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ABSTRACT 24 

In situ hydrologic monitoring over regions most susceptible to food insecurity can be a 25 

challenge in current times due to various socio-economic and political issues in combination 26 

with environmental factors such as ongoing famine or drought. Hydrologic monitoring and 27 

initializing forecasts based on remotely sensed and analyzed data can contribute significantly 28 

to early warning in such regions. Routine hydrologic forecasts, as provided by NASA’s 29 

Hydrologic Forecasting and Analysis System (NHyFAS), are a recent addition to early warning 30 

systems. A custom instance of NHyFAS, termed FLDAS-Forecast, is used by FEWS 31 

NET’s Land Data Assimilation System (FLDAS). The FLDAS-Forecast’s dynamic forecasting 32 

component was originally set up with Goddard Earth Observing System (GEOS) forecast 33 

inputs and has been recently expanded with precipitation forecast forcing from the North 34 

American Multi-Model Ensemble (NMME). This paper describes the improvements in 35 

seasonal hydrologic forecasts produced with this updated system. Evaluations in this study 36 

focus on soil moisture across southern Africa’s growing season. Soil moisture forecasts are 37 

benchmarked and evaluated relative to climatology-based forecasts and historic runs, which 38 

are driven by observation-based meteorological forcing fields, and they are verified with 39 

remotely sensed observations of soil moisture and vegetation. Through multiple deterministic 40 

and probabilistic skill assessments, we show that using the larger ensemble of NMME 41 

precipitation inputs in the forecast system results in higher quality hydrologic forecasts than 42 

are allowed by climatology- or GEOS-only-based forecasts. Further, the near-real-time 43 

NMME-based rootzone soil moisture forecasts were able to correctly predict developing 44 

drought conditions over southern Africa through late 2019 and into early 2020. 45 

 46 

 47 
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1 INTRODUCTION 48 

There is acute food insecurity in many regions around the globe that are also subject to 49 

recurring drought conditions (UN 2018). Early warning of drought and response at the right 50 

time could help a large number of people, especially in the particularly food-insecure regions 51 

of Africa and the Middle East (Vörösmarty et al. 2005; Getirana et al. 2012), which are some 52 

of the most food-insecure regions in the world. The Famine Early Warning Systems Network 53 

(FEWS NET; https://fews.net, Verdin et al. 2005; Funk et al. 2019) provides objective and 54 

evidence-based analyses to help government decision-makers and relief agencies plan for and 55 

respond to such humanitarian crises. Forecasting systems such as National Oceanic and 56 

Atmospheric Administration’s (NOAA)’s Africa-specific sub-seasonal to seasonal (S2S) 57 

meteorological forecasts (Thiaw et al. 2015) and the National Aeronautics and Space 58 

Administration’s (NASA’s) multi-model, remote sensing-based Hydrological Forecasting and 59 

Analysis System (NHyFAS; Arsenault et. al. 2020) are critical to such efforts.  60 

Seasonal forecasts of meteorological and hydrologic conditions are an important tool 61 

for early warning, and also for developing and guiding strategic planning of water resources 62 

across different climate-sensitive sectors (Sheffield et al. 2014; Shukla et al. 2014, 2020; De 63 

Felice et al. 2015; Viel et al. 2016; Arsenault et al., 2020). Several operational products 64 

providing dynamic meteorological seasonal forecasts include NOAA’s North American Multi-65 

Model Ensemble’s (NMME; Kirtman et al. 2014), NASA SERVIR ClimateSERV’s 66 

downscaled NMME forecasts (Flores Cordova et al. 2012), Copernicus Climate Change 67 

Service (C3S; Buchwitz et al. 2017; http://climate.copernicus.eu/seasonal-forecasts) and 68 

World Meteorological Organization’s (WMO) long-range forecasts using multi-model 69 

ensembles (https://www.wmolc.org). There are operational hydrologic forecast products as 70 

well, such as the Global Flood Awareness System (GloFAS; Emerton et al. 2018), which 71 

provides probabilistic seasonal forecasts of river flow at up to four-months lead time for a 72 

https://fews.net/
http://climate.copernicus.eu/seasonal-forecasts
https://www.wmolc.org/
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global river network and the Africa Drought and Flood Monitor (http://stream.princeton.edu/; 73 

Yuan et al. 2013; Sheffield et al. 2014), which provides hydrologic forecasts out to a week over 74 

select regions of Africa using the Canadian Centre for Climate Modeling and Analysis Coupled 75 

Climate Model (Merryfield et al. 2013).  76 

However, Wolski et al. (2017) have highlighted the lack of finer than 100km (10) spatial 77 

resolution, country-scale seasonal hydrologic forecasts of extreme conditions over Africa. 78 

Hydrologic forecasts are of particular importance as they reduce the impact of extreme events 79 

by identifying high-risk areas; such forecasts, for example, could show how heavy precipitation 80 

upstream along a river may affect areas downstream that did not receive above-average 81 

precipitation. NHyFAS, developed by Arsenault et al. (2020), fills this gap, producing high-82 

resolution seasonal hydrologic forecasts at 25km (0.250) over continental Africa and the Middle 83 

East to support food and water security.  84 

NHyFAS has successfully demonstrated the forecasting of both hydrologic drought and 85 

flood risks across Africa and the Middle East (Arsenault et al. 2020). It utilizes the data 86 

assimilation and modeling capabilities of NASA’s Land Information System (LIS; Kumar et 87 

al. 2006; Peters-Lidard et al. 2007). A modified version of NHyFAS (without data assimilation) 88 

has been providing routine hydrologic forecasts across Africa and the Middle East since 2018 89 

as a part of FEWS NET’s Land Data Assimilation System (FLDAS; McNally et al. 2017). Only 90 

this custom instance of NHyFAS for FEWSNET, termed as FLDAS-Forecast, is utilized in this 91 

study. The FLDAS-Forecast system, was initially set up with a single NMME dynamical 92 

model, NASA’s Goddard Earth Observing System, version 2 (GEOS; Rienecker et al. 2008; 93 

Molod et al. 2012; Borovikov et al. 2019; Molod et al. 2020) sub-seasonal-to-seasonal (S2S) 94 

forecast system. This FLDAS-Forecast system is considered version 1 (FFV1). However, 95 

various independent studies (Wang 2009; Becker et al. 2014; Krakauer 2017; Wanders et al. 96 

2016; Cash et al. 2019) have shown that NMME’s S2S precipitation and temperature forecasts 97 

http://stream.princeton.edu/
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are significantly more skilful than any individual model (including GEOS) in the suite. To 98 

leverage this multi-model skill and to thereby improve the early warning system to support 99 

proactive drought management efforts, the FLDAS-Forecast was upgraded to incorporate the 100 

full suite of NMME precipitation forecasts in combination with GEOS non-precipitation 101 

forecast forcing fields. This upgraded system is considered version 2 (FLDAS-Forecast version 102 

2; FFV2). Using precipitation information from the NMME forecast suite is particularly 103 

beneficial given that precipitation is the primary driver for surface and ground hydrology. 104 

The FLDAS-Forecast system is a multi-Land Surface Model (LSM) seasonal forecast 105 

system that uses NASA’s capabilities in modeling and utilizing remote sensing-based products 106 

and is set up specifically for continental Africa and the Middle East. This system bias-corrects 107 

and downscales all the meteorological forecast fields produced by the dynamical forecast 108 

system using well-tested techniques keyed to satellite- and station-based data (Wood et al. 109 

2004, Arsenault et al. 2020, Shukla et al. 2020).  The novelty in this study is the incorporation 110 

of the full suite of bias-corrected and downscaled NMME precipitation and GEOS non-111 

precipitation meteorological forcings to produce multi-LSM S2S hydrologic forecasts at 0.250 112 

spatial resolution over continental Africa and Middle East. One of the main outcomes of 113 

implementing NMME into the system’s multiple LSMs ensembles is a large increase in the 114 

number of ensemble members, which allows us to examine the probabilistic nature of 115 

forecasted hydrological extremes.  116 

The hypothesis tested in this study is that, since the ensemble of NMME precipitation 117 

forecasts have better seasonal skill than any individual model’s forecasts in the NMME suite, 118 

the NMME-based hydrological forecasts will also have more skill than those based only on the 119 

GEOS precipitation-based forecasts. Various studies have already analyzed the meteorological 120 

forecast skill of the different NMME models out to the 6-month forecast lead (Mo and Lyon 121 

2015; Shukla et al. 2016; Setiawan et al. 2017).  These studies have shown that using the full 122 
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NMME suite provides more accurate forecasts than any single model. Several other studies 123 

have highlighted the importance of exploring the ensemble spread as a source of information 124 

regarding forecast uncertainty using various probabilistic metrics (Paiva et al. 2012; 125 

Schaeybroet and Vannitsem 2016). In this paper, we follow a combined approach of using 126 

deterministic analyses and probabilistic analyses of extremes to explore and demonstrate the 127 

benefits of using the full NMME ensemble in FFV2 compared to FFV1, and thereby determine 128 

whether or not including the full NMME suite is justified.   129 

Implementing NMME into the FLDAS-Forecast system was a substantial undertaking. 130 

The main objectives of the present paper are: (1) to describe the framework and methodology 131 

for including NMME precipitation forecasts into the FLDAS-Forecast system and (2) to 132 

demonstrate that the inclusion of this information improves hydrological forecasts relative to 133 

those obtained with GEOS-based forecast information alone. This study compares FFV2 to 134 

FFV1 and benchmarks the FLDAS-Forecast versions relative to Ensemble Streamflow 135 

Prediction (ESP)-based forecasts. The forecast performance is assessed in terms of: 136 

i) Deterministic (i.e., ensemble mean) forecast skill analysis relative to historic model 137 

runs  138 

ii) Deterministic (ensemble mean) comparison of the NMME-based FLDAS-Forecast 139 

system with remotely sensed observation; and 140 

iii) Probabilistic forecast skill analysis of extreme conditions relative to historic model 141 

runs. 142 

The evaluations focus on southern Africa (SA), which has suffered consecutive droughts in the 143 

1990s and from 2014 through 2020 (Edossa et al. 2014; Nash et al. 2019).  144 

The next section describes the Land Information System (LIS) along with the land 145 

surface models and the FLDAS-Forecast framework. Section 3 specifies the data sets used and 146 

the analysis’s methodological approach. Results are presented in section 4, followed by a 147 
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discussion of application and limitations of the system in section 5. A summary and a 148 

discussion of future developments is provided in section 6.   149 

2 FRAMEWORK 150 

FFV2 routinely produces monthly hydrologic forecasts over continental Africa and the Middle 151 

East. Figure 1 describes the schematic for FLDAS-Forecasts which includes: establishing 152 

initial conditions for the forecasts using observation- and reanalysis-based meteorological data 153 

sets, generating ensemble forecasts of hydrologic conditions based on NMME meteorological 154 

forecasts, and producing drought and flood risk analysis products derived from the hydrological 155 

forecast data.  These steps are described in detail in the following subsections.   156 

2.1 Land Information System (LIS) 157 

NASA’s Land Information System (LIS; Kumar et al. 2006; Peters-Lidard et al. 2007) 158 

is a high-performance, terrestrial hydrology modeling and data assimilation framework 159 

developed in the Hydrological Sciences Laboratory at NASA’s Goddard Space Flight Center.   160 

LIS is a flexible software framework that can be customized by end-users according to their 161 

preference and expanded to meet their changing needs. LIS’s Land surface Data Toolkit (LDT; 162 

Arsenault et al. 2018) is used to parametrize the hydrological models and pre-process model 163 

inputs in NHyFAS and also in its custom instance - FLDAS-Forecast. The LSMs utilized for 164 

FLDAS-Forecast through LIS have groundwater schemes and are run in tandem with the 165 

Hydrological Modeling and Analysis Platform (HyMAP; Getirana et al. 2012, 2017a). HyMAP 166 

provides the river routing scheme and is driven by the total runoff from the LSMs.  LIS’s Land 167 

Verification Toolkit (LVT; Kumar et al. 2012) provides multiple evaluation and drought 168 

metrics.  169 
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The LIS Framework (LISF) is at the core of FLDAS-Forecast. LISF also supports data 170 

assimilation strategies for forecast initialization, which are currently in development. Data 171 

assimilation, however, is not currently utilized in FLDAS-Forecasts. 172 

2.2 FLDAS-Forecast Modeling Framework 173 

2.2.1 Land Surface Models and Streamflow Routing  174 

FLDAS-Forecast employs two LSMs through LIS: Noah with multi-parameterizations 175 

(Noah-MP; Niu et al. 2011) and NASA’s Catchment LSM (CLSM; Koster et al. 2000). It also 176 

uses the HyMAP river routing scheme. These two LSMs were also evaluated for water budget 177 

over eastern Africa (Jung et al. 2017).  The entire system is currently set up over continental 178 

Africa and the Middle East at a spatial resolution of 0.25° x 0.25°, and at a 15-minute model 179 

time step. The hydrologic output is produced at monthly time step. Both the LSMs have soil 180 

moisture profiles, with water contents at surface (NoahMP-10cm, CLSM-2cm; average-6cm), 181 

rootzone (1m), and total (2m) depths. Hydrological output includes surface and sub-surface 182 

runoffs, terrestrial water, and through the application of HyMAP, streamflow. 183 

2.2.2 FLDAS reanalysis 184 

The FLDAS-Forecast modeling framework generates non-forecast historic simulations 185 

from 1982 to present (termed as “reanalysis” or RA) based on observational and reanalysis 186 

meteorological data sets, following the setup of McNally et al. (2017).  This long period of 187 

record (nearly 40 years) is critical for drought and flood risk assessment. The RA uses 188 

precipitation inputs from Climate Hazards Center InfraRed Precipitation with Station data, 189 

version 2.0 (CHIRPS; Funk et al. 2015).  All other requisite meteorological inputs are from 190 

NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 191 

(MERRA-2; Bosilovich et al. 2016; Gelaro et al. 2017). The FLDAS-Forecast uses CHIRPS-192 



 

9 
 

prelim (Funk et al. 2015; https://data.chc.ucsb.edu/products/CHIRPS-2.0/prelim/) only for 193 

near-real-time monitoring and producing forecast initial conditions because the 3-day latency 194 

of this product allows model updates close to real time. For all prior time steps, the system uses 195 

the CHIRPS-final 6-hourly product (Dinku et al. 2018; 196 

http://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_6-hourly/), which has a latency of ~2-3 197 

weeks and is available for continental Africa and part of the Middle East domain. MERRA-2 198 

data have about an internal 10-day latency, which is sufficient for seasonal climate forecast 199 

initialization and monitoring.  The RA is used to initialize the NMME-ensemble, GEOS-only, 200 

and ESP-based forecast model runs and is considered the primary reference data set in this 201 

study.   202 

2.2.3 Meteorological forcing data for NMME based hydrologic forecasts 203 

The meteorological forecasts used in setting up FFV2 are dynamic; the meteorological 204 

fields within the models that produce them evolve in time in response to imposed dynamical 205 

equations in the modeled atmospheric and ocean components and parameterizations of physical 206 

processes, such as turbulence and moist convection. FFV2 uses dynamical precipitation 207 

forecasts from the NMME suite. NMME provides near-real-time monthly forecasts based on 208 

98 ensemble members and hindcasts (1982-2010) based on 68 ensemble members from the 209 

Climate Forecast System, version 2 (CFSv2; Saha et al. 2010, 2014), Geophysical Fluid 210 

Dynamics Laboratory’s (GFDL; Delworth et al. 2012, Vecchi et al. 2014) forecast-oriented 211 

climate model version 2.5, Canadian Coupled Models (CanCM4i and GNEMO; Lin et al. 212 

2020); the NCAR Climate System Model, version 4 (CCSM4; Gent et al. 2011) and NASA 213 

Global Modelling and Assimilation Office’s (GMAO) GEOS version 2 (GEOSv2; Borovikov 214 

et al. 2019), as provided in Table 1. A particular innovation of FFV2 is that it has the flexibility 215 

https://data.chc.ucsb.edu/products/CHIRPS-2.0/prelim/
http://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_6-hourly/
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to run any combination of the NMME suite’s models. FFV1 is a subset of this option; it uses 216 

the meteorological forcings from GEOSv2 alone.  The current FFV2 system employs all active 217 

NMME models with all the ensemble members (as of 2021; Table 1). Most models have 10 218 

ensemble members, the only exception is CFSv2, for which we use 12 of the 24 ensemble 219 

members to aptly handle the processing of the model. For GFDL-Flor, we use all the 24 220 

ensemble members, but average each of the 12 members of its two sub-models to have 12 221 

averaged ensemble members in case of the hindcast period (1982-2010). 222 

Because the NMME does not provide the full complement of required input fields (e.g., 223 

temperature, radiation, winds), FFV2 uses non-precipitation meteorological forcings from 224 

GEOS seasonal forecasts. The GEOS seasonal forecasts consist of 10 ensemble members for 225 

real-time applications and 4 ensemble members for the hindcast period (1982-2010). The 226 

smaller number of GEOS non-precipitation ensemble members are in part randomly matched 227 

with the NMME-based precipitation ensemble members in the FFV2 setup. For example, 228 

GEOS’s four non-precipitation ensemble members are first matched twice up to the first eight 229 

out of the ten precipitation ensemble members of CCSM4 and then randomly matched to the 230 

last two precipitation ensemble members of CCSM4 in the hindcast period. For the near-real-231 

time period, GEOS’s non-precipitation ensemble members and CCSM4 precipitation ensemble 232 

members are matched one to one.  233 

The meteorological forecasts are then bias-corrected and spatially downscaled (BCSD; 234 

Wood et al. 2004) using the RA-based meteorological data sets (CHIRPS and MERRA-2) as 235 

the reference data, following the methods outlined in Arsenault et al. (2020). Forecasts from 236 

climate models do not usually match the statistical properties of the RA inputs (e.g., due to 237 

lead-dependent climate drift [Gupta et al. 2013; Hermanson et al. 2018]); bias correction is 238 
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used to reduce such errors (Cui et al. 2012). The BCSD method used in this study has been 239 

evaluated and verified across Africa for NHyFAS (Arsenault et. al 2020, Shukla et al. 2020).  240 

2.2.4 ESP-based hydrologic forecasts 241 

 In addition to NMME, FLDAS-Forecast can also employ the ESP-type forecasting 242 

approach (Twedt et al. 1977; Day 1985; Yuan et al. 2015; Li et al. 2009; Yossef et al. 2017). 243 

The ESP forecasts are climatology-based and use the same observed inputs (CHIRPS and 244 

MERRA-2) as RA. LIS configures the ensemble of meteorological forecast members by 245 

assembling individual years from the historical MERRA-2 and CHIRPS meteorological data, 246 

taking each historical year as a representation of a potential single “forecast”; thus, the 1982–247 

2011 CHIRPS and MERRA-2 data holdings allow us to produce 30 ensemble members for 248 

each initial condition. The skill of the hydrological ESP forecast is derived only from the initial 249 

hydrological conditions. 250 

 In this study, the ESP-based forecast is used as a benchmark for both versions of 251 

FLDAS-Forecast output, as both dynamic forecast inputs are bias-corrected and downscaled 252 

relative to the same sets of observed data that go into ESP-based runs. Also, the initial 253 

conditions are the same for the ESP-based forecasts and both versions of FLDAS-Forecast. 254 

2.2.5 Summary of FLDAS-Forecast version 2 workflow 255 

The FLDAS-Forecast workflow (illustrated in Figure 2) consists of three main steps: 256 

1) Pre-processing, 2) LIS-based processing, and 3) Post-processing. During the pre-processing 257 

step, all NMME precipitation and complementary GEOS non-precipitation fields needed to run 258 

the LSMs are gathered, downscaled and bias-corrected relative to CHIRPS and MERRA-2 data 259 

sets, respectively, and are then temporally disaggregated to sub-daily time-steps (6-hour 260 

intervals). In the LIS-based processing section, the two LSMs (NoahMP and CLSM) are run 261 
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with the forcing data produced in the previous step, producing a combined model total of 196 262 

near-real-time hydrologic forecast ensemble members and 136 hindcast ensemble members per 263 

forecast start date. The FFV1 considered in this study produces a total of 20 ensemble members 264 

for near-real-time forecasts and 8 ensemble members for the hindcasts. In this step, FLDAS-265 

Forecast is also configured in ESP mode for the same set of LSMs and initial conditions to 266 

produce ESP-based forecasts with a total of 60 ensemble members per forecast start date. In 267 

the Post-processing step, we analyze the near-real-time hydrologic forecast outputs for 268 

hydrologic extremes, such as droughts and flood-potentials relative to hindcast climatology. 269 

These results are updated on our webpage (https://ldas.gsfc.nasa.gov/fldas/models/forecast) by 270 

the second week of every month and are provided to our FEWS NET partners and to regional 271 

scientists.  272 

2.2.6 Derived products 273 

Derived products enhance FEWS NET’s early warning capabilities by allowing 274 

regional experts to visualize the potential hydrologic impacts of forecasted climate. FLDAS 275 

forecast-based real-time ESP forecasts over Africa are used to produce probabilistic tercile 276 

maps for rootzone soil moisture (RZSM) to indicate the likelihood of “above-normal” (greater 277 

than 67th percentile), “normal” (between 33rd to 67th percentile), and “below-normal” (less than 278 

33rd percentile) conditions. These conditions, especially “below normal” (a potentially drought-279 

like condition in hydrology), forms the basis of various categorical probabilistic evaluations in 280 

this study. The ESP forecast percentiles are derived from the RA-based output, and the tercile 281 

maps provide estimates of hydrologic conditions when the input meteorological forcings are 282 

considered to be climatologically average for forecast initial conditions.  283 

https://ldas.gsfc.nasa.gov/fldas/models/forecast
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 Similarly, NMME RZSM forecast-based probabilistic tercile maps are also produced 284 

over Africa and the Middle East, where percentiles are based on the NMME RZSM hindcasts. 285 

The terciles describe the likelihood of the three categories based on the ensemble members. 286 

Additionally, FFV2 routinely provides the ensemble median of NMME-based forecasted soil 287 

moisture percentile, anomaly, standardized anomaly, and percent saturation, along with 3-288 

month aggregates of soil moisture percentile, anomaly, and standardized anomaly 289 

(https://ldas.gsfc.nasa.gov/fldas/models/forecast). 290 

3 Methodology 291 

The impact of implementing NMME in FLDAS-Forecast was evaluated by assessing 292 

improvements in deterministic forecast skill, ensemble spread, and probabilistic forecast skill. 293 

All the assessments are focused on the forecasts covering the wet season over SA, as it is the 294 

critical growing season for crops (Laux et al. 2009; Sultan et al. 2010; Mubaya et al. 2012; 295 

Trambauer et al. 2015; Seibert et al. 2017). Hence, forecasts initialized with hydrologic 296 

conditions covering the start of the wet season –September, October, and November (SON)– 297 

are considered in this study.  The following subsections describe the evaluation data set, as well 298 

as our analysis approach. 299 

3.1 Dataset 300 

For all the analyses in this study, except those using remotely sensed observations, the 301 

ESP, FFV1, and FFV2 forecasts and the RA are first standardized by converting them to 302 

percentiles. For the analyses using remotely sensed observations, all the data sets are 303 

standardized by converting them to standardized anomalies due to the observation’s relatively 304 

short temporal extent. Unless otherwise noted, all the forecasts (ESP, FFV1, and FFV2) are 305 

then averaged over three months of data: data at zero lead (i.e., over the first month of the 306 

https://ldas.gsfc.nasa.gov/fldas/models/forecast
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forecast), at 1-month-lead (over the 2nd month of the forecast), and so on out to the 5-month 307 

lead. For simplicity, we will refer to the 0-month-lead through 5-month-lead averages as OND 308 

(for October, November, and December start dates), NDJ, DJF, JFM, FMA, and MAM, 309 

respectively. The initial condition (IC) period covers the start of the rainy season (SON) and is 310 

provided by the RA. Usually, skill is lost with increasing forecast lead; hence, averaging the 311 

forecasts starting from the three different IC months helps isolate, for each lead, the forecast 312 

signal from the noise. Since, RA is used as the “truth” to evaluate the seasonal forecasts, it is 313 

also averaged over the OND, NDJ, DJF, JFM, FMA, and MAM periods. We will hereafter use 314 

“hindcast” interchangeably with “forecast” for the sake of clarity.  315 

3.2 Deterministic forecast skill analysis 316 

For all deterministic skill assessments of RZSM (top 1m) forecasts, we consider the 317 

ensemble mean, as it is the “best” deterministic forecast (Ehrendorfer 1997). We calculate the 318 

anomaly correlation (AC) and the root mean squared error (RMSE) between the ensemble 319 

mean of ESP, FFV1, and FFV2 seasonal RZSM forecast percentiles with respect to the RA 320 

(“perfect run”) RZSM percentiles, which are used here as the “truth” for validating the 321 

forecasts. The anomalies used in AC are computed by subtracting the seasonally varying 322 

climatologies from the individual monthly values (forecasts or RA). Both metrics are assessed 323 

over the period of 1982-2010; the equations used for computing them are provided in Appendix 324 

1 (Equations 1 and 2). The AC is chosen as one of the evaluation metrics, as it shows how well 325 

the variabilities of the forecast anomalies match the variability of the RA anomalies. It does 326 

not, however, provide any information about the magnitude of forecast error, which is 327 

determined using RMSE. Statistical significance for AC is determined using the Fisher 328 

transformation. The Fisher transformation ensures Gaussian distribution of the AC coefficients, 329 
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and the Z-score provides the probability-value (p-value) of the correlation coefficient for ESP, 330 

FFV1, and FFV2 with RA. For both metrics, we also determine the differences between values 331 

produced by FFV1 and FFV2. The significance of the difference of AC between the FLDAS-332 

Forecast versions is also determined using Fisher transformation, the statistically significant 333 

values for AC and AC differences are provided at the 95% confidence interval (Appendix 1 334 

[Equations 1a. and 1b.]). 335 

Further, to estimate the best forecast’s deterministic accuracy relative to observations, 336 

we calculate the correlation (Appendix 1 [Equation 3]) between the seasonal RA and ensemble 337 

mean of the forecast’s surface soil moisture (SSM; top 6cm) standardized anomalies with 338 

respect to remotely sensed soil moisture and vegetation standardized anomalies. Both the 339 

remotely sensed observations are first spatially upscaled to 25km before being standardized. 340 

We map the correlation between the SSM and the NASA Soil Moisture Active Passive (SMAP) 341 

mission standardized anomalies between 2015-2020. SMAP provides high-quality soil 342 

moisture estimates posted at 9 km spatial and daily temporal resolution (Entekhabi et al. 2016). 343 

In addition to correlations with SMAP, we also compute the correlation between model SSM 344 

and Global Inventory Monitoring and Modeling System’s (GIMMS) Normalized Difference 345 

Vegetation Index (NDVI; Spruce et al. 2016; Tucker 1978) standardized anomalies between 346 

2010-2018. The GIMMS vegetation index is available at 0.25 km spatial and 8-day temporal 347 

resolution. To correlate the seasonal RA and forecasts relative to both of these remotely sensed 348 

observations, the observations are also averaged over the seasonal periods of OND, NDJ, DJF, 349 

JFM, FMA, and MAM. For the correlation with remotely sensed observations, the Fisher 350 

transformation is used to test the significance which we provide at the 95% confidence interval. 351 

3.3 Ensemble spread analysis 352 
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Before studying the probabilistic features of the ensembles in the seasonal forecasts, 353 

we analyze the ensemble spreads of FFV2 and FFV1, as ensemble spread is often related to 354 

uncertainty (Grimit and Mass 2007; Schaeybroeck and Vannitsem 2014; Hopson 2014). We 355 

compare the ensemble spreads of the RZSM forecasts over 1982 to 2010 through the sixth 356 

forecast lead between the FLDAS-Forecast versions for each initial condition (IC) month 357 

(September, October, and November). The ensemble spread is defined as the difference 358 

between the maximum and minimum values across each forecast ensemble (Fortin et al. 2014; 359 

Appendix 1 [Equation 4]). 360 

3.4 Probabilistic forecast skill analysis for hydrologic drought 361 

We use different probability metrics to examine how often the forecasts are accurate, 362 

and this requires categorizing certain forecast events. This in fact fits in well with our interest 363 

in categories of soil moisture (drought; below normal). Unless otherwise noted, here too we 364 

average the forecasts covering the period 1982-2010 over the different lead periods (OND, 365 

NDJ, DJF, JFM, FMA, and MAM) and over the IC months (SON), which represents the start 366 

of the rainy season. The probability metrics are based on all the ensembles present in each of 367 

the three forecasts. 368 

First, we compute the Rank Probability Skill Score (RPSS; Müller et al., 2005), which 369 

describes the quality of categorical probabilistic forecasts for drought, both at the seasonal and 370 

sub-seasonal scales. For this calculation, drought conditions are categorized as an RZSM less 371 

than the 33rd percentile. RPSS is based on the Rank Probability Skill (RPS), which is the 372 

cumulative squared probability error. The ratio of the difference between the climatological 373 

RPS and forecast RPS to the climatological RPS is the RPSS (Appendix 1 [Equation 5]). RPSS 374 

rewards a forecast for the number of ensemble members that fall within the observed 375 
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category—the larger that number is, the higher the RPSS. An RPSS greater than 0 is considered 376 

skilful in comparison to the climatological forecast, and an RPSS of 1 indicates a perfect 377 

forecast. For the RPSS, we adopted the threshold of above five percent (5%) as representing 378 

“good skill” in a forecast, following Goddard and Dilley (2005). To support the results of 379 

RPSS, we also compute the forecast Hit Rate for drought conditions by creating a contingency 380 

table and using the ratio of forecasted drought events (RZSM less than 33rd percentile) and 381 

observed drought events (Appendix 1[equation 6]). 382 

Reliability Diagrams representing probability of seasonal forecast events relative to 383 

observations are also included in the probabilistic analysis. These are graphs of the observed 384 

frequency of a categorical event plotted against the forecast probability of that event during our 385 

hindcast period of study from 1982 to 2010 over SA (Brocker and Smith 2007; Wilks 1995; 386 

Jolliffe and Stephenson 2003). Similar to the RPSS analysis, we define drought category using 387 

RZSM percentiles. This diagram is useful for decision-making purposes, as it tells users how 388 

often a given forecast probability of a certain category (drought) matches the frequency of the 389 

event in observations. A perfectly reliable forecast system would have a 1:1 association with 390 

the observed frequency (e.g., a forecast probability of 50% will be associated with observed 391 

frequency of 50%). In this study, the reliability diagram is plotted by dividing the forecast 392 

probabilities (0–1.0) into 10 bins and estimating observed frequency of a given category for 393 

each of those bins.  394 

Finally, we compute the Relative Operating Characteristics (ROC; Mason and Graham 395 

1999, Hogan and Mason 2012, Siegmund et al 2015), a complementary metric to the reliability 396 

diagram. ROC is used in forecast verification to measure the ability of the forecasts to 397 

distinguish an event from a non-event; it utilizes plots of the probabilistic Hit Rate (HR) to 398 
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False Alarm Rate (FAR) for a given category (drought). It is plotted by constructing a 399 

contingency table for drought, with HR probabilities (Y-axis) plotted against the FAR 400 

probabilities (X-axis) by dividing the respective probabilities of 0 to 1.0 into 10 bins. A perfect 401 

ROC curve would have high HR probability relative to the FAR probabilities, lending further 402 

confidence to the forecast accuracy.  403 

4      RESULTS AND DISCUSSION 404 

4.1 Deterministic Analysis  405 

Figure 3 and row-1 in Table 2 present forecast skill as represented by anomaly 406 

correlation coefficient (ACC) of the RZSM forecast percentiles relative to the RA percentiles. 407 

The ensemble mean seasonal forecasts are averaged over OND, NDJ, DJF, JFM, FMA, and 408 

MAM following the SON ICs. The first row of Figure 3 is the skill (ACC) of the seasonal 409 

hydrological ESP forecast, where skill is derived from the initial hydrological conditions alone.  410 

Moderate skill is seen at lead 1 and lead 2 at 0.3-0.6 ACC with localized areas of 0.8 ACC in 411 

the Democratic Republic of Congo. RZSM skill for both FFV1 and FFV2, shown in rows 2 412 

and 3 (Figure 3), respectively, is higher than the ESP-based seasonal forecast skill (row 1). In 413 

terms of area averages, the skills over southern Africa (Table 2, row 1) for both FFV1 and 414 

FFV2 are about 0.1-0.15 ACC larger than that for ESP skill in the early part of the season. 415 

 The overall ACC of all the seasonal forecasts decreases with increasing lead. However, 416 

the ACC of both the dynamical versions of the seasonal forecasts lasts longer than that of the 417 

ESP seasonal forecasts. This is expected, though not assured, given that the dynamical models 418 

are deriving skill from both initial conditions and the forecasted meteorology, with the latter 419 

providing skill at longer leads.  Importantly, FFV2 has higher ACC than FFV1; as seen in the 420 

last row of Figure 3, many regions show improvements of more than 0.2 ACC with FFV2 421 

relative to FFV1, a difference that is statistically significant, as determined by the Fisher 422 

Transformation (Appendix 1.b). The figure also shows that the difference between the skill of 423 
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FFV2 and FFV1 is relatively smaller in the first lead because of greater influence of IC than in 424 

the longer leads. Although there are some areas in SA that show FFV2 with lower skill than 425 

FFV1, those areas are relatively small. These results are similar to those shown by Becker et 426 

al. (2014) for precipitation forecasts over the northern hemisphere (23°–75°N), where ACC for 427 

the entire NMME suite-based forecast was found to be significantly more skilful than that for 428 

the GEOS model alone. 429 

In addition to ACC, we compared the root mean squared error (RMSE) of the three 430 

forecast percentiles (Figure 4) relative to the RA percentiles. Here too we provide results for 431 

the ensemble means at the six forecast leads (OND, NDJ, DJF, JFM, FMA, and MAM). The 432 

results are similar to those for ACC. The RMSE values gradually increase with lead for all 433 

three forecasts; as expected, the RMSE values at 0-month lead are the lowest, given the 434 

proximity of this lead to the IC. RMSEs for both FFV1 and FFV2 (rows 2 and 3, respectively) 435 

are smaller than those for ESP (row 1), consistent (in terms of skill) with what was found in 436 

Figure 3 for ACC. Also, outside of a few small areas, FFV2 shows higher skill (lower RMSEs) 437 

than FFV1. The areally-averaged seasonal forecast RMSEs tabulated in Table 2 (row 2) 438 

confirm that RMSEs in all forecasts increase with lead and that FFV2 produces the lowest 439 

RMSEs, the latter further highlighting the improvements obtained with the NMME-based 440 

FLDAS-Forecast.  441 

4.2 Comparison to Observations 442 

We show above that FFV2 provide forecasts that agree best with the RA model 443 

products. Here, we evaluate the FFV2 forecasts directly against observations. We compare the 444 

correlation (R) between the seasonal RA and FFV2 ensemble mean (top 6 cm) SSM with 445 

seasonal SMAP soil moisture (top 5 cm) over SA between 2015 to 2020. There is generally a 446 

good agreement between the RA and SMAP values in row 1 of Figure 5, where a large section 447 

over the eastern part of southern Africa shows more than 0.9R, and with most of the other 448 
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regions showing significant values of more than 0.6R. Even the FFV2-based ensemble-mean 449 

seasonal forecasts (row 2 of  Figure 5) show significantly high correlations (R>0.6) with SMAP 450 

over large areas of SA out to the 2-month lead (DJF), with gradually decreasing values 451 

thereafter.   452 

Results of the correlation between RA and FFV2 ensemble mean SSM with GIMMS 453 

NDVI over SA between 2010 to 2018 are similar (Figure 6). The seasonal RA SSM (row 1) 454 

shows good agreement with NDVI, with significant values of more than 0.7R over large 455 

sections of eastern and central SA through the DJF season; the correlation tapers off during 456 

JFM and FMA but recovers in the MAM season. The reason for this behaviour may be related 457 

to the fact that the timing of peak seasonal precipitation differs from the timing of peak seasonal 458 

NDVI. By MAM (the harvest season), both SSM and NDVI reduce in similar manner, 459 

explaining the high correlation.   FFV2 SSM also shows significant correlation values of more 460 

than 0.5R over considerable regions of eastern and central SA out to the third lead month (DJF), 461 

after which it tapers off. However, NDVI-based results show lower correlations than the 462 

SMAP-based results. 463 

The areally-averaged correlations between SMAP/NDVI and RA, ESP, FFV1, and 464 

FFV2 SSM are provided in Table 2 [row4 (SMAP) and row5 (NDVI)]. As was found in the 465 

RA analysis, comparisons against the remotely sensed data show that FFV2 is more skilful 466 

than either ESP or FFV1. However, the skill of the forecasts relative to the observations is 467 

much smaller, as are the differences in skill between ESP, FFV1, and FFV2. Both SMAP- and 468 

NDVI-based forecast correlations show particularly lower correlation values in the fourth 469 

(JFM) and fifth (FMA) seasonal leads compared to the sixth seasonal lead (MAM). This dip in 470 

correlation of forecasted SSM can be attributed to the SSM forecasts’ inability to correctly 471 

predict the magnitude of moisture at the peak period of the wet season (JFM, FMA) at longer 472 

leads, which produces lower SSM variability in forecasts than in the observations. When the 473 
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seasonal SSM forecast lead is towards the end of the wet season (MAM), the variabilities are 474 

captured better, and therefore have higher correlation values than the previous two leads.   475 

The deterministic analyses evaluated the ensemble mean of the dynamical and ESP 476 

forecasts, showing that the ensemble mean of FFV2 has higher skill and accuracy than the 477 

FFV1 and ESP ensemble mean forecasts at the seasonal scale over SA. However, these 478 

evaluations do not consider the probabilistic nature of the forecasts, which is the main reason 479 

for updating the version of FLDAS-Forecast with a much larger number of ensemble members. 480 

The next section of this study evaluates the probabilistic skill of these forecasts over SA. 481 

4.3 Probabilistic Analysis of Droughts 482 

The ensemble spreads of FFV2-based and FFV1-based RZSM forecasts through the 483 

monthly leads of each (SON) IC are illustrated in Figure 7. The September through November 484 

ICs’ forecasts ensemble spread are stacked in the figure, and the FFV2 monthly RZSM 485 

ensemble forecasts show a larger spread by 0.02-0.1m3/m3 as compared to the FFV1-based 486 

forecasts for all ICs over large regions of SA, except over the very dry regions of Namibia, 487 

South Africa, and the Democratic Republic of Congo, where the difference in spread is less 488 

than 0.03m3/m3. The ensemble spread is seen to increase through the wet season, peaking in 489 

February and reducing thereafter for both the forecast version and the three initial conditions 490 

over SA. 491 

The forecasts are now evaluated for extremes (droughts) by using the Ranked 492 

Probability Skill Score (RPSS). This metric describes the quality of categorical probabilistic 493 

forecasts. Figure 8 shows the RZSM forecast RPSS for conditions when RZSM is less than the 494 

33rd percentile (categorized as “drought” hereafter). As shown in Figure 8, FFV2 (row 3) 495 

exhibits RPSS above 50% over a larger region of SA compared to the FFV1 and ESP forecasts 496 

(row 2 and row 1). We find both the dynamic models’ forecast RPSS to be better than that of 497 

ESP, and we find that the FFV2 forecast RPSS is 10-20% better than that of FFV1 (row 4). 498 
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RPSS decreases with increasing lead for all three forecasts, but not as rapidly as it does for the 499 

deterministic skill, retaining significant RPSS of over 5% until the sixth seasonal forecast lead. 500 

These results are also confirmed by areally-averaged RPSS for the seasonal leads (Table 2, row 501 

3). Additionally, more areas over SA show higher RPSS in FFV2 relative to FFV1 than found 502 

for the deterministic skill assessment.  503 

 The NMME forecasts are also known to have good skill in the sub-seasonal or monthly 504 

scale (Wanders and Wood 2016; Cash et al. 2019). The FFV2 RZSM RPSS values in the 505 

drought category are evaluated separately for each of the early season’s monthly ICs over SA 506 

to further evaluate the sub-seasonal probabilistic skill in RZSM. Figure 9 shows monthly 507 

forecast RPSS through the sixth lead for the September to November ICs. The forecast RPSS 508 

values are progressively higher as the wet season advances from September to November IC. 509 

The October IC forecasts have an average of ~2% higher RPSS than the September IC 510 

forecasts.  The November IC forecasts have on average another ~2% higher skill score than the 511 

October IC forecasts during the first three forecast leads. This increase in skill score can be 512 

attributed to the availability of more moisture in the initial condition with the advancing wet 513 

season. The September IC is relatively dry, and the dryness persists through the hydrologic 514 

forecasts. Hence, forecasts made with September ICs are more likely to have more false alarms 515 

for drought conditions than the forecasts initialized during later months that have higher soil 516 

moisture content, leading to lower RPSS for the September IC forecasts. To support this 517 

argument, FFV2 RZSM hit rate (HR) for drought conditions in Figure 10 shows FFV2 forecasts 518 

initialized in September have an average of ~2% lower HR than those initialized in October 519 

and November. These results are also reflected in the areally-averaged monthly FFV2 RPSS 520 

and HR values (Table 3, rows 1-3). Hence, it can be concluded that hydrologic forecasts made 521 

further into the early wet season have better drought-based RPSS and HR in the first three to 522 

four forecast lead months than those made “too” early in the season. 523 
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Figure 11 presents reliability diagrams for the ESP, FFV1, and FFV2 seasonal forecasts 524 

(SON ICs) over SA in the upper row. Reliability diagrams diagnose categorical forecast quality 525 

by plotting the observed frequency of a categorical event against the forecast probability of that 526 

event (in this case, drought). The highest reliability is shown by the forecast closest to the 527 

diagonal.  FFV2 shows better drought forecast reliability than ESP and FFV1 through all the 528 

forecast seasonal leads, though the overall reliability decreases with increasing lead. The lower 529 

row in Figure 11 presents the Relative Operating Characteristics (ROC) curve for the same set 530 

of seasonal forecasts. ROCs, which are used to measure the ability of the forecasts to 531 

distinguish an event from a non-event, are shown here as plots of the probabilistic hit rate (HR) 532 

to false alarm rate (FAR) for a given category, taken here to be drought. At low leads, the HR 533 

for FFV2 in Figure 10 is initially much larger than the FAR, which brings the trajectory of the 534 

FFV2 curve closer to the top-left-hand corner. This trajectory indicates that FFV2 RZSM has 535 

a better ROC than ESP and FFV1, that is, a better ability to discriminate events from non-536 

events.  The ROC of all forecasts decreases with increasing lead. FFV2 still shows the best 537 

ROC across all leads, even at longer leads, showing FFV2 is better at discriminating events 538 

(drought condition) from non-events (non-drought conditions).  539 

5  APPLICATION AND LIMITATIONS 540 

The results thus far indicate that FFV2 forecasts can serve as a useful tool in the early 541 

reporting of extreme events. As an example, the near-real-time RZSM forecast percentiles with 542 

five monthly leads for October 2019 IC (Figure 12.a) are able to aptly forecast severe drought 543 

conditions over parts of the SA region, as corroborated by news reports in NASA’s Earth 544 

Observatory (Carlowicz and Dauphin 2019), Relief-web (2019), and The New Humanitarian 545 

(Anyadike 2019). The FLDAS-Forecast-based RZSM percentiles use a drought severity 546 

category scale similar to that of the Climate Prediction Center (CPC) and United States Drought 547 

Monitor (USDM), which uses five classifications to characterize a soil moisture percentile in 548 
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the context of drought: (i) abnormally dry (D0 21-30 percentile), showing areas that may be 549 

going into or are coming out of drought; (ii) moderate drought (D1 10-20 percentile); (iii) 550 

severe drought (D2 6-10 percentile); (iv) extreme drought (D3 3-5 percentile); and (v) 551 

exceptional drought (D4 0-2 percentile). In Figure 12.a, the November 2019 through March 552 

2020 FFV2 RZSM forecasts of extreme to severe drought conditions in SA is found consistent 553 

with the crop monitor alert (GEOGLAM 2019) and other alerts, like the Joint Call For Action’s 554 

World Food Programme (WFP 2019). Further, Figure 12.b provides the probability of below-555 

normal, normal, and above-normal RZSM conditions over the region. The below-normal 556 

conditions highlight the likelihood of potentially severe drought-like conditions. The 557 

probability of below-normal conditions (i.e., drought) was found to have a probability of over 558 

60% over parts of South Africa, Botswana, and Namibia. 559 

Results presented in this study are limited by the initialization of a single season and a 560 

relatively small study domain. This work is intended to support remote early warning in the 561 

vulnerable regions of the world, where there are few in situ data sets to support this type of 562 

analysis. Other limitations include the absence of complementary meteorological fields for 563 

driving land surface and hydrology models, like wind, radiation, humidity and surface pressure, 564 

from the different NMME modeling centers’ forecast data sets. This leads to the less optimal 565 

option of combining the NMME precipitation forecasts with the GMAO GEOS forecasts for 566 

the other meteorological fields, which may lead to potential inconsistencies, such as high solar 567 

radiation during times of high rainfall. We currently have no way to quantify the impact of this 568 

limitation. Further improvements to the system inputs could also be made by using higher 569 

resolution data sets such as the European Centre for Medium-Range Weather Forecasts’ 570 

(ECMWF) reanalysis version 5 (ERA5) and the Integrated Multi-satellite Retrievals for Global 571 
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Precipitation Measurement (IMERG) or other relevant reanalyses and/or satellite-based 572 

products for the bias-correction and downscaling procedures. 573 

6 CONCLUSIONS 574 

This study evaluates the NMME-based FLDAS soil moisture forecasts relative to an 575 

observation-based forcing driven reanalysis (RA) through deterministic and probabilistic 576 

analyses. The entire NMME suite of precipitation forecasts is now used in FLDAS-Forecast, 577 

as it has higher skill than any of the individual forecast products in the suite. Because the 578 

original version of FLDAS-Forecast (FFV1) used only GEOS-based inputs, the updated 579 

FLDAS-Forecast (FFV2) is shown to perform better. Here, we demonstrate and quantify this 580 

improved performance by examining FFV1 and FFV2 forecasts over southern Africa, using 581 

the same simulation design as used for producing routine real-time hydrologic forecast 582 

products. 583 

 Results show that the FFV2-based RZSM forecasts have higher deterministic skill than 584 

FFV1. Both versions of FLDAS-Forecast are also found to have better deterministic skill and 585 

probabilistic accuracy than the ESP-based forecasts through the wet season over southern 586 

Africa, which is also the main growing season in that region. Additionally, the RA SSM shows 587 

excellent correlation with remotely sensed observations, like SMAP and NDVI, through the 588 

wet season over southern Africa. The NMME-based SSM forecasts also show good correlation 589 

with these observations until the third seasonal forecast lead, which includes the peak of the 590 

wet season; hence, FFV2 shows promise for forecasting the main part of this season well. 591 

Further, FFV2-based RZSM forecasts yield higher ensemble spread through the wet 592 

season compared to FFV1-based forecasts. Probabilistically, the FFV2-based seasonal RZSM 593 

forecasts also have higher RPSS for the drought category. A monthly probabilistic analysis of 594 

the wet season showed that, for the FFV2-based forecasts, RPSS and HR for drought over 595 
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southern Africa improves with later initializations during the wet season. In addition, the 596 

probabilistic drought study over the region shows that the FFV2-based RZSM forecasts have 597 

better reliability and ROC scores than either the FFV1 or ESP forecasts, highlighting an 598 

improved ability to discriminate events (droughts) from non-events. The probabilistic analyses 599 

also show that both versions of FLDAS-Forecast have higher forecast skill and quality than 600 

ESP-based forecasts through the wet season over southern Africa. In presenting a past 601 

operationally based case, near-real-time FFV2-based RZSM percentiles for October 2019 ICs 602 

successfully predicted drought-like conditions over southern Africa. Having a larger number 603 

of ensemble members, we could provide highly reliable probabilities of drought conditions 604 

through the forecast lead months. 605 

 This work shows that updating FLDAS-Forecast with the entire NMME S2S suite 606 

allows for more skilful hydrologic forecasts. Future work will aim to integrate NMME S2S-607 

based surface temperature along with precipitation into the system and will expand the domain 608 

to cover the globe. The setup may also expand to improve initial conditions by including 609 

multivariate data assimilation, ingesting, for example, assimilating Leaf Area Index (LAI; 610 

Kumar et al. 2019) and soil moisture information (Draper and Reichle 2019; Rahman et al. 611 

2022; Sabater et al. 2008). The near-real-time products have been very useful in providing 612 

potential drought forecasts. These drought-based products will continue to provide support for 613 

USAID’s FEWS NET, as well as for other ongoing early warning systems. 614 
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FIGURES 920 

 921 
Figure 1. Schematic of the FLDAS-Forecast version 2 (FFV2). 922 
 923 

 924 

Figure 2. FFV2 workflow includes pre-processing, LIS-based processing and post-925 
processing. The orange box highlights the bias-correction and spatial downscaling (BCSD) 926 
steps. 927 

 928 
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 929 

Figure 3: Skill (anomaly correlation) between RA RZSM and ESP (row 1), GEOS/FFV1 930 
(row 2) and NMME/FFV2 (row 3) based seasonal RZSM forecast percentiles between 1982-931 
2010 for September, October and November ICs. Row 4 is the difference in skill between 932 
NMME/FFV2-based and GEOS/FFV1-based RZSM forecast percentiles. Correlation 933 
coefficient values less than 0.1 are in white and significant values are stippled. 934 

 935 

Figure 4: Root mean square error (RMSE) between RA RZSM and ESP (row 1), 936 
GEOS/FFV1 (row 2), and NMME/FFV2 (row 3) based seasonal RZSM forecast percentiles 937 
between 1982-2010 for September, October, and November ICs. Row 4 is the difference in 938 
RMSE between NMME/FFV2-based and GEOS/FFV1-based RZSM forecast percentiles. 939 
RMSE values less than 4 percentile are in white. 940 
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 941 
Figure 5: Correlation between SMAP and RA SSM (row 1) and SMAP and NMME SSM 942 
forecasts (row 2) between 2015-2020 for September, October and November ICs. Correlation 943 
coefficients less than 0.1 are in white and significant correlation coefficients are stippled. 944 

 945 

Figure 6: Correlation between GIMMS NDVI and RA (row1) and GIMMS NDVI and 946 
NMME based SSM forecasts (row2) between 2010-2018 for September, October and 947 
November ICs. Correlation coefficients less than 0.1 are in white and significant correlation 948 
coefficients are stippled. 949 
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 950 

Figure 7: Ensemble spread [(Ensmax-Ensmin) of FFV2 and FFV1 September (rows 1, 2), October 951 
(rows 3, 4) and November (rows 5, 6) ICs based RZSM forecasts. 952 
 953 

 954 

Figure 8: Seasonal RPSS between RA RZSM and ESP (row 1), GEOS/FFV1 (row 2) and 955 
NMME/FFV2 (row 3) based seasonal RZSM forecast percentiles between 1982-2010 956 
September, October and November ICs, for categorically drought conditions (<33percentile). 957 
Row 4 is the difference between NMME/FFV2 and GEOS/FFV1 RPSS. RPSS less than 0.05 958 
are in white, which is also the cut-off. The RPSS cut-off values are small enough to be 959 
considered insignificant. 960 
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 961 
Figure 9: Monthly RPSS (for drought) of FFV2 RZSM. Row 1: September IC forecasts; Row 962 
2: October IC forecasts; Row 3: November IC forecasts. 963 

 964 

 965 

Figure 10: Monthly HR (for drought) of FFV2 RZSM. Row 1: September IC forecasts; Row 966 
2: October IC forecasts; Row 3: November IC forecasts. 967 

 968 
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 969 

Figure 11: Reliability Diagram (row 1) and ROC (row 2) of ESP (grey), GEOS-only (red) 970 
and NMME (blue) based forecasts for SON ICs for drought. 971 
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 972 

Figure 12: October 2019 IC, FFV2 RZSM forecast (a) percentiles, and (b) forecast 973 
probabilities, based on 1982-2010 climatology. 974 
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3 TABLES 975 

Table 1. NMME Dataset, numbers in brackets are the number of ensemble members used in 976 
the FLDAS-Forecast setup and processing. 977 

Models Centers Hindcast Ensemble 
Members (1982-2010) 

Forecast Ensemble 
Members (2011-

present) 

CFSv2 NOAA/NCEP 24(12) 24 

GEOS NASA 4 10 

CanCM4i Environment Canada 10 10 

GEM-NEMO Environment Canada 10 10 

CCSM4 NCAR 10 10 

GFDL GFDL 10 10 

GFDL-Flor GFDL 24(12) 24 

 978 

Table 2. Spatially averaged 3-monthly anomaly correlation coefficient, RMSE, RPSS 979 
between ESP/FFV1/FFV2 forecast and RA (rows 1-3), and 3-monthly correlation coefficient 980 
between RA/ESP/FFV1/FFV2 forecast and SMAP (rows 4), and GIMMS NDVI (rows 5) 981 

Metric Lead 0 Lead 1 Lead 2 Lead 3 Lead 4 Lead 5 

Anomaly 
Correlation 

OND 
0.74/0.85 
/0.89 

NDJ 
0.54/0.65 
/0.74 

DJF 
0.48/0.54 
/0.63 

JFM 
0.44/0.47 
/0.57 

FMA 
0.37/0.41 
/0.52 

MAM 
0.34/0.38 
/0.46 

RMSE OND 
16.5/10.4 
/9.2 

NDJ 
22.7/15.2 
/13.7 

DJF 
23.8/17.1 
/15.9 

JFM 
24.3/18.0 
/16.9 

FMA 
25.8/18.6 
/17.4 

MAM 
27.1/20.1 
/18.6 

RPSS OND 
0.65/0.69 
/0.74 

NDJ 
0.53/0.59 
/0.65 

DJF 
0.51/0.56 
/0.62 

JFM 
0.5/0.54 
/0.61 

FMA 
0.47/0.52 
/0.58 

MAM 
0.44/0.50 
/0.57 

Correlation 
(SMAP) 

OND 
0.73/0.51/ 
0.54/0.55 

NDJ 
0.73/0.40/ 
0.44/0.45 

DJF 
0.74/0.22/ 
0.27/0.30 

JFM 
0.66/0.01/ 
0.08/0.09 

FMA 
0.62/0.02/ 
0.1/0.1 

MAM 
0.66/0.22/ 
0.23/0.24 

Correlation 
(NDVI) 

OND 
0.57/0.49/ 
0.46/0.48 

NDJ 
0.57/0.48/ 
0.45/0.51 

DJF 
0.50/0.28/ 
0.31/0.38 

JFM 
0.41/0.08/ 
0.14/0.16 

FMA 
0.35/0.23/ 
0.25/0.29 

MAM 
0.55/0.50/ 
0.51/0.54 

 982 

 983 
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Table 3. Spatially averaged monthly RPSS/HR between RA and FFV2 forecast (rows 1-3) 984 
over southern Africa 985 

Metric Lead 0 Lead 1 Lead 2 Lead 3 Lead 4 Lead 5 

RPSS/HR O  
0.47/0.27 

N 
0.57/0.12 

D 
0.62/0.1 

J 
0.63/0.06 

F 
0.64/0.05 

M 
0.65/0.04 

RPSS/HR N 
0.46/0.29 

D 
0.58/0.14 

J 
0.62/0.11 

F 
0.61/0.1 

M 
0.63/0.08 

A 
0.65/0.07 

RPSS/HR D 
0.45/0.31 

J 
0.57/0.16 

F 
0.61/0.11 

M 
0.62/0.09 

A 
0.64/0.1 

M 
0.61/0.1 

 986 

 987 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

 1004 
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Appendix 1 1007 

1.  Anomaly Correlation Coefficient (ACC) = 1008 

∑ (𝑓𝑖 − 𝑓�̅�)(𝑜𝑖 − �̅�𝑐)𝑛
𝑖=1

√∑ (𝑓𝑖 − 𝑓�̅�)2 ∑ (𝑜𝑖 − �̅�𝑐)2𝑛
𝑖=1

𝑛
𝑖=1

 1009 

where n is the number of samples, fi and oi are the forecasts and validation data, and 1010 
𝑓�̅�  and 𝑜�̅�  are climatological mean of the forecasts and validation data, respectively. 1011 

1.a Statistical Significance of ACC using Fisher transformation: 1012 

              𝐹 = 0.5𝑙𝑛 (1+𝜌)
(1−𝜌)

 1013 

Where  is the ACC, and then compute confidence interval at 95% as follows: 1014 
 1015 

     𝑍𝐿 =  𝐹 − 1.96/√𝑁 − 3    ;          𝑍𝑈 =  𝐹 + 1.96/√𝑁 − 3 1016 

   𝐿 = 𝑒2𝑍𝐿−1
𝑒2𝑍𝐿+1

    ;          𝑈 = 𝑒2𝑍𝑈−1
𝑒2𝑍𝑈+1

 1017 

Where, N is the number of samples (N=29, seasons from 1982 through 2010) for both 1018 
the forecast versions. L and U indicate confidence interval at 95%. 1019 

1.b Statistical significance of the differences in ACC using Fisher transformation,  1020 

               𝐹𝐹𝐹𝑉2 = 0.5𝑙𝑛 (1+𝜌𝐹𝐹𝑉2)
(1−𝜌𝐹𝐹𝑉2)

      ;             𝐹𝐹𝐹𝑉1 = 0.5𝑙𝑛 (1+𝜌𝐹𝐹𝑉1)
(1−𝜌𝐹𝐹𝑉1)

 1021 

Where FFV2 and FFV1 are the ACC of the two versions of forecasts and the test statistic 1022 
(Zdiff) is computed for the differences between the Fisher transformation of the ACC of 1023 
the two forecast versions as follows: 1024 

 1025 
   𝑍𝑑𝑖𝑓𝑓 =  𝐹𝐹𝐹𝑉2−𝐹𝐹𝐹𝑉1

√𝜎𝐹𝐹𝑉2
2

𝑁𝐹𝐹𝑉2
+

𝜎𝐹𝐹𝑉1
2

𝑁𝐹𝐹𝑉1

 1026 

Where, 2 is the variance of F and N is the number of samples (N=29, seasons from 1027 
1982 through 2010) for the forecast versions. Values of Z greater than 1.96 indicate 1028 
that the difference between ACC is statistically significant at 95% confidence level. 1029 

2. Root Mean Square Error =  1030 

 1031 
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where n is the number of samples, fi and oi are the forecasts and validation data. 1032 

3. Correlation Coefficient =  1033 

∑ (𝑓𝑖 − 𝑓)̅(𝑜𝑖 − �̅�)𝑛
𝑖=1

√∑ (𝑓𝑖 − 𝑓)̅2 ∑ (𝑜𝑖 − �̅�)2𝑛
𝑖=1

𝑛
𝑖=1

 1034 

where n is the number of samples, fi and oi are the forecasts and validation data and 𝑓 ̅1035 
and �̅� are the mean of the forecasts and validation data. 1036 

4. Ensemble Spread = 𝐸𝑛𝑠𝑚𝑎𝑥 − 𝐸𝑛𝑠𝑚𝑖𝑛 1037 

Where Ensmax and Ensmin are the maximum and minimum values respectively of the 1038 
ensemble members. 1039 

5. Rank Probability Skill Score, RPSS = 1- 𝑅𝑃𝑆
𝑅𝑃𝑆𝑐𝑙𝑖𝑚

 1040 

 where Rank Probability Skill, RPS =  1041 

 1042 

 where 𝑝𝑘is the probability of forecast category k and 𝑜𝑘is an indicator (0=no, 1=yes) 1043 
for the observations category k. k is considered as drought or below normal category 1044 
in this study.  1045 

6.  Hit Rate  =  
Hits

Hits+Misses
 1046 

Where Hits and Misses are from the contingency table below,                                                 1047 

Drought 
forecasts 

Drought Observed 

Yes No 

Yes Hits False 
Alarms 

No Misses Correct non-
event 

 1048 
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