameters to specify cross sectional shape—

a square is always used. Note that like the wing object this object will not generally automatically stitch

properly to an adjacent section or dome object as the node distribution will be different.

Parameter List

c1_xscale – Factor to scale horizonal dimension of front end by

 default = 1

c1_yscale – Factor to scale vertical dimension of front end by

 default = 1

c1_xoffset – Horizontal distance to move front end

 default = 0

c1_yoffset – Vertical distance to move front end

 default = 0

c2_xscale – Factor to scale horizonal dimension of aft end by

 default = 1

c2_yscale – Factor to scale vertical dimension of aft end by

 default = 1

c2_xoffset – Horizontal distance to move aft end

 default = 0

113

c2_yoffset – Vertical distance to move aft end

 default = 0

length – Axial length of box

 default = 1

nodes_vert – Number of nodes in the vertical direction

 default = 10

nodes_horz – Number of nodes in the horizontal direction

 default = 10

nodes_axial – Number of nodes in the axial direction

 default = 10

components_vert – Number of components in the vertical direction

 default = 3

components_horz – Number of components in the horizontal direction

 default = 3

components_axial – Number of components in the axial direction

 default = 3

stiff_skin_vert – Controls the creation of stiffeners in the vertical direction on the front, back, left,

and right skin panels. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or

“false” will disable them.

 Default = off

stiff_skin_horz – Controls the creation of stiffeners in the horizontal direction on the front, back,

top, and bottom skin panels. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,”

“off,” or “false” will disable them.

 Default = off

stiff_skin_axial – Controls the creation of stiffeners in the axial direction on the top, bottom, left,

and right skin panels. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or

“false” will disable them.

 Default = off

stiff_skin_all – toggles all three stiff_skin_X settings to the specified value. Values of “1,”

“on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them.

 Default = off

stiff_vol_vert – controls the creation of stiffeners in the vertical direction in the box internal

volume. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will

disable them.

 Default = off

114

stiff_vol_horz – controls the creation of stiffeners in the horizontal direction in the box internal

volume. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will

disable them.

 Default = off

stiff_vol_axial – controls the creation of stiffeners in the axial direction in the box internal

volume. Values of “1,” “on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will

disable them.

 Default = off

stiff_vol_all – toggles all three stiff_vol_X settings to the specified value. Values of “1,”

“on,” or “true” will enable the stiffeners. Values of “0,” “off,” or “false” will disable them.

 Default = off

115

User Curve Types and Parameters

The internal library curves are all defined such that they have a nominal radius of one. For instance, a

square is two units long on an edge. This allows the use of object level curve scaling parameters to reflect

the actual dimensions desired for the mesh. This approach is recommended, but not required, for user-

defined curves. For proper alignment of normal vectors, curves should be defined sequentially in a

clockwise fashion.

Mnemonics for user-defined curves can be chosen such that they override internally defined curves

(i.e., a user-defined “sc” curve would replace the internal one). Defining a second user-defined curve with

the same name generally will not override the previous shape. When data from a curve is needed, Loft

scans through the curve libraries in the following order and stops when it gets a match: 1) Interpolated

curves, in the order they were defined, 2) Compound curves, in the order they were defined, 3) Lofted

curves, in the order they were defined, and 4) Internal curves. If no match is found, Loft will use a semi-

circle.

Interpolated Curves

Interpolated curves are defined by specifying x and y coordinates of points along the curve. Point order

is important. Various interpolation options may be available in the future, but currently only linear inter-

polation is supported. “y” is the vertical coordinate and “x” is the horizontal.

Parameter List

start – Initial point coordinates

 Example: start 0.0 1.0

line – Coordinates of new point to be connected to the previous point by a line.

 Example: line 1.0 1.0

Compound Curves

Compound curves are curves built up by combining previously defined curves. Any curve type (built-

in, interpolated, lofted, or previous compound) can be used. Only circles and semi-circles have modules

that will automatically compute their intersection points with each other. If an intersection is not between

two circle/sc curves, then the user will need to specify the portions of each curve that is to be used. See

project 3B in chapter 2 of the manual for a more complete explanation of this process.

Parameter List

child – Name of child curve. This starts a new child curve definition. All parameters that follow will

refer to this child until a new child starts or the entire compound curve definition is finished by another

command.

x – x coordinate to use for center of child curve

Default = 0.0

y – y coordinate to use for center of child curve

116

Default = 0.0

radius – scale factor for curves

Default = 1.0

sstart, sstop – fraction along a curve’s circumference to start/stop (defaults 0.0, 1.0). For circle/sc

curves, these values are overwritten when the curve intersection code is called, e.g., curve 3’s sstop

value is reset when curve 4 is specified. Thus, sstart will have an effect only on the first specified

circle/sc curve and sstop will have an effect only on the last circle/sc specified curve. For curve types

where intersection calculation code has not been written (i.e., anything other than circle or sc), these

values will not be overwritten and in fact are the only way to use these types of curves in a compound

curve.

Lofted Curves

Loft inherently creates a lofted curve whenever it creates a dome or a section and is creating nodes at a

station between the two ends of the object. The lofted user-defined curve type allows the user to extract

one of these intermediate shapes for later use. Applications include creation of mid-section bulkheads.

Any curve types can be used as the end curves.

Parameter List

curve1 – Name of first source curve.

Default = sc

curve2 – Name of second source curve.

Default = sc

station – Fractional position between the two curves used to create the new user curve. 0.0 = curve1,

1.0 = curve2

Default = 0.5

Example:

curve lofted midbarrel

curve1 sc

curve2 ss

station 0.3

117

Libraries

Curve Library

This is a list of the currently coded curves and their mnemonics. All curves have a nominal radius of

one.

Curve families allow the user to tack a single parameter onto the name of the curve to affect the final

shape generated. No space is left between the mnemonic and the parameter, e.g., fillet0.44 or

sccw3.2. The parameter is optional.

Most curves are available in both a full 360-degree version and a semi 180-degree version. When us-

ing a full curve, Loft will use the nodes_circ parameter to generate the curve, but the first and last

nodes (at 0 and 360 degrees) will be merged and the mesh will have one fewer node in that direction than

was specified by the user. Keep this in mind and increase the value of the parameter if necessary.

Simple Curves
Circle – “cir” – Unit radius full circle.

Semicircle – “sc” – Unit radius half circle.

Square – “squ” – Full square of width and height 2.

Semi-square – “ss” – Half square of dimension 2 (encloses radius 1 circle exactly)

Breadbox – “bb” – Circular on top, square on the bottom. (Note: for compatibility with the other library

curves, the breadbox curve has s = 0.25 and 0.75 at the junctions of the circle and the square. These are

not 25% and 75% along its circumference.)

Semi-breadbox – “sbb” – Half section with top half circular and bottom half square. (Note: for

compatibility with the other library curves, the semi-breadbox curve has s = 0.50 at the junction of the

circle and the square. This is not 50% along its circumference.)

Line – “line” – Vertical line from +1 to –1, for webs and longitudinal bulkheads

Horizontal line – “hline” – Horizontal line from +1 to –1

Curve Families
Semi-circle-cosine-wiggle – “sccw” – Cosine wiggle shape

 Parameter meaning – number of full cosine waves to generate

 Default = 2.5

Filleted box – “fillet” – Square with rounded corners (Note: the distribution of s along the filleted box is

not exactly by circumference.)

 Parameter meaning – radius of fillet, between 0 and 1

 Default = 0.25

118

Semi-Filleted box – “sfillet” – Half section square with rounded corners. (Note: the distribution of s along

the semi-filleted box is not uniform in circumferential distance.)

 Parameter meaning – radius of fillet, between 0 and 1

 Default = 0.25

119

Library Curves illustrated with Dome Objects

Circle Semi-Circle

Square Semi-Square

Breadbox Semi-breadbox

Fillet Semi-Fillet

120

Cosine Wiggle Line or Horizontal Line

Dome Taper Library

This is a list of the currently coded dome taper schedules and the meaning of the paramN options.

Bulkhead – “bulk” – Planar (zero length) bulkhead

Linear – “line” – Linear taper (cone shaped)

Parabolic – “para” – Power law nose shape

 param1 = exponent of taper schedule. Default = 0.5 for a true parabola

Elliptical – “elli” – Elliptical taper for tank domes

Ogive – “ogive” – Tangent ogive nose with spherical nose cap

 param1 = nose cap radius. Default = 1.0

 param2 = radius of main section curve. Default = 0.0

 param3 = radius of nose base. Default = 1.0

Haack – “haack” – LD-Haack nose shape with optional spherical blunt cap (controlled by param3)

 param1 = length of nose without blunt cap. Default = dome length

 param2 = nose cap radius. Default = 1.0

 param3 = nose cap length. Default = 0.0

Dome Taper Library Examples

Elliptical Linear Parabolic

121

Bulkhead Ogive Blunt LD-Haack

Section Taper Library

This is a list of the currently coded section taper schedules and the meaning of the value options. The

pictures show a section object that interpolates between one semi-circle and a larger, offset semi-circle.

Circumferential and axial frames are added.

Linear – “line” - Linear taper

Power – “power” – Power curve taper

value = exponent of taper schedule. Default = 1.0 which is linear

Cosine – “cosine” – Cosine schedule, offers tangency posibilities

value = number of cosine half waves. Default = 1.0

Section Taper Library Examples

Linear Cosine 1.0 Cosine 0.5

Power 0.5 Power 1.5

122

Droop Library

This is a list of the currently coded dome droop schedules.

Linear – “line” – Nose centerline descends linearly

Parabolic – “para” – Nose centerline descent smoothly increases

Droop Library Examples

Linear Parabolic

123

System Variable List

This is a chart listing system variables available for use in a Loft input file. They correspond to the object

parameters set by the user in the input file and will return the current values of those variable.

Global Variables

Variable Invoked by

transx – x coordinate for next object @transx

transy – y coordinate for next object @transy

transz – z coordinate for next object @transz

rotx – x rotation for next object @rotx

roty – y rotation for next object @roty

rotz – z rotation for next object @rotz

components_circ – components in

circumferential direction

@components_circ

nodes_circ – nodes in circumferential direction @nodes_circ

Section Variables

Variable Invoked by

length – length of section object @section.length

taper – taper value of section object @section.taper

components_axial – components in axial

direction

@section.components_axial

nodes_axial – nodes in the axial direction @section.nodes_axial

124

Dome Variables

Variable Invoked by

length – length of dome object @dome.length

zdist – axial node distribution @dome.zdist

droop – droop value of dome object @dome.droop

param1 – parameter 1 @dome.param1

param2 – parameter 2 @dome.param2

param3 – parameter 3 @dome.param3

components_axial – components in axial

direction

@dome.components_axial

nodes_axial – nodes in the axial direction @dome.nodes_axial

125

Wing Variables

Variable Invoked by

chord @wing.chord

span @wing.span

taper @wing.taper

sweep @wing.sweep

twist @wing.twist

wingbox – wingbox length @wing.wingbox

mesh_chord @wing.mesh_chord

mesh_span @wing.mesh_span

mesh_thick @wing.mesh_thick

wing transx – x position of next wing (wing

objects do not update the global transx/y/z

variables. Instead the default position of a new

wing object is the same as the previous wing

object.)

@wing.transx

wing transy – y position of next wing @wing.transy

wing tranz – z position of next wing @wing.transz

126

Math Function List

For these functions, all angles are in radians.

Function Invoked by

Sine %sin

Cosine %cos

Tangent %tan

Arcsine %asin

Arccosine %acos

Arctangent %atan

Exp %exp

Square root %sqrt

Cube root %cbrt

Absolute value %abs

Integer or truncation %int

127

Chapter 7: Example Input Decks

Loft Example Input Deck #1

The first full example Loft input deck builds a simple conceptual level finite element model of a Two

State To Orbit (TSTO) booster (BST) vehicle. A lot of the design details of the vehicle, such as stiffeners,

are very notional and the wing carrythrough passes through the aft tank. Also, the wing objects are not

stitched to the fuselage. It contains approximately 100 lines of basic Loft commands and parameters. It

does not make use of user-defined curves, the region mode, or perform any store/recall operations.

Testing full vehicle based vaguely on

ISAT Reference vehicle Mach 3.4 TSTO Vehicle

Booster

Our nose

object dome BST Nose

curve1 sc

c1_xscale 15.589

c1_yscale 15.589

length -36

taper para

nodes_circ 21
nodes_axial 20
droop line

zdroop 8

components_axial 2

128

Short fuselage extension to get nose

not to impinge on forward tank

object section BST Nose Barrel

length 3.885

nodes_axial 3
components_axial 1

Forward LOX (liquid oxygen) Tank

object dome BST LOX FW Dome

length -11.02

taper elli

nodes_axial 8
components_axial 1

129

object section BST LOX Barrel

length 23.205

nodes_axial 12
components_axial 1

object frame BST LOX Frame

align axial

object dome BST LOX AFT Dome

length 11.02

taper elli

nodes_axial 6
components_axial 1

130

ITA (Intertank adaptor)

object section BST ITA

length 26.04

nodes_axial 12
components_axial 1

LH2 (liquid hydrogen) Tank

object dome BST FW Dome

length -11.02

taper elli

nodes_axial 12
components_axial 1

object section BST LH2 Barrel

length 87.35

nodes_axial 44
components_axial 3

131

object frame BST LH2 frame

object dome BST LH2 AFT Dome

length 11.02

taper elli

nodes_axial 6
components_axial 1

Tank shroud

object section BST Tank Shroud

length 11.02

nodes_axial 6
components_axial 1

132

Wing

object wing Main Wing

chord 80

span 60

taper 0.25

sweep 40

wingbox 6

transx 6

relz -70

rely -12

nribs 4

nspars 3

meshchord .4

meshspan .4

meshthick .4

naca 2412

Tip fin

object wing Winglet

chord 20

span 20

wingbox 0

transx 66

relz 50.35

rotz 50

133

meshchord 1.6

meshspan 1.6

meshthick 1.6

TS (Thrust structure) shroud

object section BST TS Shroud

length 16.5

nodes_axial 6
components_axial 1

Put a chopped off cone inside the shroud

to represent the thrust structure

note the relz parameter's use

object section BST Thrust Structure

length 3

c2_xscale 12

c2_yscale 12

relz -10.5

nodes_axial 4
components_axial 1

134

Vertical tail on line of symmetry

object wing Tail

naca 0612

nribs 3

nspars 2

halfwing bottom

chord 30

span 30

transy 15.589

rotz 90

relz -20

mesh .4

bulkhead to close off thrust structure

object dome BST Thrust Bulkhead

taper bulk

components_axial 1
save

write vrml full-color.wrl

end

135

136

Loft Example Input Deck #2

The second full example Loft input deck builds a significantly more complex finite element model of a

similar Two Stage To Orbit (TSTO) orbiter vehicle suitable for advanced conceptual analysis. Most of the

neglected design details in the first example deck have been addressed in this model with carefully

positioned stiffeners and wings. The deck contains approximately 800 lines of Loft commands and

parameters.

Significant use is made of user-defined curves to define the fuselage shape at various stations. The region

mode is used to change the property assignments needed to create the payload bay door and to create

partial models for loads mapping. The store/recall capability is used extensively to position major

components and to create presentation figures that focus on particular components. Substantial use is also

made of user variables and command line math.

Loft input deck to generate

LaRC TSTO-2009-2A Orbiter

aft LOX packaging

Units are in inches

The first command defines the number of nodes used circumferentially on the fuselage. It is necessary to

use a variable to store this value because the use of the store command resets all default values

including the nodes_circ setting. Variables are not reset by the store command. The scale factor

used for the fuselage is defined here for the same reason. The third variable defines the position of the

forward-most bulkhead on the forward tank as measured from the constant cross section portion of the

fuselage. This dimension is needed in order to produce the user-defined lofted curves that define the

bulkhead.

define circnodes 41

define fusescale 102.

137

define bulletbulk 100. # dist fwd of fslg to place bulkhead

The first major section of the input deck defines all of the user-defined curves needed to construct the

vehicle.The first such curve is the half-slice-of-bread cross sectional shape of the fuselage. The final

shape is made of two circular portions: one at the top and one at the bottom outside corner, and two linear

portions: the flat bottom and a five degree sloped sidewall. The internal circle shapes can be used for the

circular portions, but the linear portions must be defined as interpolated curves. Then a compound curve

named “body” is defined that combines the four children into one curve.

Define child curves of unit half cross section

(cross sectional shape fits in -1 to 1 square space)

point defintion:

A = top (centerline) of curve

B = intersection of circ top & 5deg side

C = intersection of 5deg side and 1/17 fillet

D = intersection of 1/17 fillet and flat bottom

E = bottom (centerline) of curve

line B-C

curve interpolated mylineBC

 start 0.996195 0.0871557

 line 0.999776 -0.9360497

line D-E

curve interpolated mylineDE

 start 0.9411765 -1.0

 line 0.0 -1.0

combine into full cross section

curve compound body

 child sc

 sstop 0.47222222222

 child mylineBC

 child sc

 sstart 0.47222222222

 sstop 1.0

 radius 0.0588235

138

 x 0.941176

 y -0.94117647

 child mylineDE

The next user-defined curves to create are those that define the mid-payload-bay support bulkheads.

These have circular cross sections at the top/inboard and match the just-defined fuselage cross section at

the bottom/outboard. The values of the sstart parameters were arrived at through trial and error. Note

that the actual bulkhead is not created here, just the curves that are used later when the payload bay is

created.

Payload Bay Support bulkhead curves

plb1 = semi-circle bay shape

plb2 = sidewall & floor shape

curve compound plb1

 child sc

 sstart 0.54

 radius 72. / 102.

 x 0.0

 y 24.0 / 102.

curve compound plb2

 child body

 sstart 0.4

The orbiter nose starts with a small circular cap that transitions to the body cross section defined earlier.

The forward tank has a bullet shaped dome that projects a significant distance into the nose, making a

support bulkhead necessary in this region. Two curves are defined to support the tank dome at 50 percent

of its length: “forebullet” is the outer curve of the bulkhead which captures the fuselage nose shape at the

desired position, and “dome50” is the tank dome shape at the same station. Two additional lofted curves

are defined to allow the construction of full bulkheads in the nose designed to bracket the forward landing

gear location: “fore25,” and “fore50.”

139

Pieces of forebody bulkhead

curve lofted forebullet

 curve1 sc

 curve2 body

 c1_xscale 18.0
 c1_yscale 18.0
 c1_yoffset -42.0
 c2_xscale $fusescale
 c2_yscale $fusescale
 c2_yoffset 0.0
 taper cosine .5

 station 450.54 - $bulletbulk / 450.54

curve lofted fore25

 curve1 sc

 curve2 forebullet

 c1_xscale 18.0
 c1_yscale 18.0
 c1_yoffset -42.0
 c2_xscale 1
 c2_yscale 1
 c2_yoffset 0.0
 station 0.25

curve lofted fore50

 curve1 sc

 curve2 forebullet

 c1_xscale 18.0
 c1_yscale 18.0
 c1_yoffset -42.0
 c2_xscale 1
 c2_yscale 1
 c2_yoffset 0.0
 station 0.5

curve lofted dome50

 curve1 sc

140

 c1_xscale 96.
 c1_yscale 96.
 taper elli

 station 0.50

list ccurves

list lcurves

Following the completion of the curve definition section, the list debugging command is used to

confirm the creation of all of the desired curves. In the text output from Loft, these commands produce:

The input deck then starts defining the vehicle, starting at the nose. Note the use of the previously defined

“circnodes” variable. Also notice that all external components are given the “OML” mark.

Build vehicle

====================== Nose =======================

define caplength -9.

object dome nosecap

 curve1 sc

 c1_xscale 18.0
 c1_yscale 18.0
 c1_yoffset -42.0
 length $caplength

 nodes_circ $circnodes
 nodes_axial 5
 taper para

 components_axial 1
 components_circ 1
 transz $caplength

 mark element OML

141

The nose length dimension supplied by the vehicle designer was 441.54 inches from the tip of the nose to

the start of the constant cross section portion of the fuselage. The length of the section is computed

parametricly from the length of the components on either end. Thus, the nose or the supported-length of

the forward tank barrel could change, and this component would be updated to maintain the desired total

length. The nodes_axial variable is chosen to be a multiple of four (32) plus one so that nodes are

positioned at 25 and 50 percent of the component. The nose-gear bulkheads will be placed at these

positions and will stitch to the fuselage correctly.

object section forebody

 curve2 forebullet

 c2_xscale 1.0
 c2_yscale 1.0
 c2_yoffset 0.0
 length 441.54 - $caplength - $bulletbulk

 nodes_axial 33
 components_axial 1
 mark element OML

object section forebody2

 curve2 body

 c2_xscale $fusescale
 c2_yscale $fusescale

142

 c2_yoffset 0.0
 length $bulletbulk

 taper cosine .5

 nodes_axial 10
 components_axial 1
 mark element OML

The move command below has no parameters after it. Thus, it does not actually move anything. But, it

does force Loft to generate the “forebody2” object and update the @transz system variable to reflect the

new object. The “noseend” variable is used later when the full vehicle is assembled from major

components. The “offset” variable is used to position the two nose-gear bulkheads that immediately

follow. Beams are also created along the bulkhead/nose intersection. The zdroop parameters on the two

bulkheads are used to move the center node of the bulkhead down from the vehicle centerline to the

object center.

move

define noseend @transz

define offset 441.54 - $caplength - $bulletbulk / 4

object dome Nose Gear Front Bulk

 curve1 fore25

 c1_xscale 1.0
 c1_yscale 1.0
 zdroop 30.0

 transz $offset + $caplength

 length -0.0001

 nodes_axial 8
 zdist 0.6

 components_axial 1
object dframe nose fwd ring frame

 count 1

object dome Nose Gear Rear Bulkhead

 curve1 fore50

 zdroop 20.0

143

 transz 2 * $offset + $caplength

 length -0.0001

 nodes_axial 8
 zdist 0.7

 components_axial 1
object dframe nose aft ring frame

 count 1

Finally, the completed nose is written to a VRML output file and moved to the Loft internal clipboard

with the store command. Remember that the store command resets all object defaults and starts a

new stack with no nodes or elements.

write vrml orb-nose.wrl

store nose

The global variable section below defines the length and position of all of the main fuselage components

including tanks. These are collected in one place to make model updating easier. All of the later objects

reference these dimensions. The “fuse_center_bay” variable definition line is wrapped onto two lines in

this document and should actually be on one long line. As with the nose’s “forebody” object length, this

variable is used to maintain the desired overall length of 1013 inches when tank and skirt dimensions are

updated.

================= Global Variables =====================

Tank barrel lengths

define fwd_tank 325.
define aft_tank 43.
Skirts over domes

define fwd_tank_skirt 62 # used only at aft of front tank
define aft_tank_skirt 76 # used at front & aft of aft tank
define aft_skirt 103.
define longeron_pos 0.18
define fuse_center_bay 1013. - $fwd_tank - $aft_tank -

$aft_skirt - $fwd_tank_skirt - $aft_tank_skirt
define half_lh2_nose 200. / 2.
define mid_bulk $fwd_tank + $half_lh2_nose / 2

144

The constant cross-section portion of the fuselage is defined in seven sections. These cuts were made to

force the creation of nodes at axial stations that will later have bulkheads. Each fuselage portion also has a

longeron created at 18 percent around the curve. The longeron runs the length of the rest of the vehicle,

including along the edge of the payload bay door and onto the thrust structure.

======================== Fuselage =======================

Along fwd tank barrel

object section fuselage1

 curve1 body

 curve2 body

 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale $fusescale
 c2_yscale $fusescale
 length $mid_bulk - $half_lh2_nose
 nodes_axial 10
 nodes_circ $circnodes
 components_axial 1
 components_circ 1
 mark element OML

object frame longeron1

 count 1

 align axial

 position 0.18

object section fuselage1.5

 curve1 body

 curve2 body

 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale $fusescale
 c2_yscale $fusescale
 length $mid_bulk

145

 nodes_axial 21
 nodes_circ $circnodes
 components_axial 1
 components_circ 1
 mark element OML

object frame longeron1

 count 1

 align axial

 position 0.18

Along fwd tank aft dome

object section fuselage2

 length $fwd_tank_skirt
 nodes_axial 8
 nodes_circ $circnodes
 components_axial 1
 mark element OML

object frame longeron2

 count 1

 align axial

 position 0.18

define plb_start @transz

146

In this case, no dummy move command is necessary to force @transz to have the desired value; the lon-

geron object definition caused the generation of the “fuselage2” object and the updating of the @transz

system variable. Note that the selection of nodes_axial as a multiple of three plus one allows the later

exact positioning and stitching of the payload support bulkheads at 1/3 and 2/3 of the payload bay length.

Payload Bay fuselage

object section fuselage_center_bay

 length $fuse_center_bay
 nodes_axial 40
 nodes_circ $circnodes
 components_axial 1
 mark element OML

object frame longeron3

 count 1

 align axial

 position 0.18

object frame forward pl ring

 count 1

 align circ

 position 0.0

object frame aft pl ring

 count 1

 align circ

 position 1.0

Fuselage along Aft tank fwd skirt

object section fuselage4

 length $aft_tank_skirt
 nodes_axial 9
 nodes_circ $circnodes
 components_axial 1
 mark element OML

object frame longeron4

 count 1

147

 align axial

 position 0.18

Fuselage along Aft tank barrel

object section fuselage5

 length $aft_tank + 64
 nodes_axial 11
 nodes_circ $circnodes
 components_axial 1
 mark element OML

object frame longeron5

 count 1

 align axial

 position $longeron_pos

Fuselage along Aft tank aft skirt

object section fuselage6

 length $aft_skirt
 nodes_axial 11
 nodes_circ $circnodes
 components_axial 1
 mark element OML

object frame longeron6

 count 1

148

 align axial

 position 0.18

define fuseend @transz + $noseend

The next step is to add some detail to the payload bay. First, some dimensions are computed based on the

previously defined variables. Then the region command is used to modify the physical property assignment

of elements along the upper section of fuselage object “fuselage3.” These updated elements represent the

payload bay doors.

=================== Payload bay =======================

define plb_length $fuse_center_bay
define plb_half $plb_length / 2
define plb_third $plb_length / 3
define plb_center $plb_start + $plb_half
region

 iadd box 0. 102. $plb_center 130. 130. $plb_length
 pprem fuselage2

 pprem fuselage4

 setpp payload doors

Then full bulkheads are added at the front and rear of the payload bay and partial, support, bulkheads are

added at the 1/3 and 2/3 positions in the bay.

149

object dome payload bay fwd bulkhead

 curve1 body

 c1_xscale $fusescale
 c1_yscale $fusescale
 taper bulk

 transz $fwd_tank + $fwd_tank_skirt
 transy 0.0

 transx 0.0

 nodes_circ $circnodes
 components_axial 1
object dome payload bay aft bulkhead

 curve1 body

 taper bulk

 relz $plb_length
 transy 0.0

 transx 0.0

 components_axial 1

object section payload bay fwd support

 curve1 plb1

 curve2 plb2

 length 0.0

 transz $fwd_tank + $fwd_tank_skirt + $plb_third
 components_axial 1
 components_circ 1
 nodes_axial 9
 nodes_circ $circnodes * 0.6 + 1
object frame fwd plb support frame

 count 1

 align axial

 position 0.0

object frame fwd plb support frame

 count 2

150

 align circ

object section payload bay aft support

 curve1 plb1

 curve2 plb2

 length 0.0

 relz $plb_third

 components_axial 1
 components_circ 1
 nodes_axial 9
 nodes_circ $circnodes * 0.6 + 1
object frame aft plb support frame

 count 1

 align axial

 position 0.0

object frame aft plb support frame

 count 2

 align circ

Finally, the completed fuselage component is moved so that it is immediately aft of the nose using the pre-

viously created “noseend” variable. A VRML output file of the component is created. Then the full stack is

moved onto Loft’s internal clipboard and a new stack is started.

move

 transz $noseend

write vrml orb-fuselage.wrl

store fuselage

The next major component created in the input deck is the wing. The wing has two trapezoidal sections: a

narrow, inboard, strake and a wider, outboard, main section. The strake has one spar, positioned at the 10

percent chord location. The strake is generated first. When the strake skin is created, it is created as if there

were additional spars at the 36 and 82 percent chord locations. This forces a line of nodes to be created

along the phantom spars and allows correct stitching with the main wing, which does have spars at all three

positions. The first line defining the variable “tan75” uses an externally calculated value based on the

75.179 degree leading edge sweep angle of the strake (the %tan operation could also have been used). Note

151

the extensive use of the gen_XX flags and the use of the mark command to mark only the wing skin as

“OML.”

======================== Wing ==========================

define tan75 3.77924

define spar1 10.

define spar2 36.

define spar3 82.

First generate the spar we want to keep

object wing strake spar

 chord 498.196

 span 31.

 taper 377.777 / @wing.chord

 sweep 75.179

 rootnaca 2407

 tipnaca 2408

 sparpos $spar1

 ribpos reset

 notip 1

 meshchord 0.06

 meshspan 0.125

 meshthick 0.1

 transz 712.65

 relx 103

 rely -95

 gen_up_skin off
 gen_low_skin off
 gen_ribs off
 mark element wing

Generate the rest of the strake

Position spars so that the skin aligns with the main wing

but do not actually generate the elements

object wing strake

 sparpos reset

152

 sparpos $spar1

 sparpos $spar2

 sparpos $spar3

 notip 1

 gen_spars off
 mark element OML

 mark element wing

define strakespan @wing.span

No dummy command is required to capture the system variable update here because the default dimension

variables are updated immediately on specification.

The main wing is also specified as two objects. The reason for this is to apply the “OML” mark to only the

wing skin. Note the extensive use of system variables based on the strake dimensions. This allows the user

to change a dimension in only one location and have the wing still stitch together properly.

object wing mainwing ribs spars

 chord @wing.chord * @wing.taper

 span 233.

 meshchord @wing.mesh_chord / @wing.taper

 taper 113.235 / @wing.chord

 sweep 45.854

 rootnaca 2408

 tipnaca 2313

 ribpos reset

 ribpos 20.

 ribpos 40.

 ribpos 60.

 ribpos 80.

 relx $strakespan

 relz $tan75 * $strakespan

 wingbox 103 + $strakespan

 gen_up_skin off
 gen_low_skin off
 nowbrib 1

153

 mark element wing

A careful examination of the crank area between the strake and the main wing will show that the strake is

properly stitched to the main wing along the rib at the crank location. The strake skin is also attached to its

leading edge (10 percent) spar but is not attached to any of the carry-through spars. Depending on element

flexibility, some manual stitching could be required to connect the strake root rib to the carry-through

spars.

object wing mainwing skin

 wingbox 0.0

 notip 1

 gen_ribs off
 gen_spars off
 mark element OML

 mark element wing

write vrml orb-wing.wrl

store mainwing

list stacks

The list stacks debug command lists all of the stacks that have been stored on the internal clipboard.

Next, the tail will be created as a new stack. As with the main wing components, it is created as two ob-

jects so that the skin can be marked as “OML.”

===================== Tail ========================

object wing tail stiffeners

154

 chord 260.337

 span 281.5

 taper 77.955 / @wing.chord

 sweep 47.

 rootnaca 0613

 tipnaca 0618

 sparpos reset

 sparpos 19

 sparpos 60

 halfwing bottom

 ribpos reset

 ribpos 50

 wingbox 0.

 meshchord 0.08

 meshspan 0.08

 meshthick 0.02

 transz $fuseend - @wing.chord

 rely 102.

 transx 0

 rotz 90

 gen_up_skin off
 gen_low_skin off
 mark element tail

object wing tail skin

 halfwing bottom

 gen_ribs off
 gen_spars off
 gen_up_skin on
 gen_low_skin on
 mark element OML

 mark element tail

155

write vrml orb-tail.wrl

store tail

list stacks

After the tail object is written out as a VRML file and moved onto the internal clipboard, again the list of

stored stacks is requested. Then, the input deck specifies the forward tank. Two of the user-defined lofted

curves created at the beginning of the file are used here to create the support bulkhead on the bullet shaped

nose of the tank. Note also that the tank walls are all given the mark “LH2.” This mark will be used later to

extract just these elements from the full model.

======================== Fwd Tank ======================

object dome fwd tank fwd dome

 curve1 dome50

 c1_xscale 1.
 c1_yscale 1.
 length -1 * $half_lh2_nose
 transx 0.0

 transy 0.0

 zdist 0.7

 transz $noseend - 100.

 nodes_axial 12
 nodes_circ $circnodes
 components_axial 1
 components_circ 1
 taper para

 mark element LH2

156

object section fwd tank fwd bulk

 curve2 forebullet

 length 0.0

 components_axial 1
 nodes_axial 4
 mark element bulk

object frame fwd fwd ring frame

 count 2

object section fwd tank dome2

 curve1 dome50

 curve2 sc

 length $half_lh2_nose
 c1_xscale 1.
 c1_yscale 1.
 c2_xscale 96.
 c2_yscale 96.
 nodes_axial 10
 components_axial 1
 taper cosine 0.5

 mark element LH2

object section fwd tank barrel pt 1

 length $mid_bulk - $half_lh2_nose
 nodes_axial 10
 components_axial 1

157

 mark element LH2

object section fwd tank mid bulk

 curve1 body

 curve2 sc

 c1_xscale $fusescale
 c1_yscale $fusescale
 length 0.0

 components_axial 1
 nodes_axial 4
 mark element bulk

object frame fwd mid ring frame

 count 2

object section fwd tank barrel pt 2

 length $mid_bulk
 nodes_axial 21
 components_axial 1
 mark element LH2

158

object section fwd tank aft bulk

 curve1 body

 curve2 sc

 c1_xscale $fusescale
 c1_yscale $fusescale
 length 0.0

 components_axial 1
 nodes_axial 4
 mark element bulk

object frame fwd aft ring frame

 count 2

object dome fwd tank aft dome

 length 50

 nodes_axial 9
 components_axial 1
 mark element LH2

write vrml orb-lh2.wrl

store fwd_tank

The aft tank is built in a similar process to the forward tank. It is shorter but still has mid-dome bulkheads

like on the front of the forward tank. The lofted curve to connect to the dome is defined here rather than at

the top of the input file; it could be moved to the top of the file if desired.

159

====================== Aft Tank =========================

define aft_dome 96
define aft_support $aft_dome / 3.
curve lofted aftdome

 curve1 sc

 station 1 / 3

 taper elli

 c1_xscale 96.
 c1_yscale 96.
object dome aft tank fwd dome

 curve1 aftdome

 length $aft_support - $aft_dome
 c1_xscale 1.
 c1_yscale 1.
 nodes_axial 10
 nodes_circ $circnodes
 components_axial 1
 components_circ 1
 taper para

 mark element LOX

object section aft tank fwd bulk

 curve1 body

 curve2 aftdome

 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale 1.
 c2_yscale 1.
 length 0.0

 components_axial 1
 nodes_axial 4

 mark element bulk

object frame fwd aft ring frame

 count 2

object section aft tank fwd curve

160

 curve2 sc

 c2_xscale 96.
 c2_yscale 96.
 length $aft_support

 taper cosine 0.5

 mark element LOX

 components_axial 1
 nodes_axial 5

object section aft tank barrel

 curve1 sc

 length $aft_tank

 nodes_axial 6
 components_axial 1
 mark element LOX

object section aft tank aft curve

 curve2 aftdome

 c2_xscale 1.
 c2_yscale 1.
 length $aft_support
 taper power 1.0

 mark element LOX

 components_axial 1
 nodes_axial 5
object section aft tank aft bulk

161

 curve1 body

 curve2 aftdome

 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale 1.
 c2_yscale 1.
 length 0.0

 components_axial 1
 nodes_axial 4
 mark element bulk

object frame aft aft ring frame

 count 2

object dome aft tank aft dome

 curve1 aftdome

 length $aft_dome - $aft_support
 c1_xscale 1.
 c1_yscale 1.
 nodes_axial 10
 components_axial 1
 taper para

 mark element LOX

The position of the aft tank is computed from five previously saved lengths. The definition should all be on

one line in the actual input file, not wrapped as it is in this manual.

162

define aft_tank_start $noseend + $fwd_tank + $fwd_tank_skirt
+ $fuse_center_bay + $aft_tank_skirt
move

 transz $aft_tank_start
define aft_tank_end $aft_tank_start + @transz
write vrml orb-lox.wrl

store aft_tank

The next object created is a notional thrust structure. It makes extensive use of stiffeners created with

Frame and DFrame objects. The first piece created accomplishes the transition from the half-loaf-of-bread

“body” shape to a semi-circle.

================= Thrust structure =====================

object section thrust cone

 curve1 body

 curve2 sc

 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale 80.
 c2_yscale 80.
 length $aft_skirt + 10.
 components_axial 1
 components_circ 1
 nodes_circ $circnodes
 nodes_axial 8

Five axial stiffeners are created. The first three (at 0, 50, and 100 percent of the circumference) are created

as one object. Then, two individual axial stiffeners are added, one at the $longeron_pos position (18

percent) and one at 75 percent.

object frame thrust stiffeners

 count 3

 align axial

163

object frame thrust stiffeners

 count 1

 position $longeron_pos
 align axial

object frame thrust stiffeners

 count 1

 position 0.75

 align axial

Five circumferential stiffeners are added:

object frame thrust cone rings

 count 5

 align circ

164

A circular flat plate is added with similar stiffeners:

object dome thrust plane

 taper bulk

 length 0.0

 components_axial 1
 nodes_axial 8

object dframe thrust rings

 align circ

 count 1

 position 0.2

object dframe thrust rings

 align circ

 count 1

 position 0.7

object dframe thrust diags

 align axial

 count 3

object dframe thrust diags

 align axial

 position $longeron_pos
 count 1

object dframe thrust diags

 align axial

 position 0.75

 count 1

165

move

 transz $aft_tank_end
write vrml orb-thrust.wrl

store thrust

After positioning the thrust structure at the calculated location, it is saved to the clipboard.

All of the components of the vehicle have been created and stored. Next, they can be recalled in various

combinations for use. The first combination is the full vehicle with all the components in the correct posi-

tion. Each recall command performs a node equivalence operation that stitches the model together where

nodes are coincident. This equivalence operation tends to be slow. Once they are recalled, the whole vehi-

cle is rotated such that the x coordinate direction becomes the axial axis. Then, VRML and NASTRAN

files of the full model are written.

Note that prior to actual analysis with the model, the wing and tail need to be manually stitched to the fuse-

lage. A short discussion of this stitching will be provided after the end of the input file discussion.

===================== Assembly =======================

recall nose

recall fuselage

recall mainwing

recall tail

recall fwd_tank

recall aft_tank

recall thrust

rotate so that x is aft

move

roty 90

=================== Write models ====================

vrml rainbow

write vrml tsto-2009-2B.wrl

write nastran tsto-2009-2b.bdf

166

Next, the region mode is used to write out various partial versions of the model. These partial models re-

tain the node, element, and property numbering of the full model. They are used for mapping of external

aerodynamic loads (to the “OML” sub-model) and internal tank loads (to the “LH2” and “LOX” sub-

models). Note the selection of elements based on the labels assigned with the mark command during

model creation.

============ Models for mapping & analysis =============

region

 mkadd OML

 filenew tsto2009-2b-OML.wrl

 format vrml

 rwrite

 filenew tsto2009-2b-OML.bdf

 format nastran

 rwrite

167

region

 mkadd LH2

 filenew tsto2009-2b-LH2.wrl

 format vrml

 rwrite

 filenew tsto2009-2b-LH2.bdf

 format nastran

 rwrite

region

 mkadd LOX

 filenew tsto2009-2b-LOX.wrl

 format vrml

 rwrite

 filenew tsto2009-2b-LOX.bdf

 format nastran

 rwrite

168

region

 mkadd wing

 filenew tsto2009-2b-wing.wrl

 format vrml

 rwrite

 filenew tsto2009-2b-wing.bdf

 format nastran

 rwrite

region

 mkadd tail

 filenew tsto2009-2b-tail.wrl

 format vrml

 rwrite

 filenew tsto2009-2b-tail.bdf

 format nastran

 rwrite

Finally, an expanded and a mirrored version of the model are created for use in slides and presentations.

============== Expanded model for figures ===============

new

recall nose

move

 transz -100

169

recall fuselage

move

 transz 0

 transx -200

recall mainwing

move

 transx 200

 transy -100

recall tail

move

 transy 100

 transx 200

recall fwd_tank

recall aft_tank

move

 transx -200

 transz -200

recall thrust

move

roty 90

write vrml tsto2-2009-2b-exp.wrl

write nastran tsto2-2009-2b-exp.bdf

================== Mirrored model =======================

new

recall nose

recall fuselage

recall mainwing

recall thrust

recall tail

store OML

recall OML

move

 scalex -1

 flip

170

recall OML

write vrml tsto2-2009-2b-mirrored.wrl

end

As previously discussed, one step that is required prior to using the model in a finite element analysis is to

stitch the wing and the tail to the fuselage. One way to do this is to load the three component models into a

commercial modeling package such as Patran or FEMAP and identify the nodes that we wish to connect.

In this case, the nodes on the wing carry through spars at the wing root and at the centerline need to be

connected by rigid elements to the nearest nodes on the fuselage structure, where there are prepositioned

stiffeners. Similarly, the spar nodes at the tail root are connected to the aft tank bulkhead ring frames.

To test that adequate stitching has been added, start by applying symmetric boundary conditions on the

centerline nodes of the vehicle. Since X is now the axial direction, Y is lateral, and Z is vertical, these con-

straints set the Y translation Ty=0, the X rotation Rx=0, and the Z rotation Rz=0. Then select an arbitrary

node (such as the nose tip) to hold completely fixed. There is also a line of beam alignment nodes running

down the center of the model that are not attached to any element. They can be manually constrained, or

NASTRAN can fix them with the AUTOSPC option.

Finally, apply unit force loads to the wing and tail tips and run a static analysis. If the model runs without

error and the deflected shapes look reasonable, then the stitching has been successful.

	Introduction
	Modeling Approach
	User Interface
	Mesh Manipulation
	Limitations
	Applications
	NGLT Wing Sizing
	Lunar Lander Stage
	Ares V Shroud
	TSTO Orbiter

	User Manual
	Summary
	References
	Chapter 1: Introduction
	This Manual
	Mesh Construction
	Formatting in this manual
	Terminology
	Object Types
	Property Marking
	User Interface Introduction
	Special Characters in Loft
	Positioning in Loft
	Object vs. Stack Level Positioning
	Translations
	Rotations
	Scaling
	Warping
	Flipping
	Turning

	User Specified Curves

	Chapter 2: Tutorials
	Introduction
	List of Tutorials

	Project 1: A Simple Commuter Jet
	Project 2: Converting Project 1 Mesh to a Full Vehicle
	Project 3: Creating and Using User-defined Curves
	Part A: Interpolated Curves
	Part B: User-defined Compound Curves
	The Compound Curve Concept
	The “s” Parameter
	Of Parents, Children, and Arcs
	How Loft Uses a Compound Curve
	A Compound Curve Example

	Part C: User-defined Lofted curves

	Project 4: A Tapered Four-Lobe Tank
	Project 5: Controlling Circumferential Node Distribution
	Approach 1: Change the Node Count
	Approach 2: Local s-distribution
	Approach 3: Sub-Curves

	Project 6: Introduction to Regions
	Project 7: Variables and Math
	Project 8: Bodies of Revolution, Toroids, and Helixes

	Chapter 3: Regions
	Defining a Region
	Acting on a Region
	Region Operations
	Definition Operations
	Volumetric Selection Operations
	Property Selection Operations

	Passive Operations
	Active Operations

	Chapter 4: Programmer’s Guide and Reference
	Introduction
	Geometries and Meshes
	Code Overview
	Adding a New Object Type to Loft
	The New Meshing Routine
	Integrating Your New Object Into the User Interface

	Adding a New Command to Loft
	Adding a New Output Type
	Adding a New Curve Type

	Chapter 5: External Utility Programs
	WingCoords2Loft
	FuseCoords2Loft

	Chapter 6: Command & Object Reference
	Alphabetical Command List
	Common Parameters
	Section
	Parameter List

	TSection
	Dome
	Parameter List

	TDome
	Wing
	Parameter List (Specific)
	Parameter list (Generic)

	Frame/DFrame
	Parameter List

	Beam
	Parameter List

	Tank
	Additional Parameter List

	StiffTank
	Box

	User Curve Types and Parameters
	Interpolated Curves
	Parameter List

	Compound Curves
	Parameter List

	Lofted Curves
	Parameter List

	Curve Library
	Simple Curves
	Curve Families
	Library Curves illustrated with Dome Objects

	Dome Taper Library

	Section Taper Library
	Droop Library
	System Variable List
	Global Variables
	Section Variables
	Dome Variables
	Wing Variables

	Math Function List

	Chapter 7: Example Input Decks
	Loft Example Input Deck #1
	Loft Example Input Deck #2

